亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

時(shí)間:2023-03-28 13:42:56 總結(jié) 我要投稿

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

  上學(xué)的時(shí)候,看到知識(shí)點(diǎn),都是先收藏再說吧!知識(shí)點(diǎn)就是一些常考的內(nèi)容,或者考試經(jīng)常出題的地方。掌握知識(shí)點(diǎn)是我們提高成績(jī)的關(guān)鍵!以下是小編整理的中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié),希望能夠幫助到大家。

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

  中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1

  知識(shí)點(diǎn)1:一元二次方程的基本概念

  1、一元二次方程3x2+5x-2=0的常數(shù)項(xiàng)是-2。

  2、一元二次方程3x2+4x-2=0的一次項(xiàng)系數(shù)為4,常數(shù)項(xiàng)是-2。

  3、一元二次方程3x2-5x-7=0的二次項(xiàng)系數(shù)為3,常數(shù)項(xiàng)是-7。

  4、把方程3x(x-1)-2=-4x化為一般式為3x2-x-2=0。

  知識(shí)點(diǎn)2:直角坐標(biāo)系與點(diǎn)的位置

  1、直角坐標(biāo)系中,點(diǎn)A(3,0)在y軸上。

  2、直角坐標(biāo)系中,x軸上的任意點(diǎn)的橫坐標(biāo)為0。

  3、直角坐標(biāo)系中,點(diǎn)A(1,1)在第一象限。

  4、直角坐標(biāo)系中,點(diǎn)A(-2,3)在第四象限。

  5、直角坐標(biāo)系中,點(diǎn)A(-2,1)在第二象限。

  知識(shí)點(diǎn)3:已知自變量的值求函數(shù)值

  1、當(dāng)x=2時(shí),函數(shù)y=的值為1。

  2、當(dāng)x=3時(shí),函數(shù)y=的值為1。

  3、當(dāng)x=-1時(shí),函數(shù)y=的值為1。

  知識(shí)點(diǎn)4:基本函數(shù)的概念及性質(zhì)

  1、函數(shù)y=-8x是一次函數(shù)。

  2、函數(shù)y=4x+1是正比例函數(shù)。

  3、函數(shù)是反比例函數(shù)。

  4、拋物線y=-3(x-2)2-5的.開口向下。

  5、拋物線y=4(x-3)2-10的對(duì)稱軸是x=3。

  6、拋物線的頂點(diǎn)坐標(biāo)是(1,2)。

  7、反比例函數(shù)的圖象在第一、三象限。

  知識(shí)點(diǎn)5:數(shù)據(jù)的平均數(shù)中位數(shù)與眾數(shù)

  1、數(shù)據(jù)13,10,12,8,7的平均數(shù)是10。

  2、數(shù)據(jù)3,4,2,4,4的眾數(shù)是4。

  3、數(shù)據(jù)1,2,3,4,5的中位數(shù)是3。

  知識(shí)點(diǎn)6:特殊三角函數(shù)值

  1、cos30°=。

  2、sin260°+cos260°=1。

  3、2sin30°+tan45°=2。

  4、tan45°=1。

  5、cos60°+sin30°=1。

  知識(shí)點(diǎn)7:圓的基本性質(zhì)

  1、半圓或直徑所對(duì)的圓周角是直角。

  2、任意一個(gè)三角形一定有一個(gè)外接圓。

  3、在同一平面內(nèi),到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓。

  4、在同圓或等圓中,相等的圓心角所對(duì)的弧相等。

  5、同弧所對(duì)的圓周角等于圓心角的一半。

  6、同圓或等圓的半徑相等。

  7、過三個(gè)點(diǎn)一定可以作一個(gè)圓。

  8、長(zhǎng)度相等的兩條弧是等弧。

  9、在同圓或等圓中,相等的圓心角所對(duì)的弧相等。

  10、經(jīng)過圓心平分弦的直徑垂直于弦。

  知識(shí)點(diǎn)8:直線與圓的位置關(guān)系

  1、直線與圓有唯一公共點(diǎn)時(shí),叫做直線與圓相切。

  2、三角形的外接圓的圓心叫做三角形的外心。

  3、弦切角等于所夾的弧所對(duì)的圓心角。

  4、三角形的內(nèi)切圓的圓心叫做三角形的內(nèi)心。

  5、垂直于半徑的直線必為圓的切線。

  6、過半徑的外端點(diǎn)并且垂直于半徑的直線是圓的切線。

  7、垂直于半徑的直線是圓的切線。

  8、圓的切線垂直于過切點(diǎn)的半徑。

  中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2

  第一單元 位置與方向

  1、 生活空間中的八個(gè)方向:東、東南、南、西南、西、西北、北、東北

  2、 地圖通常都是按上北下南左西右東繪制的。

  3、 東與西相對(duì)。南與北相對(duì)。

  4、 觀測(cè)點(diǎn)不同,同一物體所在的位置可能會(huì)不同。

  5、 描述行走路線時(shí),要說明方向與距離。

  第二單元 除數(shù)是一位數(shù)的除法

  1、 除法的驗(yàn)算:商×除數(shù)=被除數(shù)

  有余數(shù)除法的驗(yàn)算:商×除數(shù)+余數(shù)=被除數(shù)

  2、 0除以任何不是0的數(shù)都得0。

  3、 0不可以作除數(shù)。

  4、 除法的估算方法是多樣的,通常我們將被除數(shù)(三位數(shù))看成一個(gè)接近它的整百整十?dāng)?shù),除數(shù)(一位數(shù))不變,然后計(jì)算。或者按照乘法口訣把被除數(shù)估成一個(gè)合適的數(shù),再計(jì)算。

  5、 除數(shù)是一位數(shù)的除法法則:

  ①從被除數(shù)的最高位除起,如果被除數(shù)的百位比除數(shù)小,再用前兩位數(shù)一起去除。

  ②除到被除數(shù)的哪一位,就把商寫在哪一位上面。

  ③每求出一位商,余下的數(shù)必須比除數(shù)小。

  第三單元 統(tǒng)計(jì)

