亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

函數(shù)知識(shí)點(diǎn)總結(jié)

時(shí)間:2024-09-19 14:16:28 知識(shí)點(diǎn)總結(jié) 我要投稿

函數(shù)知識(shí)點(diǎn)總結(jié)(熱門)

  總結(jié)在一個(gè)時(shí)期、一個(gè)年度、一個(gè)階段對(duì)學(xué)習(xí)和工作生活等情況加以回顧和分析的一種書面材料,它能夠使頭腦更加清醒,目標(biāo)更加明確,讓我們抽出時(shí)間寫寫總結(jié)吧。我們?cè)撛趺慈懣偨Y(jié)呢?以下是小編收集整理的函數(shù)知識(shí)點(diǎn)總結(jié),僅供參考,大家一起來看看吧。

函數(shù)知識(shí)點(diǎn)總結(jié)(熱門)

函數(shù)知識(shí)點(diǎn)總結(jié)1

  一、知識(shí)導(dǎo)學(xué)

  1.二次函數(shù)的概念、圖像和性質(zhì).(1)注意解題中靈活運(yùn)用二次函數(shù)的一般式二次函數(shù)的頂點(diǎn)式二次函數(shù)的坐標(biāo)式

  f(x)ax2bxcf(x)a(xm)2n(a0)和f(x)a(xx1)(xx2)(a0)

  (a0)

  (2)解二次函數(shù)的問題(如單調(diào)性、最值、值域、二次三項(xiàng)式的恒正恒負(fù)、二次方程根的范圍等)要充分利用好兩種方法:配方、圖像,很多二次函數(shù)都用數(shù)形結(jié)合的思想去解.

  ①

  f(x)ax2bxc(a0),當(dāng)b24ac0時(shí)圖像與x軸有兩個(gè)交點(diǎn).

  M(x1,0)N(x2,0),|MN|=|x1-x2|=

  .|a|②二次函數(shù)在閉區(qū)間上必有最大值和最小值,它只能在區(qū)間的端點(diǎn)或二次函數(shù)的頂點(diǎn)處取得.2.指數(shù)函數(shù)

  ①amyax(a0,a1)和對(duì)數(shù)函數(shù)ylogax(a0,a1)的概念和性質(zhì).

  (1)有理指數(shù)冪的意義、冪的運(yùn)算法則:

  anamn;②(am)namn;③(ab)nanbn(這時(shí)m,n是有理數(shù))

  MlogaMlogaNNlogcb1MlogaM;logab

  nlogcaloga對(duì)數(shù)的概念及其運(yùn)算性質(zhì)、換底公式.

  loga(MN)logaMlogaN;logaMnnlogaM;logan(2)指數(shù)函數(shù)的圖像、單調(diào)性與特殊點(diǎn).對(duì)數(shù)函數(shù)的圖像、單調(diào)性與特殊點(diǎn).

  ①指數(shù)函數(shù)圖像永遠(yuǎn)在x軸上方,當(dāng)a>1時(shí),圖像越接近y軸,底數(shù)a越大;當(dāng)0錯(cuò)解:∵18

  5,∴l(xiāng)og185b

  log1845log185log189ba∴l(xiāng)og3645log1836log184log189log184a5,∴l(xiāng)og185b

  log1845log185log189∴l(xiāng)og3645log1836log184log189bb錯(cuò)因:因?qū)π再|(zhì)不熟而導(dǎo)致題目沒解完.正解:∵18

  bababa

  182182alog18()a2log18()a992[例2]分析方程f(x)axbxc0(a0)的兩個(gè)根都大于1的充要條件.

  2錯(cuò)解:由于方程f(x)axbxc0(a0)對(duì)應(yīng)的二次函數(shù)為

  f(x)ax2bxc的圖像與x軸交點(diǎn)的橫坐標(biāo)都大于1即可.

  f(1)0f(1)0故需滿足b,所以充要條件是b

  112a2a錯(cuò)因:上述解法中,只考慮到二次函數(shù)與x軸交點(diǎn)坐標(biāo)要大于1,卻忽視了最基本的的前題條件,應(yīng)讓二次函數(shù)圖像與x軸有

  交點(diǎn)才行,即滿足△≥0,故上述解法得到的不是充要條件,而是必要不充分條件.

  f(1)0b正解:充要條件是12a2b4ac0y36x126x5的單調(diào)區(qū)間.

  x2xx錯(cuò)解:令6t,則y361265=t12t5

  [例3]求函數(shù)

