亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

初中不等式知識(shí)點(diǎn)總結(jié)

時(shí)間:2023-07-24 12:01:07 曉鳳 總結(jié) 我要投稿
  • 相關(guān)推薦

初中不等式知識(shí)點(diǎn)總結(jié)

  在平凡的學(xué)習(xí)生活中,不管我們學(xué)什么,都需要掌握一些知識(shí)點(diǎn),知識(shí)點(diǎn)也不一定都是文字,數(shù)學(xué)的知識(shí)點(diǎn)除了定義,同樣重要的公式也可以理解為知識(shí)點(diǎn)。還在苦惱沒有知識(shí)點(diǎn)總結(jié)嗎?下面是小編為大家收集的初中不等式知識(shí)點(diǎn)總結(jié),僅供參考,希望能夠幫助到大家。

初中不等式知識(shí)點(diǎn)總結(jié)

  初中不等式知識(shí)點(diǎn)總結(jié)1

  一、不等式的概念

  1、不等式

  用不等號(hào)表示不等關(guān)系的式子,叫做不等式。

  2、不等式的解集

  對(duì)于一個(gè)含有未知數(shù)的不等式,任何一個(gè)適合這個(gè)不等式的未知數(shù)的值,都叫做這個(gè)不等式的解。

  對(duì)于一個(gè)含有未知數(shù)的不等式, 它的所有解的集合叫做這個(gè)不等式的解的集合, 簡(jiǎn)稱這個(gè)不等式的解集。

  求不等式的解集的過程,叫做解不等式。

  二、不等式基本性質(zhì)

  1、不等式兩邊都加上(或減去)同一個(gè)數(shù)或同一個(gè)整式,不等號(hào)的方向不變。

  2、不等式兩邊都乘以(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變。

  3、不等式兩邊都乘以(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變。

  三、一元一次不等式

  1、一元一次不等式的概念

  一般地,不等式中只含有一個(gè)未知數(shù),未知數(shù)的次數(shù)是 1,且不等式的兩邊都是整式,這樣的不等式叫做一元一次不等式。

  2、一元一次不等式的解法

  一般步驟:

  (1)去分母;

  (2)去括號(hào);

  (3)移項(xiàng);

  (4)合并同類項(xiàng);

  (5)將 x 項(xiàng)的系數(shù)化為 1。

  四、一元一次不等式組

  1、一元一次不等式組的概念

  幾個(gè)一元一次不等式合在一起,就組成了一個(gè)一元一次不等式組。

  幾個(gè)一元一次不等式的解集的公共部分,叫做它們所組成的一元一次不等式組的解集。

  求不等式組的解集的過程,叫做解不等式組。

  當(dāng)任何數(shù) x 都不能使不等式同時(shí)成立,我們就說這個(gè)不等式組無解或其解為空集。

  2、一元一次不等式組的解法

  (1)分別求出不等式組中各個(gè)不等式的解集。

  (2)利用數(shù)軸求出這些不等式的解集的公共部分,即這個(gè)不等式組的解集。

  第九章 不等式與不等式組

  一、目標(biāo)與要求

  1.感受生活中存在著大量的不等關(guān)系,了解不等式和一元一次不等式的意義,通過解決簡(jiǎn)單的實(shí)際問題,使學(xué)生自發(fā)地尋找不等式的解,會(huì)把不等式的解集正確地表示到數(shù)軸上;

  2.經(jīng)歷由具體實(shí)例建立不等模型的過程,經(jīng)歷探究不等式解與解集的不同意義的過程,滲透數(shù)形結(jié)合思想;

  3.通過對(duì)不等式、不等式解與解集的探究,引導(dǎo)學(xué)生在獨(dú)立思考的基礎(chǔ)上積極參與對(duì)數(shù)學(xué)問題的討論,培養(yǎng)他們的合作交流意識(shí);讓學(xué)生充分體會(huì)到生活中處處有數(shù)學(xué),并能將它們應(yīng)用到生活的各個(gè)領(lǐng)域。

  二、知識(shí)框架

  三、重點(diǎn)

  理解并掌握不等式的性質(zhì);

  正確運(yùn)用不等式的性質(zhì);

  建立方程解決實(shí)際問題,會(huì)解"ax+b=cx+d"類型的一元一次方程;

  尋找實(shí)際問題中的不等關(guān)系,建立數(shù)學(xué)模型;

  一元一次不等式組的解集和解法。

  四、難點(diǎn)

  一元一次不等式組解集的理解;

