初中函數知識點總結
總結是指社會團體、企業單位和個人對某一階段的學習、工作或其完成情況加以回顧和分析,得出教訓和一些規律性認識的一種書面材料,它可以給我們下一階段的學習和工作生活做指導,為此我們要做好回顧,寫好總結。總結怎么寫才不會千篇一律呢?下面是小編精心整理的初中函數知識點總結,僅供參考,希望能夠幫助到大家。
初中函數知識點總結1
1、配方法
所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恒等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的.提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。
3、換元法
換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。
4、判別式法與韋達定理
一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等
5、待定系數法
在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而后根據題設條件列出關于待定系數的等式,最后解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。
6、構造法
在解題時,我們常常會采用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利于問題的解決。
初中函數知識點總結2
I.定義與定義表達式
一般地,自變量x和因變量y之間存在如下關系:y=ax^2+bx+c
(a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大)則稱y為x的二次函數。
二次函數表達式的右邊通常為二次三項式。
II.二次函數的三種表達式
一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)
頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]
交點式:y=a(x-x)(x-x)[僅限于與x軸有交點A(x,0)和B(x,0)的拋物線]
注:在3種形式的互相轉化中,有如下關系:
h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a
III.二次函數的圖像
在平面直角坐標系中作出二次函數y=x^2的圖像,可以看出,二次函數的圖像是一條拋物線。
IV.拋物線的性質
1、拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。
對稱軸與拋物線唯一的交點為拋物線的頂點P。特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
2、拋物線有一個頂點P,坐標為:P(-b/2a,(4ac-b^2)/4a)當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。
3、二次項系數a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。
4、一次項系數b和二次項系數a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左;
當a與b異號時(即ab<0),對稱軸在y軸右。
5、常數項c決定拋物線與y軸交點。
拋物線與y軸交于(0,c)
6、拋物線與x軸交點個數
Δ=b^2-4ac>0時,拋物線與x軸有2個交點。
Δ=b^2-4ac=0時,拋物線與x軸有1個交點。
Δ=b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x=-b±√b^2-4ac的值的相反數,乘上虛數i,整個式子除以2a)
V.二次函數與一元二次方程
特別地,二次函數(以下稱函數)y=ax^2+bx+c,當y=0時,二次函數為關于x的一元二次方程(以下稱方程),即ax^2+bx+c=0
此時,函數圖像與x軸有無交點即方程有無實數根。函數與x軸交點的橫坐標即為方程的根。
1、二次函數y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:
當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,當h<0時,則向左平行移動|h|個單位得到。
當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2+k的圖象;
當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;
當h0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象;
當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;
因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了。這給畫圖象提供了方便。
2、拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a)。
3、拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大。若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的'增大而減小。
4、拋物線y=ax^2+bx+c的圖象與坐標軸的交點:
(1)圖象與y軸一定相交,交點坐標為(0,c);
(2)當△=b^2-4ac>0,圖象與x軸交于兩點A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的兩根。這兩點間的距離AB=|x-x|
當△=0。圖象與x軸只有一個交點;
當△0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數時,都有y<0。
5、拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b^2)/4a。
頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值。
6、用待定系數法求二次函數的解析式
(1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:
y=ax^2+bx+c(a≠0)。
(2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0)。
(3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x)(x-x)(a≠0)。
