高二數學學習方法
在生活、工作和學習中,大家都在努力,勤奮的學習,找到適合的學習方法,能夠讓大家學習更有效率!想要高效學習,卻不知道怎么做?以下是小編整理的高二數學學習方法,歡迎大家分享。
高二數學學習方法1
一、溫故法
學習新概念前,如果能對孩子認知結構中原有的適當概念作一些結構上的變化來引進新概念,則有利于促進新概念的形成。
二、操作法
對有些概念的教學,可以從感性材料出發,讓孩子在操作中去發現概念的發生和發展過程。
三、類比法
這種方法有利于分析兩相關概念的異同,歸納出新授內容有關知識;有利于幫助孩子架起新、舊知識的橋梁,促進知識遷移,提高探索能力。
四、喻理法
為正確理解某一概念,以實例或生活中的趣事、典故作比喻,引出新概念。
五、置疑法
這種方法是通過揭示教學自身的矛盾來引入概念,以突出引進新概念的必要性和合理性,調動孩子了解新概念的強烈的動機和愿望。
六、創境法
如在講相遇問題時,為讓孩子對相向運動的各種可能的情況有所感受,可以從研究"鼓掌時兩只手怎樣運動"開始。通過拍手體驗,在邊問、邊議中逐步講解。實踐證明,如此使孩子猶如身臨其境去體驗并理解有關知識,能很快準確地掌握相關的數學概念。
高二數學學習方法2
一、了解高中數學知識的特點
經過初中三年的學習,特別是中考前的復習、鞏固,同學們已經熟練地掌握初中知識,并對其中一些數學思想、方法有所體會。而高中的知識無論從深度還是廣度上都比初中有所加強,因此在學習中感到有一定的困難也是正常的。解決的方法之一是我們首先要對高中知識的特點有所了解,做到心中有“數”。高中知識及其學習方法具有以下的特點:
1、概念的抽象性
進入高中后,同學們覺得數學的概念不易理解。的確,初中階段我們所學的概念很多都是從直觀例子或實際事物的關系中獲得感性認識后才給出定義,而高中的概念的獲得則需要更多的理性思考。以函數概念為例,初中階段我們是考慮變量x,y之間的.對應關系,即對x每個值都有唯一的y對應;而高中再次接觸函數時,是從兩個非空數集A,B中的元素之間的對應關系來考慮的。通過對比,我們還可以看到兩個階段中對函數的學習是有區別的。首先在符號表示上,初中只要求我們以具體的函數解析式如:等來表示函數,而高中階段我們用更抽象的形式這個形式便于對函數的一般性質進行研究;其次,在初中階段,學習過函數概念后,通過對具體函數的應用來實現對函數概念的鞏固。而在高中階段則是通過對函數一般性質的討論、應用來實現對函數概念的深入理解和鞏固。
上述分析告訴我們,若能將初、高中的同一概念加以對比、我們就能夠對高中的抽象概念理解得更為透徹。
2、語言的精煉性
從集合與函數這章開始,一些數學符號,如∩,∪,∈。Φ等等已初廣泛地運用,將繁冗的語言表示得即簡單又精確。例如,空集Φ可以表示方程無解;再如,設方程組的解集是F,方程的解集分別是與。若我們要表示出F、、之間的關系,用集合語言很容易,即。
3、知識的綜合性
高中數學每一章,每一節的知識都不是孤立的,章與章之間,節與節之間有密切的聯系,需要我們綜合運用。例如在我們學習了有關解不等式的內容后,我們來看下列問題:已知三個不等式:要使滿足不等式(3)的x值至少滿足不等式(1)和(2)中的一個,求a的取值范圍。
這個問題的分析,不僅涉及到不等式解的問題,還涉及到方程根的分布,函數在某一點的取值,幾個不等式解集之間取交還是取并等等,需要我們綜合利用學過的知識。
二、自覺架起數學知識的過渡橋梁
1、把握好集合的概念、性質
集合知識是由初中向高中知識過渡的第一座橋梁。首先,集合的表法使初中所學的自然數集、有理數集、實數集等有關的知識的表示更為簡煉,從而簡化了后面復雜問題的表述;其次,集合間的關系運算可以更好地幫助我們理解新學的知識,例如對不等式的解或方程組的解的理解;第三,集合作為一種數學思想滲透于今后所要學習的許多知識中。因此在高中伊始學好有關集合的知識是十分重要的。
2、加強聯想與類比
高中知識與初中知識之間的聯系是十分密切的。高中的很多知識可以通過降維、降冪等形式轉化為初中的有關知識,但這需要我們能將它們加以類比、聯想。以幾何為例,初中平面幾何中我們有過證明正三角形內任意一點到三邊的距離和等于三角形的高,通過面積和相等很容易證明。類比高中立體幾何,我們能否證明一個正面體內任意一點到四個面的距離和等于該四面體的高呢?
其實同學們能夠看出這個問題與上面平面幾何的問題是十分類似的。這里是將二維的問題推廣到三維。二維的問題可以用面積解決,三維的問題我們能用什么辦法呢?也許用求體積的方法?有興趣的同學可以試一試。當然,聯想、類比是以對知識的理解與掌握為前提的。
3、深化對數學計算的認識
數學計算在中學各個階段的學習要求有所不同。高中階段要求的不再是簡單的應用運算法則進行運算,而是要求在計算中掌握計算的方法,理解算理,如構造法、拆項法、變量替換法、數學歸納法等的選擇與運用。
例如當我們學習數列求和時遇到這樣的問題:“求1!+2!2+3!3+······+n!n的和”。顯然利用公式是無能為力的。這就需要我們構造算法,不妨從通項n!n入手,找出它與(n+1)!、n!的關系,不難發現n!n=(n+1)!—n!,這樣運用拆項法解決了求此和的問題。
三、幾點學習建議
1、認真閱讀教材
想只憑借課堂聽講就學好高中數學,這對大多數同學來說是不太可能的。要求我們在課下認真閱讀教材,在閱讀的同時還要勒于思考,只有這樣才能深入理解知識及知識的聯系。
2、理解、掌握、運用數學思想方法
數學思想方法是數學知識的精髓。初中階段同學們對綜合分析法、反證法等有了一些體會。與之相比,高中所涉及的數學思想方法要豐富得多。如:集合思想、函數思想、類比法、數學歸納法、分析法等常用的數學思想方法滲透于各部分知識中,都需要大家認真體會。
3、注意知識之間的聯系
在日常的學習中要做到:
①注意思考不同數學知識之間的聯系;
、谧⒁饫}與習題間的聯系。弄清知識之間的邏輯關系,從而系統、靈活地掌握高中數學。
【高二數學學習方法】相關文章:
高二數學的學習方法12-18
高二數學學習方法09-06
數學學習方法高二整理12-26
高二數學學習方法有哪些12-13
高二數學學習方法14篇01-27
高二數學學習方法(15篇)12-30
高二數學學習方法精選15篇12-31
高二數學學習方法15篇08-04
高二數學學習方法(精選15篇)03-02