數(shù)學(xué)必修一必背知識(shí)點(diǎn)總結(jié)
總結(jié)是事后對(duì)某一階段的學(xué)習(xí)、工作或其完成情況加以回顧和分析的一種書面材料,它可使零星的、膚淺的、表面的感性認(rèn)知上升到全面的、系統(tǒng)的、本質(zhì)的理性認(rèn)識(shí)上來,讓我們好好寫一份總結(jié)吧。總結(jié)怎么寫才不會(huì)千篇一律呢?以下是小編精心整理的數(shù)學(xué)必修一必背知識(shí)點(diǎn)總結(jié),希望對(duì)大家有所幫助。
1. 函數(shù)的奇偶性
(1)若f(x)是偶函數(shù),那么f(x)=f(-x) ;
(2)若f(x)是奇函數(shù),0在其定義域內(nèi),則 f(0)=0(可用于求參數(shù));
(3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或 (f(x)≠0);
(4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性;
(5)奇函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;
2. 復(fù)合函數(shù)的有關(guān)問題
(1)復(fù)合函數(shù)定義域求法:若已知 的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求 f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即 f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。
(2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;
3.函數(shù)圖像(或方程曲線的對(duì)稱性)
(1)證明函數(shù)圖像的對(duì)稱性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在圖像上;
(2)證明圖像C1與C2的對(duì)稱性,即證明C1上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在C2上,反之亦然;
(3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對(duì)稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱曲線C2方程為:f(2a-x,2b-y)=0;
(5)若函數(shù)y=f(x)對(duì)x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對(duì)稱;
(6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x= 對(duì)稱;
4.函數(shù)的周期性
(1)y=f(x)對(duì)x∈R時(shí),f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);
(2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為2︱a︱的周期函數(shù);
(3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為4︱a︱的周期函數(shù);
(4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱,則f(x)是周期為2 的周期函數(shù);
(5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對(duì)稱,則函數(shù)y=f(x)是周期為2 的周期函數(shù);
(6)y=f(x)對(duì)x∈R時(shí),f(x+a)=-f(x)(或f(x+a)= ,則y=f(x)是周期為2 的周期函數(shù);
5.方程k=f(x)有解 k∈D(D為f(x)的值域);
6.a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;
7.(1) (a>0,a≠1,b>0,n∈R+);
(2) l og a N= ( a>0,a≠1,b>0,b≠1);
(3) l og a b的符號(hào)由口訣“同正異負(fù)”記憶;
(4) a log a N= N ( a>0,a≠1,N>0 );
8. 判斷對(duì)應(yīng)是否為映射時(shí),抓住兩點(diǎn):
(1)A中元素必須都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9. 能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。
10.對(duì)于反函數(shù),應(yīng)掌握以下一些結(jié)論:(1)定義域上的單調(diào)函數(shù)必有反函數(shù);(2)奇函數(shù)的反函數(shù)也是奇函數(shù);(3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);(4)周期函數(shù)不存在反函數(shù);(5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;(5) y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).
11.處理二次函數(shù)的'問題勿忘數(shù)形結(jié)合;二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對(duì)稱軸與所給區(qū)間的相對(duì)位置關(guān)系;
12. 依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號(hào)性可解決求一類參數(shù)的范圍問題
13. 恒成立問題的處理方法:(1)分離參數(shù)法;(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;
數(shù)學(xué)旋轉(zhuǎn)的知識(shí)點(diǎn)
旋轉(zhuǎn)的特征:
(1)對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;
(2)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;
(3)旋轉(zhuǎn)前后的圖形全等。
理解以下幾點(diǎn):
(1)圖形中的每一個(gè)點(diǎn)都繞旋轉(zhuǎn)中心旋轉(zhuǎn)了同樣大小的角度。
(2)對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,對(duì)應(yīng)線段相等,對(duì)應(yīng)角相等。
(3)圖形的大小和形狀都沒有發(fā)生改變,只改變了圖形的位置。
學(xué)習(xí)數(shù)學(xué)小竅門
建立數(shù)學(xué)糾錯(cuò)本。
把平時(shí)容易出現(xiàn)錯(cuò)誤的知識(shí)或推理記載下來,以防再犯。爭取做到:找錯(cuò)、析錯(cuò)、改錯(cuò)、防錯(cuò)。達(dá)到:能從反面入手深入理解正確東西;能由果朔因把錯(cuò)誤原因弄個(gè)水落石出、以便對(duì)癥下藥;解答問題完整、推理嚴(yán)密。
限時(shí)訓(xùn)練。
可以找一組題(比如10道選擇題),爭取限定一個(gè)時(shí)間完成;也可以找1道大題,限時(shí)完成。這主要是創(chuàng)設(shè)一種考試情境,檢驗(yàn)自己在緊張狀態(tài)下的思維水平。
【數(shù)學(xué)必修一必背知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
2021端午節(jié)必背古詩06-10
數(shù)學(xué)必修五教學(xué)設(shè)計(jì)、12-29
高一生物知識(shí)點(diǎn)復(fù)習(xí)資料整理必修一12-07
必修二教學(xué)總結(jié)12-02
高中生物知識(shí)點(diǎn)復(fù)習(xí)資料總結(jié)必修三10-13
高一地理必修二知識(shí)點(diǎn)總復(fù)習(xí)資料12-07
高二生物必修一基礎(chǔ)知識(shí)點(diǎn)復(fù)習(xí)資料整理12-13
人教版高一數(shù)學(xué)必修1說課稿 對(duì)數(shù)函數(shù)及其性質(zhì)11-02