7、二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現。
初中函數知識點總結3
1課前認真預習。預習的目的是為了能更好得聽老師講課,通過預習,掌握度要達到百分之八十。帶著預習中不明白的問題去聽老師講課,來解答這類的問題。預習還可以使聽課的整體效率提高。具體的預習方法:將書上的題目做完,畫出知識點,整個過程大約持續15-20分鐘。在時間允許的情況下,還可以將練習冊做完。
2讓數學課學與練結合。在數學課上,光聽是沒用的。當老師讓同學去黑板上演算時,自己也要在草稿紙上練。如果遇到不懂的難題,一定要提出來,不能不求甚解。否則考試遇到類似的題目就可能不會做。聽老師講課時一定要全神貫注,要注意細節問題,否則“千里之堤,毀于蟻穴”。
3課后及時復習。寫完作業后對當天老師講的內容進行梳理,可以適當地做25分鐘左右的課外題。可以根據自己的需要選擇適合自己的課外書。其課外題內容大概就是今天上的課。
4單元測驗是為了檢測近期的.學習情況。其實分數代表的是你的過去,關鍵的是對于每次考試的總結和吸取教訓,是為了讓你在期中、期末考得更好。老師經常會在沒通知的情況下進行考試,所以要及時做到“課后復習”。
初中函數知識點總結4
二次根式
學生已經學過整式與分式,知道用式子可以表示實際問題中的數量關系。解決與數量關系有關的問題還會遇到二次根式。“二次根式”一章就來認識這種式子,探索它的性質,掌握它的運算。
在這一章,首先讓學生了解二次根式的概念,并掌握以下重要結論:
注:關于二次根式的運算,由于二次根式的乘除相對于二次根式的加減來說更易于掌握,教科書先安排二次根式的乘除,再安排二次根式的加減。“二次根式的乘除”一節的內容有兩條發展的線索。一條是用具體計算的例子體會二次根式乘除法則的合理性,并運用二次根式的乘除法則進行運算;一條是由二次根式的乘除法則得到
并運用它們進行二次根式的化簡。
“二次根式的加減”一節先安排二次根式加減的內容,再安排二次根式加減乘除混合運算的內容。在本節中,注意類比整式運算的有關內容。例如,讓學生比較二次根式的加減與整式的加減,又如,通過例題說明在二次根式的運算中,多項式乘法法則和乘法公式仍然適用。這些處理有助于學生掌握本節內容。
一元二次方程
學生已經掌握了用一元一次方程解決實際問題的方法。在解決某些實際問題時還會遇到一種新方程——一元二次方程。“一元二次方程”一章就來認識這種方程,討論這種方程的解法,并運用這種方程解決一些實際問題。
本章首先通過雕像設計、制作方盒、排球比賽等問題引出一元二次方程的概念,給出一元二次方程的一般形式。然后讓學生通過數值代入的方法找出某些簡單的一元二次方程的解,對一元二次方程的解加以體會,并給出一元二次方程的根的概念,“降次——解一元二次方程”一節介紹配方法、公式法、因式分解法三種解一元二次方程的方法。下面分別加以說明。
(1)在介紹配方法時,首先通過實際問題引出形如的方程。這樣的方程可以化為更為簡單的形如的方程,由平方根的概念,可以得到這個方程的解。進而舉例說明如何解形如的方程。然后舉例說明一元二次方程可以化為形如的方程,引出配方法。最后安排運用配方法解一元二次方程的例題。在例題中,涉及二次項系數不是1的一元二次方程,也涉及沒有實數根的一元二次方程。對于沒有實數根的一元二次方程,學了“公式法”以后,學生對這個內容會有進一步的理解。
(2)在介紹公式法時,首先借助配方法討論方程的解法,得到一元二次方程的求根公式。然后安排運用公式法解一元二次方程的例題。在例題中,涉及有兩個相等實數根的一元二次方程,也涉及沒有實數根的一元二次方程。由此引出一元二次方程的解的三種情況。
(3)在介紹因式分解法時,首先通過實際問題引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排運用因式分解法解一元二次方程的例題。最后對配方法、公式法、因式分解法三種解一元二次方程的方法進行小結。
“實際問題與一元二次方程”一節安排了四個探究欄目,分別探究傳播、成本下降率、面積、勻變速運動等問題,使學生進一步體會方程是刻畫現實世界的一個有效的數學模型。
旋轉
學生已經認識了平移、軸對稱,探索了它們的性質,并運用它們進行圖案設計。本書中圖形變換又增添了一名新成員――旋轉。“旋轉”一章就來認識這種變換,探索它的性質。在此基礎上,認識中心對稱和中心對稱圖形。
“旋轉”一節首先通過實例介紹旋轉的概念。然后讓學生探究旋轉的性質。在此基礎上,通過例題說明作一個圖形旋轉后的圖形的方法。最后舉例說明用旋轉可以進行圖案設計。
“中心對稱”一節首先通過實例介紹中心對稱的概念。然后讓學生探究中心對稱的性質。在此基礎上,通過例題說明作與一個圖形成中心對稱的圖形的方法。這些內容之后,通過線段、平行四邊形引出中心對稱圖形的概念。最后介紹關于原點對稱的點的'坐標的關系,以及利用這一關系作與一個圖形成中心對稱的圖形的方法。
“課題學習圖案設計”一節讓學生探索圖形之間的變換關系(平移、軸對稱、旋轉及其組合),靈活運用平移、軸對稱、旋轉的組合進行圖案設計。關注我們,搜微信公眾號:chzhshuxue
圓
圓是一種常見的圖形。在“圓”這一章,學生將進一步認識圓,探索它的性質,并用這些知識解決一些實際問題。通過這一章的學習,學生的解決圖形問題的能力將會進一步提高。
“圓”一節首先介紹圓及其有關概念。然后讓學生探究與垂直于弦的直徑有關的結論,并運用這些結論解決問題。接下來,讓學生探究弧、弦、圓心角的關系,并運用上述關系解決問題。最后讓學生探究圓周角與圓心角的關系,并運用上述關系解決問題。
“與圓有關的位置關系”一節首先介紹點和圓的三種位置關系、三角形的外心的概念,并通過證明“在同一直線上的三點不能作圓”引出了反證法。然后介紹直線和圓的三種位置關系、切線的概念以及與切線有關的結論。最后介紹圓和圓的位置關系。
“正多邊形和圓”一節揭示了正多邊形和圓的關系,介紹了等分圓周得到正多邊形的方法。
“弧長和扇形面積”一節首先介紹弧長公式。然后介紹扇形及其面積公式。最后介紹圓錐的側面積公式。
概率初步
將一枚硬幣拋擲一次,可能出現正面也可能出現反面,出現正面的可能性大還是出現反面的可能性大呢?學了“概率”一章,學生就能更好地認識這個問題了。掌握了概率的初步知識,學生還會解決更多的實際問題。
“概率”一節首先通過實例介紹隨機事件的概念,然后通過擲幣問題引出概率的概念。
“用列舉法求概率”一節首先通過具體試驗引出用列舉法求概率的方法。然后安排運用這種方法求概率的例題。在例題中,涉及列表及畫樹形圖。
“利用頻率估計概率”一節通過幼樹成活率和柑橘損壞率等問題介紹了用頻率估計概率的方法。
“課題學習鍵盤上字母的排列規律”一節讓學生通過這一課題的研究體會概率的廣泛應用。
【初中函數知識點總結】相關文章:
初中數學函數知識點總結04-08
函數知識點總結02-10
函數知識點總結06-23
初中數學函數知識點總結6篇11-24
[精華]函數知識點總結08-28
函數知識點總結(實用)09-20
函數知識點總結(精)08-21
(精品)函數知識點總結08-22
函數知識點總結(熱門)09-19