  ∴當(dāng)t≥6,即x≥1時(shí),y為關(guān)于t的增函數(shù),當(dāng)t≤6,即x≤1時(shí),y為關(guān)于t的減函數(shù)∴函數(shù)

  y36x126x5的單調(diào)遞減區(qū)間是(,6],單調(diào)遞增區(qū)間為[6,)

  x錯(cuò)因:本題為復(fù)合函數(shù),該解法未考慮中間變量的取值范圍.正解:令6∴函數(shù)

  t,則t6x為增函數(shù),y36x126x5=t212t5=(t6)241

  ∴當(dāng)t≥6,即x≥1時(shí),y為關(guān)于t的增函數(shù),當(dāng)t≤6,即x≤1時(shí),y為關(guān)于t的減函數(shù)

  y36x126x5的單調(diào)遞減區(qū)間是(,1],單調(diào)遞增區(qū)間為[1,)

  [例4]已知yloga(2ax)在[0,1]上是x的減函數(shù),則a的取值范圍是錯(cuò)解:∵yloga(2ax)是由ylogau,u2ax復(fù)合而成,又a>0∴u2ax在[0,1]上是x的減函數(shù),由復(fù)合函數(shù)關(guān)系知,ylogau應(yīng)為增函數(shù),∴a>1

  錯(cuò)因:錯(cuò)因:解題中雖然考慮了對(duì)數(shù)函數(shù)與一次函數(shù)復(fù)合關(guān)系,卻忽視了數(shù)定義域的限制,單調(diào)區(qū)間應(yīng)是定義域的某個(gè)子區(qū)間,即函數(shù)應(yīng)在[0,1]上有意義.

  yloga(2ax)是由ylogau,u2ax復(fù)合而成,又a>0∴u2ax在[0,1]上是x的減函數(shù),

  由復(fù)合函數(shù)關(guān)系知,ylogau應(yīng)為增函數(shù),∴a>1

  又由于x在[0,1]上時(shí)yloga(2ax)有意義,u2ax又是減函數(shù),∴x=1時(shí),u2ax取最小值是

  正解:∵

  umin2a>0即可,∴a<2,綜上可知所求的取值范圍是1<a<2[例5]已知函數(shù)f(x)loga(3ax).

  (1)當(dāng)x[0,2]時(shí)f(x)恒有意義,求實(shí)數(shù)a的取值范圍.

  (2)是否存在這樣的實(shí)數(shù)a使得函數(shù)f(x)在區(qū)間[1,2]上為減函數(shù),并且最大值為

  存在,請(qǐng)說明理由.分析:函數(shù)

  1,如果存在,試求出a的值;如果不

  f(x)為復(fù)合函數(shù),且含參數(shù),要結(jié)合對(duì)數(shù)函數(shù)的性質(zhì)具體分析找到正確的解題思路,是否存在性問題,分析時(shí)一

  0,a1

  般先假設(shè)存在后再證明.

  解:(1)由假設(shè),3ax>0,對(duì)一切x[0,2]恒成立,a顯然,函數(shù)g(x)=3ax在[0,2]上為減函數(shù),從而g(2)=32a>0得到a<(2)假設(shè)存在這樣的實(shí)數(shù)a,由題設(shè)知∴a=

  32∴a的取值范圍是(0,1)∪(1,

  32)

  f(1)1,即f(1)loga(3a)=1

  32此時(shí)

  f(x)loga(33x)當(dāng)x2時(shí),f(x)沒有意義,故這樣的實(shí)數(shù)不存在.2,

  12x4xa[例6]已知函數(shù)f(x)=lg,其中a為常數(shù),若當(dāng)x∈(-∞,1]時(shí),f(x)有意義,求實(shí)數(shù)a的取值范圍.

  a2a1xx3111xx解:124a>0,且a-a+1=(a-)+>0,∴1+2+4a>0,a>(11),當(dāng)x∈(-∞,1]時(shí),y=x與y=x都

  24424x2xa2a1333是減函數(shù),∴y=(11)在(-∞,1]上是增函數(shù),(11)max=-,∴a>-,故a的取值范圍是(-,+∞).

  4444x2x422

  2

  xx[例7]若(a1)解:∵冪函數(shù)

  13(32a)1313,試求a的取值范圍.

  yx有兩個(gè)單調(diào)區(qū)間,

  ∴根據(jù)a1和32a的正、負(fù)情況,有以下關(guān)系a10a1032a0.①32a0.②a132aa132a解三個(gè)不等式組:①得

  a10.③32a023,

  23<a<

  32,②無解,③a<-1,∴a的取值范圍是(-∞,-1)∪(

  32)

  [例8]已知a>0且a≠1,f(logax)=

  a1(x-

  xa21)

  (1)求f(x);(2)判斷f(x)的奇偶性與單調(diào)性;

  2

  (3)對(duì)于f(x),當(dāng)x∈(-1,1)時(shí),有f(1-m)+f(1-m)<0,求m的集合M.

  分析:先用換元法求出f(x)的表達(dá)式;再利用有關(guān)函數(shù)的性質(zhì)判斷其奇偶性和單調(diào)性;然后利用以上結(jié)論解第三問.解:(1)令t=logax(t∈R),則xat,f(t)aatt(aa),f(x)(axax),(xR).22a1a1aa(axax)f(x),且xR,f(x)為奇函數(shù).當(dāng)a1時(shí),20,a1a1u(x)axax為增函數(shù),當(dāng)0a1時(shí),類似可判斷f(x)為增函數(shù).綜上,無論a1或0a1,f(x)在R上都是增函數(shù).