  1、 平均數(shù):就是一組數(shù)據(jù)的和除以這組數(shù)據(jù)的個(gè)數(shù)所得的商。

  2、 平均數(shù)=總數(shù)量÷總份數(shù)。

  3、 一個(gè)格是表示1個(gè)單位還是2個(gè)、5個(gè)、10個(gè)甚至更多單位,要根據(jù)數(shù)據(jù)的具體大小而定。

  4、 平均數(shù)能較好地反映一組數(shù)據(jù)的總體情況。

  第四單元 年月日

  1、 一年有12個(gè)月。一月、三月、五月、七月、八月、十月、十二月每月有31天,稱為大月;四月、六月、九月、十一月每月30天,稱為小月。

  2、 兒歌:一三五七八十臘,三十一天永不差;四六九冬三十天,平年二月二十八;每隔四年閏一日,閏年二月把一加。

  3、平年二月28天,全年365天;閏年二月29天,全年366天。

  4、 平年或閏年的判斷方法:公歷年份是4的倍數(shù)的一般都是閏年;公歷年份是整百數(shù)的,必須是400的倍數(shù)才是閏年。

  5、 24時(shí)計(jì)時(shí)法:在一日(天)里,鐘表上時(shí)針正好走兩圈,共24小時(shí)。所以經(jīng)常采用從0時(shí)到24時(shí)的計(jì)時(shí)法,通常叫做24時(shí)計(jì)時(shí)法。

  6、 經(jīng)過時(shí)間:可以通過觀察鐘面和用線段表示來計(jì)算出簡(jiǎn)單的經(jīng)過時(shí)間。

  第五單元 兩位數(shù)乘兩位數(shù)

  1、 口算整十?dāng)?shù)乘整百數(shù)的方法:

  (1)將整十?dāng)?shù)十位上的數(shù)與整百數(shù)百位上的數(shù)相乘。

  (2)在乘得的積的末尾添三個(gè)0。

  2、 兩位數(shù)乘整百數(shù)的口算方法:

  (1)用兩位數(shù)乘整百數(shù)百位上的數(shù)。

  (2)在乘得的積的末尾添上兩個(gè)0。

  3、兩位數(shù)乘兩位數(shù)的估算方法:

  (1)將兩個(gè)或兩位數(shù)分別看成接近它們的整十?dāng)?shù)或整百數(shù)(一百)。

  (2)再將兩個(gè)整十?dāng)?shù)或整百數(shù)相乘。

  4、 兩位數(shù)乘兩位數(shù)的筆算方法(不進(jìn)位):

  (1)先用第二個(gè)因數(shù)個(gè)位上的數(shù)與第一個(gè)因數(shù)相乘,再用第二個(gè)因數(shù)十位上的數(shù)與第一個(gè)因數(shù)相乘,所得的積食表示多少個(gè)十,所以末位數(shù)要寫在十位上。

  (2)將乘得的積加起來求出兩位數(shù)乘兩位數(shù)的積。

  5、 兩位數(shù)乘兩位數(shù)的筆算方法(進(jìn)位):

  (1)先用第二個(gè)因數(shù)個(gè)位上的數(shù)與第一個(gè)因數(shù)相乘,再用第二個(gè)因數(shù)十位上的數(shù)與第一個(gè)因數(shù)相乘,這一步乘得的積表示多少個(gè)十,所以末位數(shù)應(yīng)在十位上。哪一位相乘的積滿十就向前一位進(jìn)1。

  (2)將兩次乘得的積相加就是兩位數(shù)乘兩位數(shù)的積。

  第六單元 面積

  1、 面積:物體表面或封閉圖形的大小,就是它們的面積。

  2、 常用的面積單位:平方厘米、平方分米、平方米等。

  3、 邊長(zhǎng)1厘米的正方形,面積是1平方厘米;

  邊長(zhǎng)1分米的正方形,面積是1平方分米;

  邊長(zhǎng)1米的正方形,面積是1平方米。

  4、 1平方米=100平方分米; 1平方分米=100平方厘米;

  1平方米=10000平方厘米;

  5、測(cè)量土地的面積時(shí),常常要用到更大的面積單位:公頃,平方千米

  邊長(zhǎng)是100米的正方形,面積是1公頃。

  邊長(zhǎng)是1千米的正方形,面積是1平方千米

  6、 1平方千米=100公頃 1公頃=10000平方米;

  7、 長(zhǎng)方形的面積=長(zhǎng)×寬;正方形的面積=邊長(zhǎng)×邊長(zhǎng)。

  第七單元 小數(shù)的初步認(rèn)識(shí)

  1、 以米為單位的.小數(shù)的含義:

  (1)小數(shù)點(diǎn)左邊的數(shù)表示多少米。

  (2)小數(shù)點(diǎn)右邊的數(shù)依次表示幾分米、幾厘米。

  2、 以元為單位的小數(shù)的含義:

  (1)幾元就在小數(shù)點(diǎn)的左邊寫幾。

  (2)幾角就在小數(shù)點(diǎn)右邊第一位上寫幾,幾分就在小數(shù)點(diǎn)右邊第二位上寫幾,哪個(gè)數(shù)位上一個(gè)單位也沒有,就在那個(gè)數(shù)位上寫“0”占位,最后寫上單位名稱“元”。

  3、 小數(shù)大小的比較方法:

  (1)先比較小數(shù)點(diǎn)左邊的部分(整數(shù)部分),這部分?jǐn)?shù)大的這個(gè)小數(shù)就大。

  (2)如果整數(shù)部分大小相同,就看小數(shù)點(diǎn)右邊第一位上的數(shù),這個(gè)數(shù)位上的數(shù)大這個(gè)小數(shù)就大。

  (3)如果小數(shù)點(diǎn)右邊第一位上的數(shù)也相同,就看小數(shù)點(diǎn)右邊第二位上的數(shù),以此類推。

  4、 用豎式計(jì)算小數(shù)的加法(一位小數(shù)):