  弄清列不等式解決實(shí)際問題的思想方法,用去括號(hào)法解一元一次不等式;

  正確理解不等式、不等式解與解集的意義,把不等式的解集正確地表示到數(shù)軸上。

  五、知識(shí)點(diǎn)、概念總結(jié)

  1.不等式:用符號(hào)"<",">","≤","≥"表示大小關(guān)系的式子叫做不等式。

  2.不等式分類:不等式分為嚴(yán)格不等式與非嚴(yán)格不等式。

  一般地,用純粹的大于號(hào)、小于號(hào)">","<"連接的不等式稱為嚴(yán)格不等式,用不小于號(hào)(大于或等于號(hào))、不大于號(hào)(小于或等于號(hào))"≥","≤"連接的不等式稱為非嚴(yán)格不等式,或稱廣義不等式。

  3.不等式的解:使不等式成立的未知數(shù)的值,叫做不等式的解。

  4.不等式的解集:一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。

  5.不等式解集的表示方法:

  (1)用不等式表示:一般的,一個(gè)含未知數(shù)的不等式有無數(shù)個(gè)解,其解集是一個(gè)范圍,這個(gè)范圍可用最簡(jiǎn)單的不等式表達(dá)出來,例如:x-1≤2的解集是x≤3

  (2)用數(shù)軸表示:不等式的解集可以在數(shù)軸上直觀地表示出來,形象地說明不等式有無限多個(gè)解,用數(shù)軸表示不等式的解集要注意兩點(diǎn):一是定邊界線;二是定方向。

  6.解不等式可遵循的一些同解原理

  (1)不等式F(x)< G(x)與不等式 G(x)>F(x)同解。

  (2)如果不等式F(x)< G(x)的定義域被解析式H(x)的定義域所包含,那么不等式 F(x)< G(x)與不等式H(x)+F(x)

  (3)如果不等式F(x)< G(x)的定義域被解析式H(x)的定義域所包含,并且H(x)>0,那么不等式F(x)< G(x)與不等式H(x)F(x)0,那么不等式F(x)< G(x)與不等式H(x)F(x)>H(x)G(x)同解。

  7.不等式的性質(zhì):

  (1)如果x>y,那么yy;(對(duì)稱性)

  (2)如果x>y,y>z;那么x>z;(傳遞性)

  (3)如果x>y,而z為任意實(shí)數(shù)或整式,那么x+z>y+z;(加法則)

  (4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz

  (5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z

  (6)如果x>y,m>n,那么x+m>y+n(充分不必要條件)

  (7)如果x>y>0,m>n>0,那么xm>yn

  (8)如果x>y>0,那么x的n次冪>y的n次冪(n為正數(shù))

  8.一元一次不等式:不等式的左、右兩邊都是整式,只有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。

  9.解一元一次不等式的一般順序:

  (1)去分母 (運(yùn)用不等式性質(zhì)2、3)

  (2)去括號(hào)

  (3)移項(xiàng) (運(yùn)用不等式性質(zhì)1)

  (4)合并同類項(xiàng)

  (5)將未知數(shù)的系數(shù)化為1 (運(yùn)用不等式性質(zhì)2、3)

  (6)有些時(shí)候需要在數(shù)軸上表示不等式的解集

  10. 一元一次不等式與一次函數(shù)的綜合運(yùn)用:

  一般先求出函數(shù)表達(dá)式,再化簡(jiǎn)不等式求解。

  11.一元一次不等式組:一般地,關(guān)于同一未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成

  了一個(gè)一元一次不等式組。

  12.解一元一次不等式組的步驟:

  (1) 求出每個(gè)不等式的解集;

  (2) 求出每個(gè)不等式的解集的公共部分;(一般利用數(shù)軸)

  (3) 用代數(shù)符號(hào)語言來表示公共部分。(也可以說成是下結(jié)論)

  初中不等式知識(shí)點(diǎn)總結(jié)2

  一、一元一次不等式的解法:

  一元一次不等式的解法與一元一次方程的解法類似,其步驟為:

  1、去分母;

  2、去括號(hào);

  3、移項(xiàng);

  4、合并同類項(xiàng);

  5、系數(shù)化為1

  二、不等式的基本性質(zhì):

  1、不等式的兩邊都加上(或減去)同一個(gè)整式,不等號(hào)的方向不變;

  2、不等式的兩邊都乘以(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變;

  3、不等式的兩邊都乘以(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變。

  三、不等式的解:

  能使不等式成立的未知數(shù)的值,叫做不等式的解。

  四、不等式的解集:

