亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

規律的作文

時間:2022-01-30 12:22:42 議論文 我要投稿

關于規律的作文

  找規律是一種十分鍛煉人邏輯思維的數理游戲,它千變萬化,沒有一種固定的模式。下面小編為大家整理了關于規律的作文,希望能幫到大家!

關于規律的作文

  篇一:我發現了平方規律

  數學的神奇無處不在,每一個數字、符號都是他的憑證。今天,我也證實了這一點:數學的神奇。

  數學課下課后,我無意間發現了一個規律,一個關于平方的規律。我攤開練習本,看見練習本上的密密麻麻的驗算過程,突然,一個不起眼的算式引起了我的注意:52-42.這是一個很簡單的算式,口算也能算出來:9,而9不正是5+4的和么?我又換了一個式子:62-52,結果是11,11也正是6+5的和。我感到非常驚喜,仿佛發現了新大陸似的,快要瘋了。但是好奇的我又想:這是兩個相鄰的數的平方,那不相鄰的可以么?于是我就又列了一個式子:52-32,并且很快的得出了結果:16,這時,我懵了,一時半會兒得不出結論,這令我很沮喪。

  忽然,靈光一閃——為什么不從5與3的和或差來考慮呢?5+3=8,5-3=2,8×2=16!16不就是52-32的差么?我又試了試:72-42=49-16=33。(7+4)×(7-4)=11×3=33,結果一樣!我是一個固執的人,繼續想:既然正數可以,負數同樣適用么?比如(-3)2-52=9-25=-16。(-3+5)×(-3-5)=2×(-8)=-16。又是一個奇跡!這會不會是巧合呢?我換了大數試試:20002-19992=4000000-3996001=3999;如果用規律來計算的話,就是:(2000-1999)×(2000+1999)=1×3999=3999。哈哈,果然簡便了很多!真是方便!小小的“+”“-”,具有著無窮的魔力,怎么不能說,數學是神奇的呢?

  數學的“魔術”一個個被我“揭穿”,做到這一點,已經夠了不起了,可我還誓不罷休,又接著算起了立方:43-33=64-27=37;33-23=27-8=19。這下,我可敗下了陣,看來,還是“數學”略勝一籌,它再也露不出馬腳了,我也甘拜下風。

  ——上課鈴響了,清脆的鈴聲聽起來格外悅耳,好像在慶賀我似的,取得了“破解家”的稱號。雖然我還未看透數學,但是我卻認識到數學是奇妙無窮的。

  篇二:找規律的樂趣

  找規律是一種十分鍛煉人邏輯思維的數理游戲,它千變萬化,沒有一種固定的模式。有些同學可能討厭它,認為它很枯燥很無奈,一碰到這樣的題就變得抓耳撓腮。但我很喜歡,因為在找規律的過程中不但鍛煉了我的觀察力、相互聯系的能力及邏輯思維能力,我還從中體會到了無窮的樂趣。

  其實,我對找規律的喜好,還是從做媽媽給我買的《哈佛給學生做的300個思維游戲》這本書上的游戲開始的。書中列舉了300個思維游戲題,內容豐富,形式活潑,其中有許多找規律的題型。例如:你能找出最后一個數字盤中問號部分應當填入的數字嗎?

  猛一看三個圓盤中相連的兩個數字之間毫無規律可言,這可怎么解呢?別急,慢慢地觀察或許不難發現,假若把每個圓盤中相對應的一組數字拿出來比較一下,規律好像就出來了。真的吔,每個圓盤中相對應的一組數字之間都存在相同的倍數,或叫“特定數”。如:

  第一個圓盤中:21÷7=3  9÷3=3  15÷5=3  27÷9=3;即第一個圓盤中的特定數就是3。

  第二個圓盤中:30÷5=6  24÷4=6  12÷2=6  36÷6=6;即第二個圓盤中的特定數就是6。

  好吧,既然第一、第二個圓盤中的規律都是找“特定數”,那么第三個圓盤中相對應的一組數字也應該符合這個規律,即找特定數。從9÷1=9  45÷5=9   27÷3=9 就可得出,第三個圓盤的特定數是9。以此類推,?÷8 = 9  那么 ?= 72