  (1)兩個(gè)加數(shù)的相同數(shù)位一定要對(duì)齊(小數(shù)點(diǎn)對(duì)齊)。

  (2)先將小數(shù)點(diǎn)右邊第一位上的數(shù)相加,滿十進(jìn)一。

  (3)和的小數(shù)點(diǎn)要和兩個(gè)加數(shù)的小數(shù)點(diǎn)對(duì)齊。

  (4)再將小數(shù)點(diǎn)左邊的數(shù)相加,這部分?jǐn)?shù)按整數(shù)的加法來加。

  5、 用豎式計(jì)算一位小數(shù)減法的方法:

  (1)被減數(shù)和減數(shù)的相同數(shù)位要對(duì)齊(小數(shù)點(diǎn)對(duì)齊)。

  (2)從小數(shù)點(diǎn)右邊第一位開始減起(從右到左),不夠減時(shí)從前一位退一當(dāng)十再減。

  (3)差的小數(shù)點(diǎn)要和被減數(shù)、減數(shù)的小數(shù)點(diǎn)對(duì)齊。

  第八單元 解決問題

  1、 分析題中的數(shù)量關(guān)系,明確先求什么,再求什么。

  2、 每份個(gè)數(shù)×份數(shù)=總數(shù)(也就是求幾個(gè)幾是多少用乘法計(jì)算)。

  總數(shù)÷每份個(gè)數(shù)=份數(shù) 總數(shù)÷份數(shù)=每份個(gè)數(shù)

  3、 含有乘、除法的綜合算式從左往右計(jì)算。

  4、 含有乘法(除法)、加法(減法)的綜合算式,先算乘(除)法再算加(減)法。

  第九單元 數(shù)學(xué)廣角

  1、 集合:在數(shù)學(xué)中,集合是指某一類事物組成的整體。

  2、 等量代換:是指一個(gè)量用與它相等的量去代替。

  3、 計(jì)算兩個(gè)隊(duì)的總?cè)藬?shù),不能簡(jiǎn)單地將兩個(gè)隊(duì)的人數(shù)相加,要將重復(fù)的人數(shù)從總數(shù)中減去。

  中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3

  一、平面的基本性質(zhì)與推論

  1、平面的基本性質(zhì):

  公理1如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在這個(gè)平面內(nèi);

  公理2過不在一條直線上的三點(diǎn),有且只有一個(gè)平面;

  公理3如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線。

  2、空間點(diǎn)、直線、平面之間的位置關(guān)系:

  直線與直線—平行、相交、異面;

  直線與平面—平行、相交、直線屬于該平面(線在面內(nèi),最易忽視);

  平面與平面—平行、相交。

  3、異面直線:

  平面外一點(diǎn)A與平面一點(diǎn)B的連線和平面內(nèi)不經(jīng)過點(diǎn)B的直線是異面直線(判定);

  所成的角范圍(0,90)度(平移法,作平行線相交得到夾角或其補(bǔ)角);

  兩條直線不是異面直線,則兩條直線平行或相交(反證);

  異面直線不同在任何一個(gè)平面內(nèi)。

  求異面直線所成的角:平移法,把異面問題轉(zhuǎn)化為相交直線的夾角

  二、空間中的平行關(guān)系

  1、直線與平面平行(核心)

  定義:直線和平面沒有公共點(diǎn)

  判定:不在一個(gè)平面內(nèi)的一條直線和平面內(nèi)的.一條直線平行,則該直線平行于此平面(由線線平行得出)

  性質(zhì):一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,則這條直線就和兩平面的交線平行

  2、平面與平面平行

  定義:兩個(gè)平面沒有公共點(diǎn)

  判定:一個(gè)平面內(nèi)有兩條相交直線平行于另一個(gè)平面,則這兩個(gè)平面平行

  性質(zhì):兩個(gè)平面平行,則其中一個(gè)平面內(nèi)的直線平行于另一個(gè)平面;如果兩個(gè)平行平面同時(shí)與第三個(gè)平面相交,那么它們的交線平行。

  3、常利用三角形中位線、平行四邊形對(duì)邊、已知直線作一平面找其交線

  三、空間中的垂直關(guān)系

  1、直線與平面垂直

  定義:直線與平面內(nèi)任意一條直線都垂直

  判定:如果一條直線與一個(gè)平面內(nèi)的兩條相交的直線都垂直,則該直線與此平面垂直

  性質(zhì):垂直于同一直線的兩平面平行

  推論:如果在兩條平行直線中,有一條垂直于一個(gè)平面,那么另一條也垂直于這個(gè)平面

  直線和平面所成的角:【0,90】度,平面內(nèi)的一條斜線和它在平面內(nèi)的射影說成的銳角,特別規(guī)定垂直90度,在平面內(nèi)或者平行0度

  2、平面與平面垂直

  定義:兩個(gè)平面所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點(diǎn)為端點(diǎn),在兩個(gè)半平面內(nèi)分別作垂直于棱的兩條射線所成的角)

  判定:一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直

  性質(zhì):兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直

  中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4

  導(dǎo)數(shù)是微積分中的重要基礎(chǔ)概念。當(dāng)自變量的增量趨于零時(shí),因變量的增量與自變量的增量之商的極限。在一個(gè)函數(shù)存在導(dǎo)數(shù)時(shí),稱這個(gè)函數(shù)可導(dǎo)或者可微分。可導(dǎo)的函數(shù)一定連續(xù)。不連續(xù)的函數(shù)一定不可導(dǎo)。導(dǎo)數(shù)實(shí)質(zhì)上就是一個(gè)求極限的過程,導(dǎo)數(shù)的四則運(yùn)算法則來源于極限的四則運(yùn)算法則。