  一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。

  五、解不等式的依據(jù)不等式的基本性質(zhì):

  性質(zhì)1:不等式兩邊加上(或減去)同一個(gè)數(shù)(或式子),不等號(hào)的方向不變,

  性質(zhì)2:不等式兩邊乘以(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變,

  性質(zhì)3:不等式兩邊乘以(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變,

  常見考法

  (1)考查一元一次不等式的解法;

  (2)考查不等式的性質(zhì)。

  誤區(qū)提醒

  忽略不等號(hào)變向問題。

  初中數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)歸納

  有理數(shù)乘法的運(yùn)算律

  1、乘法的交換律:ab=ba;

  2、乘法的結(jié)合律:(ab)c=a(bc);

  3、乘法的分配律:a(b+c)=ab+ac

  單項(xiàng)式

  只含有數(shù)字與字母的積的代數(shù)式叫做單項(xiàng)式。

  注意:?jiǎn)雾?xiàng)式是由系數(shù)、字母、字母的指數(shù)構(gòu)成的。

  多項(xiàng)式

  1、幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。其中每個(gè)單項(xiàng)式叫做這個(gè)多項(xiàng)式的項(xiàng)。多項(xiàng)式中不含字母的項(xiàng)叫做常數(shù)項(xiàng)。多項(xiàng)式中次數(shù)最高的項(xiàng)的次數(shù),叫做這個(gè)多項(xiàng)式的次數(shù)。

  2、同類項(xiàng)所有字母相同,并且相同字母的指數(shù)也分別相同的項(xiàng)叫做同類項(xiàng)。幾個(gè)常數(shù)項(xiàng)也是同類項(xiàng)。

  提高數(shù)學(xué)思維的方法

  轉(zhuǎn)化思維

  轉(zhuǎn)化思維,既是一種方法,也是一種思維。轉(zhuǎn)化思維,是指在解決問題的過程中遇到障礙時(shí),通過改變問題的方向,從不同的角度,把問題由一種形式轉(zhuǎn)換成另一種形式,尋求最佳方法,使問題變得更簡(jiǎn)單、清晰。

  創(chuàng)新思維

  創(chuàng)新思維是指以新穎獨(dú)創(chuàng)的方法解決問題的思維過程,通過這種思維能突破常規(guī)思維的界限,以超常規(guī)甚至反常規(guī)的方法、視角去思考問題,得出與眾不同的解

  要培養(yǎng)質(zhì)疑的習(xí)慣

  在家庭教育中,家長(zhǎng)要經(jīng)常引導(dǎo)孩子主動(dòng)提問,學(xué)會(huì)質(zhì)疑、反省,并逐步養(yǎng)成習(xí)慣。

  在孩子放學(xué)回家后,讓孩子回顧當(dāng)天所學(xué)的知識(shí):老師如何講解的,同學(xué)是如何回答的?當(dāng)孩子回答出來之后,接著追問:“為什么?”“你是怎樣想的?”啟發(fā)孩子講出思維的過程并盡量讓他自己作出評(píng)價(jià)。

  有時(shí),可以故意制造一些錯(cuò)誤讓孩子去發(fā)現(xiàn)、評(píng)價(jià)、思考。通過這樣的訓(xùn)練,孩子會(huì)在思維上逐步形成獨(dú)立見解,養(yǎng)成一種質(zhì)疑的習(xí)慣。

  初中數(shù)學(xué)不等式的證明知識(shí)點(diǎn)復(fù)習(xí)

  不等式的證明

  1、比較法

  包括比差和比商兩種方法。

  2、綜合法

  證明不等式時(shí),從命題的已知條件出發(fā),利用公理、定理、法則等,逐步推導(dǎo)出要證明的命題的方法稱為綜合法,綜合法又叫順推證法或因?qū)Чā?/p>

  3、分析法

  證明不等式時(shí),從待證命題出發(fā),分析使其成立的充分條件,利用已知的一些基本原理,逐步探索,最后將命題成立的條件歸結(jié)為一個(gè)已經(jīng)證明過的定理、簡(jiǎn)單事實(shí)或題設(shè)的條件,這種證明的方法稱為分析法,它是執(zhí)果索因的方法。

  4、放縮法

  證明不等式時(shí),有時(shí)根據(jù)需要把需證明的不等式的值適當(dāng)放大或縮小,使其化繁為簡(jiǎn),化難為易,達(dá)到證明的目的,這種方法稱為放縮法。