  所以,問號部分應當填入數字72。

  啊!終于找出來了問號部分的答案了。每當此時,我都無比的激動和興奮。因為經過苦苦思索后,又猛然間豁然開朗,那種成功的喜悅是任何言語都無法形容的。

  就是這樣,一次次的苦思覓想,一次次的豁然開朗,使我欲罷不能。慢慢地我喜歡上了這種痛苦并快樂著的找規律游戲,只有親身經歷過的人才能真正體會到其中的樂趣。

  通過找規律的游戲,我漸漸地領悟到一個真理:規律是看不見摸不著的,只有深入其中,不斷探索,勇于拼搏的人才能真正的找到它。

  篇三:找規律——游戲中的數學知識

  有一次,菲菲和藍貓玩跳格子的游戲,他們跳的格子是這樣的:1 2 3 4 5,菲菲把一個沙包拋到第一格,再單腳跳進此格,撿起后回到起點,再拋進第2格,菲菲跳進第一格后再跳進第二格,但跳進第二格時,菲菲踩到線了,所以失敗了。藍貓接著玩,他一下就跳進了第二格,菲菲說它賴皮,不算。剛好洋博士經過這兒,問明情況后,夸它們說:“知道嗎?你們玩出了一道有趣的題目。”藍貓和菲菲很驚訝。

  洋博士說:“你們跳格子,每次可以跳一格,也可以跳兩格,還可以一格兩格斷續的跳,但每次最多只可以跳兩格,跳完5格共有多少種跳法呢?”

  菲菲和藍貓都認真地想了想后,藍貓拍著腦門說:“第一格,很顯然只有一種跳法。第二格,可以一次跳一格,跳兩次;還可以一次跳兩格,跳一次;有兩種跳法。第三格,可以一格一格的跳,跳三次;還可以先跳一格,再跳兩格,跳兩次;或者先跳兩格,再跳一格,跳兩次;有三種跳法。用同樣的方法可以推知,跳進第四格有五種跳法,跳進第五格有八種跳法。”洋博士高興的笑著說:“你們仔細觀察跳進每一格的方法數1、2、3、5、8,有沒有發現什么規律?”

  菲菲回答說:“我知道,我知道,從第三個數起,每個數字是前兩個數字的和。”

  洋博士說:“對,這其實是一個有趣的數列。想不想聽一個關于數列的故事呢?”

  藍貓和菲菲異口同聲地說:“當然想,當然想。”

  于是洋博士說,意大利比薩的一位綽號為斐波那契的數學家在《算盤書》這本數學著作中,提出了一個問題:兔子出生以后兩個月就能生小兔,若每次不多不少恰好生一對(一雌一雄)。假如養了初生的小兔一對,試問一年以后(即第13個月)共可有多少對兔子(如果生下的小兔都不死的話)?

  此題的推算方法和跳格子一樣,從第三個月起每個月的兔子數是前兩個月的兔子數之和。據此推知,一年后,共有233對兔子。以上兔子數構成的數列,現在稱之為“兔子數列”。它廣泛存在于我們的生活中,只有認真的觀察,才能不斷地了解生活中的奧秘。

  藍貓和菲菲不約而同地點頭稱是。

  最后藍貓說,我出兩道關于數列的題,請大家一起算一算吧!題目是這樣的:

  1、4、7、10、(   )、16、19、(  )、25、28、96、(  )、24、12、6、3

  比一比,看誰最聰明吧!

【規律的作文】相關文章:

有關寫規律的作文:生活要有規律08-13

有關規律作文09-25

規律與習慣作文09-17

規律小學作文10-10

大自然的規律作文精選08-07

找規律小學作文07-18

找規律敘事作文08-06

大自然的規律作文06-20

關于規律的作文范文11-22