  (一)導(dǎo)數(shù)第一定義

  設(shè)函數(shù) y = f(x) 在點(diǎn) x0 的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量 x 在 x0 處有增量 △x ( x0 + △x 也在該鄰域內(nèi) ) 時(shí),相應(yīng)地函數(shù)取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 與 △x 之比當(dāng) △x0 時(shí)極限存在,則稱函數(shù) y = f(x) 在點(diǎn) x0 處可導(dǎo),并稱這個(gè)極限值為函數(shù) y = f(x) 在點(diǎn) x0 處的導(dǎo)數(shù)記為 f(x0) ,即導(dǎo)數(shù)第一定義

  (二)導(dǎo)數(shù)第二定義

  設(shè)函數(shù) y = f(x) 在點(diǎn) x0 的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量 x 在 x0 處有變化 △x ( x - x0 也在該鄰域內(nèi) ) 時(shí),相應(yīng)地函數(shù)變化 △y = f(x) - f(x0) ;如果 △y 與 △x 之比當(dāng) △x0 時(shí)極限存在,則稱函數(shù) y = f(x) 在點(diǎn) x0 處可導(dǎo),并稱這個(gè)極限值為函數(shù) y = f(x) 在點(diǎn) x0 處的`導(dǎo)數(shù)記為 f(x0) ,即 導(dǎo)數(shù)第二定義

  (三)導(dǎo)函數(shù)與導(dǎo)數(shù)

  如果函數(shù) y = f(x) 在開區(qū)間 I 內(nèi)每一點(diǎn)都可導(dǎo),就稱函數(shù)f(x)在區(qū)間 I 內(nèi)可導(dǎo)。這時(shí)函數(shù) y = f(x) 對(duì)于區(qū)間 I 內(nèi)的每一個(gè)確定的 x 值,都對(duì)應(yīng)著一個(gè)確定的導(dǎo)數(shù),這就構(gòu)成一個(gè)新的函數(shù),稱這個(gè)函數(shù)為原來函數(shù) y = f(x) 的導(dǎo)函數(shù),記作 y, f(x), dy/dx, df(x)/dx。導(dǎo)函數(shù)簡(jiǎn)稱導(dǎo)數(shù)。

  (四)單調(diào)性及其應(yīng)用

  1.利用導(dǎo)數(shù)研究多項(xiàng)式函數(shù)單調(diào)性的一般步驟

  (1)求f(x)

  (2)確定f(x)在(a,b)內(nèi)符號(hào) (3)若f(x)0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f(x)0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)

  2.用導(dǎo)數(shù)求多項(xiàng)式函數(shù)單調(diào)區(qū)間的一般步驟

  (1)求f(x)

  (2)f(x)0的解集與定義域的交集的對(duì)應(yīng)區(qū)間為增區(qū)間; f(x)0的解集與定義域的交集的對(duì)應(yīng)區(qū)間為減區(qū)間

  中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5

  三角函數(shù)關(guān)系

  倒數(shù)關(guān)系

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  商的關(guān)系

  sinα/cosα=tanα=secα/cscα

  cosα/sinα=cotα=cscα/secα

  平方關(guān)系

  sin^2(α)+cos^2(α)=1

  1+tan^2(α)=sec^2(α)

  1+cot^2(α)=csc^2(α)

  同角三角函數(shù)關(guān)系六角形記憶法

  構(gòu)造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。

  倒數(shù)關(guān)系

  對(duì)角線上兩個(gè)函數(shù)互為倒數(shù);

  商數(shù)關(guān)系

  六邊形任意一頂點(diǎn)上的函數(shù)值等于與它相鄰的兩個(gè)頂點(diǎn)上函數(shù)值的乘積。(主要是兩條虛線兩端的三角函數(shù)值的乘積,下面4個(gè)也存在這種關(guān)系。)。由此,可得商數(shù)關(guān)系式。

  平方關(guān)系

  在帶有陰影線的三角形中,上面兩個(gè)頂點(diǎn)上的三角函數(shù)值的平方和等于下面頂點(diǎn)上的三角函數(shù)值的平方。

  銳角三角函數(shù)定義

  銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。

  正弦(sin)等于對(duì)邊比斜邊;sinA=a/c

  余弦(cos)等于鄰邊比斜邊;cosA=b/c

  正切(tan)等于對(duì)邊比鄰邊;tanA=a/b

  余切(cot)等于鄰邊比對(duì)邊;cotA=b/a

  正割(sec)等于斜邊比鄰邊;secA=c/b

  余割(csc)等于斜邊比對(duì)邊。cscA=c/a

  互余角的三角函數(shù)間的關(guān)系

  sin(90°-α)=cosα,cos(90°-α)=sinα,

  tan(90°-α)=cotα,cot(90°-α)=tanα.

  平方關(guān)系:

  sin^2(α)+cos^2(α)=1

  tan^2(α)+1=sec^2(α)

  cot^2(α)+1=csc^2(α)

  積的關(guān)系:

  sinα=tanα·cosα

  cosα=cotα·sinα

  tanα=sinα·secα

  cotα=cosα·cscα

  secα=tanα·cscα

  cscα=secα·cotα

  倒數(shù)關(guān)系:

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  中考數(shù)學(xué)知識(shí)點(diǎn)

  1、反比例函數(shù)的概念

  一般地,函數(shù)(k是常數(shù),k0)叫做反比例函數(shù)。反比例函數(shù)的解析式也可以寫成的形式。自變量x的取值范圍是x0的一切實(shí)數(shù),函數(shù)的取值范圍也是一切非零實(shí)數(shù)。

  2、反比例函數(shù)的圖像

  反比例函數(shù)的圖像是雙曲線,它有兩個(gè)分支,這兩個(gè)分支分別位于第一、三象限,或第二、四象限,它們關(guān)于原點(diǎn)對(duì)稱。由于反比例函數(shù)中自變量x0,函數(shù)y0,所以,它的圖像與x軸、y軸都沒有交點(diǎn),即雙曲線的兩個(gè)分支無限接近坐標(biāo)軸,但永遠(yuǎn)達(dá)不到坐標(biāo)軸。

