六年級下冊數(shù)學(xué)第二單元知識點
在平凡的學(xué)習(xí)生活中,大家都背過不少知識點,肯定對知識點非常熟悉吧!知識點就是“讓別人看完能理解”或者“通過練習(xí)我能掌握”的內(nèi)容。掌握知識點是我們提高成績的關(guān)鍵!下面是小編為大家整理的六年級下冊數(shù)學(xué)第二單元知識點,僅供參考,歡迎大家閱讀。
六年級下冊數(shù)學(xué)第二單元知識點 篇1
一、圓柱
1、圓柱的形成:圓柱是以長方形的一邊為軸旋轉(zhuǎn)而得的。
圓柱也可以由長方形卷曲而得到。
兩種方式:
1、以長方形的長為底面周長,寬為高;
2、以長方形的寬為底面周長,長為高。
其中,第一種方式得到的圓柱體體積較大。
2、圓柱的高是兩個底面之間的距離,一個圓柱有無數(shù)條高,他們的數(shù)值是相等的
3、圓柱的特征:
(1)底面的特征:圓柱的底面是完全相等的兩個圓。
(2)側(cè)面的特征:圓柱的側(cè)面是一個曲面。
(3)高的特征:圓柱有無數(shù)條高
4、圓柱的切割:
①橫切:切面是圓,表面積增加2倍底面積,即S增=2πr?0?5
②豎切(過直徑):切面是長方形(如果h=2R,切面為正方形),該長方形的長是圓柱的高,寬是圓柱的底面直徑,表面積增加兩個長方形的面積,即S增=4rh
5、圓柱的側(cè)面展開圖:
①沿著高展開,展開圖形是長方形,如果h=2πr,則展開圖形為正方形
②不沿著高展開,展開圖形是平行四邊形或不規(guī)則圖形
③無論怎么展開都得不到梯形
圓柱變形記,圓柱怎么變形成長方體?與長方體又有什么聯(lián)系?怎么借助長方體的體積計算圓柱的體積?
6、圓柱的相關(guān)計算公式:
底面積:S底=πr?0?5
底面周長:C底=πd=2πr
側(cè)面積:S側(cè)=2πrh
表面積:S表=2S底+S側(cè)=2πr?0?5+2πrh
體積:V柱=πr?0?5h
考試常見題型:
①已知圓柱的底面積和高,求圓柱的側(cè)面積,表面積,體積,底面周長
②已知圓柱的底面周長和高,求圓柱的側(cè)面積,表面積,體積,底面積
③已知圓柱的底面周長和體積,求圓柱的側(cè)面積,表面積,高,底面積
④已知圓柱的底面面積和高,求圓柱的側(cè)面積,表面積,體積
⑤已知圓柱的側(cè)面積和高,求圓柱的底面半徑,表面積,體積,底面積
以上幾種常見題型的解題方法,通常是求出圓柱的底面半徑和高,再根據(jù)圓柱的相關(guān)計算公式進(jìn)行計算
無蓋水桶的表面積=側(cè)面積+一個底面積油桶的表面積=側(cè)面積+兩個底面積
煙囪通風(fēng)管的表面積=側(cè)面積
只求側(cè)面積:燈罩、排水管、漆柱、通風(fēng)管、壓路機、衛(wèi)生紙中軸、薯片盒包裝
側(cè)面積+一個底面積:玻璃杯、水桶、筆筒、帽子、游泳池
側(cè)面積+兩個底面積:油桶、米桶、罐桶類
二、圓錐
1、圓錐的形成:圓錐是以直角三角形的一直角邊為軸旋轉(zhuǎn)而得到的。圓錐也可以由扇形卷曲而得到。
2、圓錐的高是兩個頂點與底面之間的距離,與圓柱不同,圓錐只有一條高
3、圓錐的特征:
(1)底面的特征:圓錐的底面一個圓。
(2)側(cè)面的特征:圓錐的側(cè)面是一個曲面。
(3)高的特征:圓錐有一條高。
4、圓錐的切割:
①橫切:切面是圓
②豎切(過頂點和直徑直徑):切面是等腰三角形,該等腰三角形的高是圓錐的高,底是圓錐的底面直徑,面積增加兩個等腰三角形的面積,即S增=2rh
5、圓錐的相關(guān)計算公式:
底面積:S底=πr?0?5
底面周長:C底=πd=2πr
體積:V錐=1/3πr?0?5h
考試常見題型:
①已知圓錐的底面積和高,求體積,底面周長
②已知圓錐的底面周長和高,求圓錐的體積,底面積
③已知圓錐的底面周長和體積,求圓錐的高,底面積
以上幾種常見題型的解題方法,通常是求出圓錐的底面半徑和高,再根據(jù)圓柱的相關(guān)計算公式進(jìn)行計算
圓柱和圓錐的關(guān)系
1、圓柱與圓錐等底等高,圓柱的體積是圓錐的3倍。
2、圓柱與圓錐等底等體積,圓錐的高是圓柱的3倍。
3、圓柱與圓錐等高等體積,圓錐的底面積(注意:是底面積而不是底面半徑)是圓柱的3倍。
4、圓柱與圓錐等底等高,體積相差2/3Sh
六年級下冊數(shù)學(xué)第二單元知識點 篇2
長度單位換算:
1千米=1000米。
1米=10分米。
1分米=10厘米。
1米=100厘米。
1厘米=10毫米。
面積單位換算:
1平方千米=100公頃。
1公頃=10000平方米。
1平方米=100平方分米。
1平方分米=100平方厘米。
1平方厘米=100平方毫米。
