函數的應用知識點總結
函數的應用類型問題一直是期末數學重要題型之一,那一起來看看函數的應用的知識點吧,下面是小編為大家收集整理的函數的應用知識點總結,歡迎閱讀。
函數的應用知識點總結:函數圖象的判斷與應用
1.圖象的變換
(1)平移變換
、賧=f(x±a) (a>0)的圖象,可由y=f(x)的圖象沿x軸方向向左(+a)或向右(-a)平移 a個單位得到;
②y=f(x)±b (b>0)的圖象,可由y=f(x)的圖象沿y軸方向向上(+b)或向下(-b)平移 b個單位得到。
(2)對稱變換
①y=f(-x)與y=f(x)的圖象關于y軸對稱;
、趛=-f(x)與y=f(x)的圖象關于x軸對稱;
、踶=-f(-x)與y=f(x)的圖象關于原點對稱。
(3)伸縮變換
①y=kf(x) (k>0)的圖象,可由y=f(x)的圖象上每一個點的縱坐標伸長(k>1)或縮短(0<k<1)為原來的k倍而得到;
、趛=f(kx) (k>0)的圖象,可由y=f(x)的圖象上每一個點的橫坐標伸長(0<k<1)或縮短(k>1)為原來的1/k 而得到。
(4)翻折變換
、僖玫統=|f(x)|的圖象,可先畫出y=f(x)的圖象,然后“上不動,下翻上”即可得到;
、谟捎趛=f(|x|)是偶函數,要得到y=f(|x|)的圖象,可先畫出y=f(x)的圖象,然后“右不動,左去掉,右翻左”即可得到。
2.利用函數的性質確定函數圖象的一般步驟
(1)確定函數的定義域;
(2)化簡函數的解析式;
(3)討論函數的性質(奇偶性、單調性、周期性等)和圖象上的特殊點線(如漸近線、對稱軸等);
(4)利用基本函數的圖象確定所給函數的圖象。
二、函數零點
1.函數零點的等價關系
2.零點存在性定理
【注意】
零點存在性定理只能判斷函數在某區間上是否存在零點,并不能判斷零點的個數,但如果函數在區間上是單調函數,則該函數在區間上至多有一個零點。
【注意】
在解決有關零點問題時,一定要充分利用這三者的關系,觀察、分析函數的圖象,找函數的零點,判斷各區間上函數值的符號,使問題得以解決。
三、函數模型及其應用
1.幾種常見的函數模型
2.“冪、指、對”三種函數模型的區別與聯系
3.“對勾”函數的性質
函數的應用知識點總結:二次函數知識點
I.定義與定義表達式
一般地,自變量x和因變量y之間存在如下關系:y=ax^2+bx+c
。╝,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)則稱y為x的二次函數。
二次函數表達式的右邊通常為二次三項式。
II.二次函數的三種表達式
一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)
頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]
交點式:y=a(x-x)(x-x)[僅限于與x軸有交點A(x,0)和B(x,0)的拋物線]
注:在3種形式的互相轉化中,有如下關系:
h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a
III.二次函數的圖像
在平面直角坐標系中作出二次函數y=x^2的圖像,可以看出,二次函數的圖像是一條拋物線。
IV.拋物線的性質
1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。
對稱軸與拋物線唯一的交點為拋物線的頂點P。特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點P,坐標為:P(-b/2a,(4ac-b^2)/4a)當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。
3.二次項系數a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。
4.一次項系數b和二次項系數a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左;
當a與b異號時(即ab<0),對稱軸在y軸右。
5.常數項c決定拋物線與y軸交點。
拋物線與y軸交于(0,c)
6.拋物線與x軸交點個數
Δ=b^2-4ac>0時,拋物線與x軸有2個交點。
Δ=b^2-4ac=0時,拋物線與x軸有1個交點。
Δ=b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x=-b±√b^2-4ac的值的相反數,乘上虛數i,整個式子除以2a)
V.二次函數與一元二次方程
特別地,二次函數(以下稱函數)y=ax^2+bx+c,
當y=0時,二次函數為關于x的一元二次方程(以下稱方程),即ax^2+bx+c=0
此時,函數圖像與x軸有無交點即方程有無實數根。函數與x軸交點的橫坐標即為方程的根。
1.二次函數y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:
當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,
當h<0時,則向左平行移動|h|個單位得到.
當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2+k的圖象;
當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;
當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象;
當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;
因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的.形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.
2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).
3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小.
4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:
(1)圖象與y軸一定相交,交點坐標為(0,c);
(2)當△=b^2-4ac>0,圖象與x軸交于兩點A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的兩根.這兩點間的距離AB=|x-x|
當△=0.圖象與x軸只有一個交點;
當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數時,都有y<0.
5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b^2)/4a.
頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值.
6.用待定系數法求二次函數的解析式
(1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:
y=ax^2+bx+c(a≠0).
(2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0).
(3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x)(x-x)(a≠0).
7.二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現.
【函數的應用知識點總結】相關文章:
奇函數的反函數是奇函數嗎10-12
函數與反函數關于什么對稱10-12
常數函數是周期函數嗎?10-12
奇函數乘奇函數等于什么10-12
余弦函數的性質說課稿11-06
函數單調性的定義10-12
一次函數和正比例函數的概念 10-12
冪函數教案04-07
正弦函數的對稱軸10-12