  3、反比例函數(shù)的性質(zhì)

  反比例函數(shù)k的符號(hào)k>0k<0圖像yO xyO x性質(zhì)①x的取值范圍是x0,

  y的取值范圍是y0;

  ②當(dāng)k>0時(shí),函數(shù)圖像的兩個(gè)分支分別

  在第一、三象限。在每個(gè)象限內(nèi),y

  隨x 的增大而減小。

  ①x的取值范圍是x0,

  y的取值范圍是y0;

  ②當(dāng)k<0時(shí),函數(shù)圖像的兩個(gè)分支分別

  在第二、四象限。在每個(gè)象限內(nèi),y

  隨x 的增大而增大。

  4、反比例函數(shù)解析式的'確定

  確定及誒是的方法仍是待定系數(shù)法。由于在反比例函數(shù)中,只有一個(gè)待定系數(shù),因此只需要一對(duì)對(duì)應(yīng)值或圖像上的一個(gè)點(diǎn)的坐標(biāo),即可求出k的值,從而確定其解析式。

  5、反比例函數(shù)的幾何意義

  設(shè)是反比例函數(shù)圖象上任一點(diǎn),過點(diǎn)P作軸、軸的垂線,垂足為A,則

  (1)△OPA的面積.

  (2)矩形OAPB的面積。這就是系數(shù)的幾何意義.并且無論P(yáng)怎樣移動(dòng),△OPA的面積和矩形OAPB的面積都保持不變。

  矩形PCEF面積=,平行四邊形PDEA面積=

  中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6

  一、 重要概念

  1、數(shù)的分類及概念

  數(shù)系表:

  說明:“分類”的原則:

  1)相稱(不重、不漏)

  2)有標(biāo)準(zhǔn)

  2、非負(fù)數(shù):正實(shí)數(shù)與零的.統(tǒng)稱。(表為:x≥0)

  常見的非負(fù)數(shù)有:

  性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)擔(dān)數(shù)均為0。

  3、倒數(shù):

  ①定義及表示法

  ②性質(zhì):A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a1時(shí),1/a1;D。積為1。

  4、相反數(shù):

  ①定義及表示法

  ②性質(zhì):

  A.a≠0時(shí),a≠-a;

  B.a與-a在數(shù)軸上的位置;

  C.和為0,商為-1。

  5、數(shù)軸:

  ①定義(“三要素”)

  ②作用:

  A、直觀地比較實(shí)數(shù)的大小;

  B、明確體現(xiàn)絕對(duì)值意義;

  C、建立點(diǎn)與實(shí)數(shù)的一一對(duì)應(yīng)關(guān)系。

  6、奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)—自然數(shù))

  定義及表示:

  奇數(shù):2n-1

  偶數(shù):2n(n為自然數(shù))

  7、絕對(duì)值:

  ①定義(兩種):

  代數(shù)定義:

  幾何定義:數(shù)a的絕對(duì)值頂?shù)膸缀我饬x是實(shí)數(shù)a在數(shù)軸上所對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離。

  ②│a│≥0,符號(hào)“││”是“非負(fù)數(shù)”的標(biāo)志;

  ③數(shù)a的絕對(duì)值只有一個(gè);

  ④處理任何類型的題目,只要其中有“││”出現(xiàn),其關(guān)鍵一步是去掉“││”符號(hào)。

  中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7

  圓的定理:

  1、不在同一直線上的三點(diǎn)確定一個(gè)圓。

  2、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

  推論1

  ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧

  ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧

  ③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

  推論2

  圓的兩條平行弦所夾的弧相等

  3、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形

  4、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

  5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

  6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

  7、同圓或等圓的半徑相等

  8、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓

  9、定理在同圓或等圓中,相等的圓心角所對(duì)的'弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

  10、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等

  中考數(shù)學(xué)知識(shí)點(diǎn)復(fù)習(xí)口訣

  有理數(shù)的加法運(yùn)算

  同號(hào)相加一邊倒;異號(hào)相加“大”減“小”,

  符號(hào)跟著大的跑;絕對(duì)值相等“零”正好。

  合并同類項(xiàng)

  合并同類項(xiàng),法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣。

  去、添括號(hào)法則

  去括號(hào)、添括號(hào),關(guān)鍵看符號(hào),

  括號(hào)前面是正號(hào),去、添括號(hào)不變號(hào),

  括號(hào)前面是負(fù)號(hào),去、添括號(hào)都變號(hào)。

  一元一次方程

  已知未知要分離,分離方法就是移,加減移項(xiàng)要變號(hào),乘除移了要顛倒。

  平方差公式

  平方差公式有兩項(xiàng),符號(hào)相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。

  完全平方公式

  完全平方有三項(xiàng),首尾符號(hào)是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;

  首±尾括號(hào)帶平方,尾項(xiàng)符號(hào)隨中央。

  因式分解

  一提(公因式)二套(公式)三分組,細(xì)看幾項(xiàng)不離譜,

  兩項(xiàng)只用平方差,三項(xiàng)十字相乘法,陣法熟練不馬虎,

  四項(xiàng)仔細(xì)看清楚,若有三個(gè)平方數(shù)(項(xiàng)),

  就用一三來分組,否則二二去分組,

  五項(xiàng)、六項(xiàng)更多項(xiàng),二三、三三試分組,

  以上若都行不通,拆項(xiàng)、添項(xiàng)看清楚。

  單項(xiàng)式運(yùn)算

  加、減、乘、除、乘(開)方,三級(jí)運(yùn)算分得清,

  系數(shù)進(jìn)行同級(jí)(運(yùn))算,指數(shù)運(yùn)算降級(jí)(進(jìn))行。

  一元一次不等式解題步驟

  去分母、去括號(hào),移項(xiàng)時(shí)候要變號(hào),同類項(xiàng)合并好,再把系數(shù)來除掉,

  兩邊除(以)負(fù)數(shù)時(shí),不等號(hào)改向別忘了。

  一元一次不等式組的解集

  大大取較大,小小取較小,小大、大小取中間,大小、小大無處找。

  一元二次不等式、一元一次絕對(duì)值不等式的解集

  大(魚)于(吃)取兩邊,小(魚)于(吃)取中間。

  分式混合運(yùn)算法則

  分式四則運(yùn)算,順序乘除加減,乘除同級(jí)運(yùn)算,除法符號(hào)須變(乘);