體(容)積單位換算:
1立方米=1000立方分米。
1立方分米=1000立方厘米。
1立方分米=1升。
1立方厘米=1毫升。
1立方米=1000升。
重量單位換算:
1噸=1000千克。
1千克=1000克。
1千克=1公斤。
人民幣單位換算:
1元=10角。
1角=10分。
1元=100分。
時間單位換算:
1世紀(jì)=100年。
1年=12月。
大月(31天)有:135781012月。
小月(30天)的有:46911月。
平年2月28天,閏年2月29天。
平年全年365天,閏年全年366天。
1日=24小時1時=60分。
1分=60秒1時=3600秒。
六年級下冊數(shù)學(xué)第二單元知識點 篇3
1、認(rèn)識圓柱和圓錐,掌握它們的基本特征。認(rèn)識圓柱的底面、側(cè)面和高。認(rèn)識圓錐的底面和高。
2、探索并掌握圓柱的側(cè)面積、表面積的計算方法,以及圓柱、圓錐體積的計算公式,會運用公式計算體積,解決有關(guān)的簡單實際問題。
3、通過觀察、設(shè)計和制作圓柱、圓錐模型等活動,了解平面圖形與立體圖形之間的聯(lián)系,發(fā)展學(xué)生的空間觀念。
4、圓柱的兩個圓面叫做底面,周圍的面叫做側(cè)面,底面是平面,側(cè)面是曲面,。
5、圓柱的側(cè)面沿高展開后是長方形,長方形的長等于圓柱底面的周長,長方形的寬等于圓柱的高,當(dāng)?shù)酌嬷荛L和高相等時,側(cè)面沿高展開后是一個正方形。
6、圓柱的表面積=圓柱的側(cè)面積+底面積×2即S表=S側(cè)+S底×2或2πr×h + 2×πr2
7、圓柱的側(cè)面積=底面周長×高即S側(cè)=Ch或2πr×h
8、圓柱的體積=圓柱的底面積×高,即V=sh或πr2×h
(進(jìn)一法:實際中,使用的材料都要比計算的結(jié)果多一些,因此,要保留數(shù)的時候,省略的位上的是4或者比4小,都要向前一位進(jìn)1。這種取近似值的方法叫做進(jìn)一法。)
9、圓錐只有一個底面,底面是個圓。圓錐的側(cè)面是個曲面。
10、從圓錐的頂點到底面圓心的距離是圓錐的高。圓錐只有一條高。(測量圓錐的.高:先把圓錐的底面放平,用一塊平板水平地放在圓錐的頂點上面,豎直地量出平板和底面之間的距離。)
11、把圓錐的側(cè)面展開得到一個扇形。
12、圓錐的體積等于與它等底等高的圓柱體積的三分之一,即V錐=1/3 Sh或πr2×h÷3
13、常見的圓柱圓錐解決問題:①、壓路機壓過路面面積(求側(cè)面積);②、壓路機壓過路面長度(求底面周長);③、水桶鐵皮(求側(cè)面積和一個底面積);④、廚師帽(求側(cè)面積和一個底面積);通風(fēng)管(求側(cè)面積)。
小學(xué)數(shù)學(xué)基數(shù)和序數(shù)簡介
基數(shù):一、二、三、四、五、六、七、八、九、十。
序數(shù):第一、第二、第三、第四、第五、第六、第七、第八、第九、第十。
基數(shù)在數(shù)學(xué)上,是集合論中刻畫任意集合大小的一個概念。兩個能夠建立元素間一一對應(yīng)的集合稱為互相對等集合。例如3個人的集合和3匹馬的集合可以建立一一對應(yīng),是兩個對等的集合。
序數(shù)原來被定義為良序集的序型,而良序集A的序型,作為從A的元素的屬性中抽象出來的結(jié)果,是所有與A序同構(gòu)的一切良序集的共同特征,即定義為{B|BA}。
數(shù)學(xué)圖形的變換知識點
1、軸對稱圖形:把一個圖形沿著某一條直線對折,兩邊能夠完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸。
2、成軸對稱圖形的特征和性質(zhì):①對稱點到對稱軸的距離相等;②對稱點的連線與對稱軸垂直;③對稱軸兩邊的圖形大小形狀完全相同。
3、物體旋轉(zhuǎn)時應(yīng)抓住三點:①旋轉(zhuǎn)中心;②旋轉(zhuǎn)方向;③旋轉(zhuǎn)角度。旋轉(zhuǎn)只改變物體的位置,不改變物體的形狀、大小。
【六年級下冊數(shù)學(xué)第二單元知識點】相關(guān)文章:
小學(xué)數(shù)學(xué)下冊第二單元復(fù)習(xí)要點08-26
數(shù)學(xué)六年級上第二單元知識點復(fù)習(xí)和整理09-07
六年級下冊第二單元優(yōu)秀作文01-20
小學(xué)六年級數(shù)學(xué)下冊第六單元知識點整理和復(fù)習(xí).09-06
六年級下冊第二單元作文:傳統(tǒng)節(jié)日12-10