- 相關推薦
高中數學函數部分知識點總結
總結在一個時期、一個年度、一個階段對學習和工作生活等情況加以回顧和分析的一種書面材料,寫總結有利于我們學習和工作能力的提高,不如立即行動起來寫一份總結吧。你所見過的總結應該是什么樣的?以下是小編整理的高中數學函數部分知識點總結,僅供參考,大家一起來看看吧。
1.函數的奇偶性
。1)若f(x)是偶函數,那么f(x)=f(-x);
(2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用于求參數);(3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性;
。5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性;
2.復合函數的有關問題
。1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。(2)復合函數的單調性由“同增異減”判定;
3.函數圖像(或方程曲線的對稱性)
(1)證明函數圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上;
。2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;
。3)曲線C1:f(x,y)=0,關于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
。4)曲線C1:f(x,y)=0關于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;
。5)若函數y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關于直線x=a對稱;
。6)函數y=f(x-a)與y=f(b-x)的圖像關于直線x=對稱;
4.函數的周期性
(1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數;
(2)若y=f(x)是偶函數,其圖像又關于直線x=a對稱,則f(x)是周期為2a的周期函數;
(3)若y=f(x)奇函數,其圖像又關于直線x=a對稱,則f(x)是周期為4a的周期函數;
。4)若y=f(x)關于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數;
。5)y=f(x)的圖象關于直線x=a,x=b(a≠b)對稱,則函數y=f(x)是周期為2的周期函數;
。6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數;
5.方程k=f(x)有解k∈D(D為f(x)的值域);
6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;
7.(1)(a>0,a≠1,b>0,n∈R+);
(2)logaN=(a>0,a≠1,b>0,b≠1);
(3)logab的符號由口訣“同正異負”記憶;(4)alogaN=N(a>0,a≠1,N>0);
8.判斷對應是否為映射時,抓住兩點:
。1)A中元素必須都有象且唯一;
(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9.能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。
10.對于反函數,應掌握以下一些結論:
(1)定義域上的單調函數必有反函數;
。2)奇函數的反函數也是奇函數;
。3)定義域為非單元素集的偶函數不存在反函數;
。4)周期函數不存在反函數;
。5)互為反函數的兩個函數具有相同的單調性;
(5)y=f(x)與y=f-1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).
11.處理二次函數的問題勿忘數形結合;二次函數在閉區間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區間的相對位置關系;
12.依據單調性,利用一次函數在區間上的保號性可解決求一類參數的范圍問題
13.恒成立問題的處理方法:
(1)分離參數法;
(2)轉化為一元二次方程的根的分布列不等式(組)求解;
函數的定義域的常用求法:
1、分式的分母不等于零;
2、偶次方根的被開方數大于等于零;
3、對數的真數大于零;
4、指數函數和對數函數的底數大于零且不等于1;
5、三角函數正切函數y=tanx中x≠kπ+π/2;
6、如果函數是由實際意義確定的解析式,應依據自變量的實際意義確定其取值范圍。
函數的解析式的常用求法:
1、定義法;
2、換元法;
3、待定系數法;
4、函數方程法;
5、參數法;
6、配方法
函數的值域的常用求法:
1、換元法;
2、配方法;
3、判別式法;
4、幾何法;
5、不等式法;
6、單調性法;
7、直接法
函數的最值的常用求法:
1、配方法;
2、換元法;
3、不等式法;
4、幾何法;
5、單調性法
函數單調性的常用結論:
1、若f(x),g(x)均為某區間上的增(減)函數,則f(x)+g(x)在這個區間上也為增(減)函數
2、若f(x)為增(減)函數,則-f(x)為減(增)函數
3、若f(x)與g(x)的單調性相同,則f[g(x)]是增函數;若f(x)與g(x)的單調性不同,則f[g(x)]是減函數。
4、奇函數在對稱區間上的單調性相同,偶函數在對稱區間上的單調性相反。
5、常用函數的單調性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數圖象。
六、函數奇偶性的常用結論:
1、如果一個奇函數在x=0處有定義,則f(0)=0,如果一個函數y=f(x)既是奇函數又是偶函數,則f(x)=0(反之不成立)
2、兩個奇(偶)函數之和(差)為奇(偶)函數;之積(商)為偶函數。
3、一個奇函數與一個偶函數的積(商)為奇函數。
4、兩個函數y=f(u)和u=g(x)復合而成的函數,只要其中有一個是偶函數,那么該復合函數就是偶函數;當兩個函數都是奇函數時,該復合函數是奇函數。
5、若函數f(x)的定義域關于原點對稱,則f(x)可以表示為f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],該式的特點是:右端為一個奇函數和一個偶函數的和。
冪函數
定義:
形如y=x^a(a為常數)的函數,即以底數為自變量冪為因變量,指數為常量的函數稱為冪函數。
定義域和值域:
當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大于0的所有實數;如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根[據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。當x為不同的數值時,冪函數的值域的不同情況如下:在x大于0時,函數的值域總是大于0的實數。在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。而只有a為正數,0才進入函數的值域
性質:
對于a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時,設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:
排除了為0與負數兩種可能,即對于x>0,則a可以是任意實數;
排除了為0這種可能,即對于x<0 x="">0的所有實數,q不能是偶數;
排除了為負數這種可能,即對于x為大于且等于0的所有實數,a就不能是負數。
總結起來,就可以得到當a為不同的數值時,冪函數的定義域的不同情況如下:
如果a為任意實數,則函數的定義域為大于0的所有實數;
如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。
在x大于0時,函數的值域總是大于0的實數。
在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。
而只有a為正數,0才進入函數的值域。
由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況.
可以看到:
(1)所有的圖形都通過(1,1)這點。
(2)當a大于0時,冪函數為單調遞增的,而a小于0時,冪函數為單調遞減函數。
(3)當a大于1時,冪函數圖形下凹;當a小于1大于0時,冪函數圖形上凸。
(4)當a小于0時,a越小,圖形傾斜程度越大。
(5)a大于0,函數過(0,0);a小于0,函數不過(0,0)點。
(6)顯然冪函數無界。
【高中數學函數部分知識點總結】相關文章:
高中數學函數知識點歸納總結09-30
函數知識點總結02-10
函數與導數知識點總結07-11
冪函數知識點總結07-11
高考函數知識點總結07-11
高一函數知識點總結01-14
【精選】高中冪函數知識點總結12-02
關于高中函數的知識點總結03-30
初二函數知識點總結04-22