  乘法進(jìn)行化簡(jiǎn),因式分解在先,分子分母相約,然后再行運(yùn)算;

  加減分母需同,分母化積關(guān)鍵;找出最簡(jiǎn)公分母,通分不是很難;

  變號(hào)必須兩處,結(jié)果要求最簡(jiǎn)。

  中考數(shù)學(xué)知識(shí)點(diǎn)歸納:平面直角坐標(biāo)系

  平面直角坐標(biāo)系

  1、平面直角坐標(biāo)系

  在平面內(nèi)畫兩條互相垂直且有公共原點(diǎn)的數(shù)軸,就組成了平面直角坐標(biāo)系。

  其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸的交點(diǎn)O(即公共的原點(diǎn))叫做直角坐標(biāo)系的原點(diǎn);建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。

  為了便于描述坐標(biāo)平面內(nèi)點(diǎn)的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個(gè)部分,分別叫做第一象限、第二象限、第三象限、第四象限。

  注意:x軸和y軸上的點(diǎn),不屬于任何象限。

  2、點(diǎn)的坐標(biāo)的概念

  點(diǎn)的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有“,”分開,橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對(duì),當(dāng)時(shí),(a,b)和(b,a)是兩個(gè)不同點(diǎn)的坐標(biāo)。

  中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8

  考點(diǎn)1:確定事件和隨機(jī)事件

  考核要求:

  〔 1〕理解必然事件、不可能事件、隨機(jī)事件的概念,知道確定事件與必然事件、不可能事件的關(guān)系;

  〔 2〕能區(qū)分簡(jiǎn)單生活事件中的必然事件、不可能事件、隨機(jī)事件。

  考點(diǎn)2:事件發(fā)生的可能性大小,事件的概率

  考核要求:

  〔 1〕知道各種事件發(fā)生的可能性大小不同,能判斷一些隨機(jī)事件發(fā)生的可能事件的大小并排出大小順序;

  〔 2〕知道概率的含義和表示符號(hào),了解必然事件、不可能事件的概率和隨機(jī)事件概率的取值范圍;

  〔3〕理解隨機(jī)事件發(fā)生的頻率之間的區(qū)別和聯(lián)系,會(huì)根據(jù)大數(shù)次試驗(yàn)所得頻率估計(jì)事件的概率。

  〔1〕在給可能性的大小排序前可先用〝一定發(fā)生〞、〝很有可能發(fā)生〞、 〝可能發(fā)生〞、〝不太可能發(fā)生〞、〝一定不會(huì)發(fā)生〞等詞語來表述事件發(fā)生的可能性的大小;

  〔 2〕事件的概率是確定的常數(shù),而概率是不確定的,可是近似值,與試驗(yàn)的次數(shù)的多少有關(guān),只有當(dāng)試驗(yàn)次數(shù)足夠大時(shí)才能更精確。

  考點(diǎn)3:等可能試驗(yàn)中事件的概率問題及概率計(jì)算

  考核要求

  〔1〕理解等可能試驗(yàn)的概念,會(huì)用等可能試驗(yàn)中事件概率計(jì)算公式來計(jì)算簡(jiǎn)單事件的概率;

  〔2〕會(huì)用枚舉法或畫〝樹形圖〞方法求等可能事件的概率,會(huì)用區(qū)域面積之比解決簡(jiǎn)單的概率問題;

  〔3〕形成對(duì)概率的初步認(rèn)識(shí),了解機(jī)會(huì)與風(fēng)險(xiǎn)、規(guī)那么公平性與決策合理性等簡(jiǎn)單概率問題。

  〔1〕計(jì)算前要先確定是否為可能事件;

  〔2〕用枚舉法或畫〝樹形圖〞方法求等可能事件的概率過程中要將所有等可能情況考慮完整。

  考點(diǎn)4:數(shù)據(jù)整理與統(tǒng)計(jì)圖表

  考核要求:

  〔1〕知道數(shù)據(jù)整理分析的意義,知道普查和抽樣調(diào)查這兩種收集數(shù)據(jù)的方法及其區(qū)別;

  〔2〕結(jié)合有關(guān)代數(shù)、幾何的內(nèi)容,掌握用折線圖、扇形圖、條形圖等整理數(shù)據(jù)的方法,并能通過圖表獲取有關(guān)信息。

  考點(diǎn)5:統(tǒng)計(jì)的含義

  考核要求:

  〔1〕知道統(tǒng)計(jì)的意義和一般研究過程;

  〔2〕認(rèn)識(shí)個(gè)體、總體和樣本的區(qū)別,了解樣本估計(jì)總體的思想方法。

  考點(diǎn)6:平均數(shù)、加權(quán)平均數(shù)的概念和計(jì)算

  考核要求:

  〔1〕理解平均數(shù)、加權(quán)平均數(shù)的概念;

  〔2〕掌握平均數(shù)、加權(quán)平均數(shù)的計(jì)算公式。注意:在計(jì)算平均數(shù)、加權(quán)平均數(shù)時(shí)要防止數(shù)據(jù)漏抄、重抄、錯(cuò)抄等錯(cuò)誤現(xiàn)象,提高運(yùn)算準(zhǔn)確率。

  考點(diǎn)7:中位數(shù)、眾數(shù)、方差、標(biāo)準(zhǔn)差的概念和計(jì)算

  考核要求:

  〔 1〕知道中位數(shù)、眾數(shù)、方差、標(biāo)準(zhǔn)差的概念;