  5、數(shù)學(xué)歸納法

  用數(shù)學(xué)歸納法證明不等式,要注意兩步一結(jié)論。

  在證明第二步時(shí),一般多用到比較法、放縮法和分析法。

  6、反證法

  證明不等式時(shí),首先假設(shè)要證明的命題的反面成立,把它作為條件和其他條件結(jié)合在一起,利用已知定義、定理、公理等基本原理逐步推證出一個(gè)與命題的條件或已證明的定理或公認(rèn)的簡(jiǎn)單事實(shí)相矛盾的結(jié)論,以此說明原假設(shè)的結(jié)論不成立,從而肯定原命題的結(jié)論成立的方法稱為反證法。

  上面的六大證明方法,絕對(duì)有一項(xiàng)是適合您的。

  初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系

  下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。

  平面直角坐標(biāo)系

  平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

  平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合

  三個(gè)規(guī)定:

  ①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向

  ②單位長(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。

  ③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

  初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成

  對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。

  平面直角坐標(biāo)系的構(gòu)成

  在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。

  通過上面對(duì)平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。

  初中數(shù)學(xué)知識(shí)點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)

  下面是對(duì)數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)學(xué)習(xí),同學(xué)們認(rèn)真看看哦。

  點(diǎn)的坐標(biāo)的性質(zhì)

  建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。

  對(duì)于平面內(nèi)任意一點(diǎn)C,過點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)C的坐標(biāo)。

  一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。

  希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績(jī)的。

  初中數(shù)學(xué)知識(shí)點(diǎn):因式分解的一般步驟

  關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識(shí)講解。

  因式分解的一般步驟

  如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,

  通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。

  相信上面對(duì)因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績(jī)。

  初中數(shù)學(xué)知識(shí)點(diǎn):因式分解

  下面是對(duì)數(shù)學(xué)中因式分解內(nèi)容的知識(shí)講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。

  因式分解

  因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。

  因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④

  因式分解與整式乘法的關(guān)系:m(a+b+c)

  公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。

  公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。

  提取公因式步驟:

  ①確定公因式。②確定商式③公因式與商式寫成積的形式。

  分解因式注意;

  ①不準(zhǔn)丟字母

  ②不準(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)

  ③雙重括號(hào)化成單括號(hào)

  ④結(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列

  ⑤相同因式寫成冪的形式

  ⑥首項(xiàng)負(fù)號(hào)放括號(hào)外

  ⑦括號(hào)內(nèi)同類項(xiàng)合并。

  不等式知識(shí)點(diǎn)匯總

  1、不等式及其解集

  用“<”或“>”號(hào)表示大小關(guān)系的式子叫做不等式。

  使不等式成立的未知數(shù)的值叫做不等式的解。

  能使不等式成立的未知數(shù)的取值范圍,叫做不等式解的集合,簡(jiǎn)稱解集。

  含有一個(gè)未知數(shù),未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式。

  2、不等式的性質(zhì)

  不等式有以下性質(zhì):

  不等式的性質(zhì)1不等式兩邊加(或減)同一個(gè)數(shù)(或式子),不等號(hào)的方向不變。

  不等式的性質(zhì)2不等式兩邊乘(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變。

  不等式的性質(zhì)3不等式兩邊乘(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變。

  3、實(shí)際問題與一元一次不等式

  解一元一次方程,要根據(jù)等式的性質(zhì),將方程逐步化為x=a的形式;而解一元一次不等式,則要根據(jù)不等式的性質(zhì),將不等式逐步化為xa)的形式。

  4、一元一次不等式組

  把兩個(gè)不等式合起來,就組成了一個(gè)一元一次不等式組。

  幾個(gè)不等式的解集的公共部分,叫做由它們所組成的不等式的解集。解不等式就是求它的解集。

  對(duì)于具有多種不等關(guān)系的問題,可通過不等式組解決。解一元一次不等式組時(shí)。一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數(shù)軸可以直觀地表示不等式組的解集。

【初中不等式知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

不等式知識(shí)點(diǎn)總結(jié)08-16

高中數(shù)學(xué)不等式知識(shí)點(diǎn)總結(jié)10-03

初中物理知識(shí)點(diǎn)總結(jié),初中知識(shí)點(diǎn)整理08-25

初中離子知識(shí)點(diǎn)總結(jié)07-28

初中物理知識(shí)點(diǎn)總結(jié)06-08

初中物理知識(shí)點(diǎn)總結(jié)08-17

初中數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)12-12

初中物理知識(shí)點(diǎn)總結(jié)歸納02-11

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)01-21