  〔 2〕會(huì)求一組數(shù)據(jù)的中位數(shù)、眾數(shù)、方差、標(biāo)準(zhǔn)差,并能用于解決簡(jiǎn)單的統(tǒng)計(jì)問題。

  〔1〕當(dāng)一組數(shù)據(jù)中出現(xiàn)極值時(shí),中位數(shù)比平均數(shù)更能反映這組數(shù)據(jù)的平均水平;

  〔2〕求中位數(shù)之前必須先將數(shù)據(jù)排序。

  考點(diǎn)8:頻數(shù)、頻率的意義,畫頻數(shù)分布直方圖和頻率分布直方圖考核要求:

  〔 1〕理解頻數(shù)、頻率的概念,掌握頻數(shù)、頻率和總量三者之間的關(guān)系式;

  〔2〕會(huì)畫頻數(shù)分布直方圖和頻率分布直方圖,并能用于解決有關(guān)的實(shí)際問題。解題時(shí)要注意:頻數(shù)、頻率能反映每個(gè)對(duì)象出現(xiàn)的頻繁程度,但也存在差別:在同一個(gè)問題中,頻數(shù)反映的是對(duì)象出現(xiàn)頻繁程度的絕對(duì)數(shù)據(jù),所有頻數(shù)之和是試驗(yàn)的.總次數(shù);頻率反映的是對(duì)象頻繁出現(xiàn)的相對(duì)數(shù)據(jù),所有的頻率之和是1。

  考點(diǎn)9:中位數(shù)、眾數(shù)、方差、標(biāo)準(zhǔn)差、頻數(shù)、頻率的應(yīng)用考核要求:

  〔1〕了解基本統(tǒng)計(jì)量〔平均數(shù)、眾數(shù)、中位數(shù)、方差、標(biāo)準(zhǔn)差、頻數(shù)、頻率〕的意計(jì)算及其應(yīng)用,并掌握其概念和計(jì)算方法;

  〔2〕正確理解樣本數(shù)據(jù)的特征和數(shù)據(jù)的代表,能根據(jù)計(jì)算結(jié)果作出判斷和預(yù)測(cè);

  〔3〕能將多個(gè)圖表結(jié)合起來,綜合處理圖表提供的數(shù)據(jù),會(huì)利用各種統(tǒng)計(jì)量來進(jìn)行推理和分析,

  要練說,得練看。看與說是統(tǒng)一的,看不準(zhǔn)就難以說得好。練看,就是訓(xùn)練幼兒的觀察能力,擴(kuò)大幼兒的認(rèn)知范圍,讓幼兒在觀察事物、觀察生活、觀察自然的活動(dòng)中,積累詞匯、理解詞義、發(fā)展語言。在運(yùn)用觀察法組織活動(dòng)時(shí),我著眼觀察于觀察對(duì)象的選擇,著力于觀察過程的指導(dǎo),著重于幼兒觀察能力和語言表達(dá)能力的提高。

  單靠〝死〞記還不行,還得〝活〞用,姑且稱之為〝先死后活〞吧。讓學(xué)生把一周看到或聽到的新鮮事記下來,摒棄那些假話套話空話,寫出自己的真情實(shí)感,篇幅可長(zhǎng)可短,并要求運(yùn)用積累的成語、名言警句等,定期檢查點(diǎn)評(píng),選擇優(yōu)秀篇目在班里朗讀或展出。這樣,即鞏固了所學(xué)的材料,又鍛煉了學(xué)生的寫作能力,同時(shí)還培養(yǎng)了學(xué)生的觀察能力、思維能力等等,達(dá)到〝一石多鳥〞的效果。研究解決有關(guān)的實(shí)際生活中問題,然后作出合理的解決。

  一般說來,〝教師〞概念之形成經(jīng)歷了十分漫長(zhǎng)的歷史。楊士勛〔唐初學(xué)者,四門博士〕 ?春秋谷梁傳疏?曰:〝師者教人以不及,故謂師為師資也〞。

  這兒的〝師資〞,其實(shí)就是先秦而后歷代對(duì)教師的別稱之一。

  韓非子也有云:“今有不才之子?…師長(zhǎng)教之弗為變〃其“師長(zhǎng)〃當(dāng)然也指教師。這兒的〝師資〞和〝師長(zhǎng)〞可稱為〝教師〞概念的雛形,但仍說不上是名副其實(shí)的〝教師〞,因?yàn)楱斀處煥暠仨氁忻鞔_的傳授知識(shí)的對(duì)象和本身明確的職責(zé)。

  中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9

  中考數(shù)學(xué)知識(shí)點(diǎn):分式混合運(yùn)算法則

  分式四則運(yùn)算,順序乘除加減,乘除同級(jí)運(yùn)算,除法符號(hào)須變(乘);乘法進(jìn)行化簡(jiǎn),因式分解在先,分子分母相約,然后再行運(yùn)算;加減分母需同,分母化積關(guān)鍵;找出最簡(jiǎn)公分母,通分不是很難;變號(hào)必須兩處,結(jié)果要求最簡(jiǎn).

  分式混合運(yùn)算法則:

  分式四則運(yùn)算,順序乘除加減,乘除同級(jí)運(yùn)算,除法符號(hào)須變(乘);

  乘法進(jìn)行化簡(jiǎn),因式分解在先,分子分母相約,然后再行運(yùn)算;

  加減分母需同,分母化積關(guān)鍵;找出最簡(jiǎn)公分母,通分不是很難;

  變號(hào)必須兩處,結(jié)果要求最簡(jiǎn).

  中考數(shù)學(xué)二次根式的加減法知識(shí)點(diǎn)總結(jié)

  二次根式的加減法

  知識(shí)點(diǎn)1:同類二次根式

  (Ⅰ)幾個(gè)二次根式化成最簡(jiǎn)二次根式以后,如果被開方數(shù)相同,這幾個(gè)二次根式叫做同類二次根式,如這樣的二次根式都是同類二次根式。

  (Ⅱ)判斷同類二次根式的方法:

  (1)首先將不是最簡(jiǎn)形式的二次根式化為最簡(jiǎn)二次根式以后,再看被開方數(shù)是否相同。

  (2)幾個(gè)二次根式是否是同類二次根式,只與被開方數(shù)及根指數(shù)有關(guān),而與根號(hào)外的因式無關(guān)。

  知識(shí)點(diǎn)2:合并同類二次根式的方法

  合并同類二次根式的理論依據(jù)是逆用乘法對(duì)加法的分配律,合并同類二次根式,只把它們的系數(shù)相加,根指數(shù)和被開方數(shù)都不變,不是同類二次根式的不能合并。

  知識(shí)點(diǎn)3:二次根式的加減法則

  二次根式相加減先把各個(gè)二次根式化成最簡(jiǎn)二次根式,再把同類二次根式合并,合并的方法為系數(shù)相加,根式不變。

  知識(shí)點(diǎn)4:二次根式的混合運(yùn)算方法和順序

  運(yùn)算方法是利用加、減、乘、除法則以及與多項(xiàng)式乘法類似法則進(jìn)行混合運(yùn)算。運(yùn)算的順序是先乘方,后乘除,最后加減,有括號(hào)的先算括號(hào)內(nèi)的.。

  知識(shí)點(diǎn)5:二次根式的加減法則與乘除法則的區(qū)別

  乘除法中,系數(shù)相乘,被開方數(shù)相乘,與兩根式是否是同類根式無關(guān),加減法中,系數(shù)相加,被開方數(shù)不變而且兩根式須是同類最簡(jiǎn)根式。

  中考數(shù)學(xué)知識(shí)點(diǎn):直角三角形

  ★重點(diǎn)★解直角三角形

  ☆內(nèi)容提要☆

  一、三角函數(shù)

  1.定義:在Rt△ABC中,∠C=Rt∠,則sinA=;cosA=;tgA=;ctgA=.

  2.特殊角的三角函數(shù)值:

  0°30°45°60°90°

  sinα

  cosα

  tgα/

  ctgα/

  3.互余兩角的三角函數(shù)關(guān)系:sin(90°-α)=cosα;…

  4.三角函數(shù)值隨角度變化的關(guān)系

  5.查三角函數(shù)表

  二、解直角三角形

  1.定義:已知邊和角(兩個(gè),其中必有一邊)→所有未知的邊和角。

  2.依據(jù):

  ①邊的關(guān)系:

  ②角的關(guān)系:A+B=90°

  ③邊角關(guān)系:三角函數(shù)的定義。

  注意:盡量避免使用中間數(shù)據(jù)和除法。

  三、對(duì)實(shí)際問題的處理

  1.俯、仰角:2.方位角、象限角:3.坡度:

  4.在兩個(gè)直角三角形中,都缺解直角三角形的條件時(shí),可用列方程的辦法解決。

  中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10

  1、變量與常量

  在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。

  一般地,在某一變化過程中有兩個(gè)變量x與y,如果對(duì)于x的每一個(gè)值,y都有唯一確定的值與它對(duì)應(yīng),那么就說x是自變量,y是x的函數(shù)。

  2、函數(shù)解析式

  用來表示函數(shù)關(guān)系的`數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。

  使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。

  3、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)

  (1)解析法

  兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做解析法。

  (2)列表法

  把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來表示函數(shù)關(guān)系,這種表示法叫做列表法。

  (3)圖像法

  用圖像表示函數(shù)關(guān)系的方法叫做圖像法。

  4、由函數(shù)解析式畫其圖像的一般步驟

  (1)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值。

  (2)描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)。

  (3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來。

  中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11

  中位線概念

  (1)三角形中位線定義:連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線。

  (2)梯形中位線定義:連接梯形兩腰中點(diǎn)的線段叫做梯形的中位線。

  注意:

  (1)要把三角形的中位線與三角形的`中線區(qū)分開。三角形中線是連接一頂點(diǎn)和它的對(duì)邊中點(diǎn)的線段,而三角形中位線是連接三角形兩邊中點(diǎn)的線段。

  (2)梯形的中位線是連接兩腰中點(diǎn)的線段而不是連結(jié)兩底中點(diǎn)的線段。

  (3)兩個(gè)中位線定義間的聯(lián)系:可以把三角形看成是上底為零時(shí)的梯形,這時(shí)三角形的中位線就變成梯形的中位線。

  中位線定理

  (1)三角形中位線定理:三角形的中位線平行于第三邊并且等于它的一半.

  (2)梯形中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一半.

  中位線定理推廣

  三角形有三條中位線,首尾相接時(shí),每個(gè)小三角形面積都等于原三角形的四分之一,這四個(gè)三角形都互相全等。

  中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12

  不等式與不等式組

  1.定義:

  用符號(hào)〉,=,〈號(hào)連接的式子叫不等式。

  2.性質(zhì):

  ①不等式的兩邊都加上或減去同一個(gè)整式,不等號(hào)方向不變。

  ②不等式的`兩邊都乘以或者除以一個(gè)正數(shù),不等號(hào)方向不變。

  ③不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)方向相反。

  3.分類:

  ①一元一次不等式:左右兩邊都是整式,只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。

  ②一元一次不等式組:

  a.關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。

  b.一元一次不等式組中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。

  4.考點(diǎn):

  ①解一元一次不等式(組)

  ②根據(jù)具體問題中的數(shù)量關(guān)系列不等式(組)并解決簡(jiǎn)單實(shí)際問題

  ③用數(shù)軸表示一元一次不等式(組)的解集

【中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

中考數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)05-22

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)05-24

蘇教版數(shù)學(xué)中考知識(shí)點(diǎn)總結(jié)01-03

中考的數(shù)學(xué)知識(shí)點(diǎn)總結(jié)06-19

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)04-12

初三數(shù)學(xué)中考知識(shí)點(diǎn)總結(jié)09-21

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)【精】12-04

【熱門】中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12-04

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)【推薦】12-04