  (3)f(1m)f(1m2)0,f(x)是奇函數(shù)且在R上是增函數(shù),f(1m)f(m21).又x(1,1)(2)f(x)211m11m2111m2.1mm21四、典型習(xí)題導(dǎo)練1.函數(shù)

  f(x)axb的圖像如圖,其中a、b為常數(shù),則下列結(jié)論正確的是()A.a1,b0B.a1,b0C.0a1,b0D.0a1,b0

  x的值為()

  yC.1或4C.2

  2

  2、已知2lg(x-2y)=lgx+lgy,則A.13、方程loga(x1)xA.04、函數(shù)f(x)與g(x)=(

  2B.4B.1

  x

  D.4或8D.3

  ()

  2(0A.

  0,nB.,0C.

  0,2

  D.

  2,0

  5、圖中曲線是冪函數(shù)y=x在第一象限的圖像,已知n可取±2,±

  1四個(gè)值,則相應(yīng)于曲線c1、c2、c3、c4的n依次為()211111111A.-2,-,,2B.2,,-,-2C.-,-2,2,D.2,,-2,-

  2222226.求函數(shù)y=log2

  2(x-5x+6)的定義域、值域、單調(diào)區(qū)間.7.若x滿足2(log21x)14log4x30,求f(x)=logxx222log22最大值和最小值.

  8.已知定義在R上的函數(shù)f(x)2xa2x,a為常數(shù)(1)如果f(x)=f(x),求a的`值;

  (2)當(dāng)

  f(x)滿足(1)時(shí),用單調(diào)性定義討論f(x)的單調(diào)性.

  基本初等函數(shù)綜合訓(xùn)練B組

  一、選擇題

  1.若函數(shù)

  f(x)logax(0a1)在區(qū)間[a,2a]上的最大值是最小值的3倍,則a的值為()

  A.214B.22C.4D.12

  2.若函數(shù)yloga(xb)(a0,a1)的圖象過兩點(diǎn)(1,0)

  和(0,1),則()

  A.a(chǎn)2,b2B.a(chǎn)2,b2

  C.a(chǎn)2,b1D.a(chǎn)2,b23.已知f(x6)log2x,那么f(8)等于()

  A.43B.8C.18D.12

  4.函數(shù)ylgx()

  A.是偶函數(shù),在區(qū)間(,0)上單調(diào)遞增B.是偶函數(shù),在區(qū)間(,0)上單調(diào)遞減C.是奇函數(shù),在區(qū)間(0,)上單調(diào)遞增D.是奇函數(shù),在區(qū)間(0,)上單調(diào)遞減

  5.已知函數(shù)f(x)lg1x1x.若f(a)b.則f(a)()A.bB.bC.11bD.b

  6.函數(shù)f(x)logax1在(0,1)上遞減,那么f(x)在(1,)上()

  A.遞增且無最大值B.遞減且無最小值C.遞增且有最大值D.遞減且有最小值

  二、填空題1.若

  f(x)2x2xlga是奇函數(shù),則實(shí)數(shù)a=_________。

  2.函數(shù)

  f(x)log1x22x5的值域是__________.

  23.已知log147a,log145b,則用a,b表示log3528。4.設(shè)

  A1,y,lgxy,B0,x,y,且AB,則x;y。5.計(jì)算:

  322log325。

  ex16.函數(shù)y的值域是__________.

  xe1三、解答題

  1.比較下列各組數(shù)值的大小:(1)1.7

  2.解方程:(1)9

  3.已知

  4.已知函數(shù)

  參考答案

  一、選擇題

  x3.3和0.82.1;(2)3.30.7和3.40.8;(3)

  3,log827,log9252231x27(2)6x4x9x

  y4x32x3,當(dāng)其值域?yàn)閇1,7]時(shí),求x的取值范圍。

  f(x)loga(aax)(a1),求f(x)的定義域和值域;

  1112321.Alogaa3loga(2a),loga(2a),a32a,a8a,a,a3842.Aloga(b1)0,且logab1,ab2

  3.D令x4.B令令u68(x0),x82,f(8)f(x6)log2xlog2216f(x)lgx,f(x)lgxlgxf(x),即為偶函數(shù)

  x,x0時(shí),u是x的減函數(shù),即ylgx在區(qū)間(,0)上單調(diào)遞減

  1x1xlgf(x).則f(a)f(a)b.5.Bf(x)lg1x1x6.A令ux1,(0,1)是u的遞減區(qū)間,即a1,(1,)是u的遞增區(qū)間,即f(x)遞增且無最大值。

  二、填空題1.

  1xxxxf(x)f(x)22lga22lga10x(lga1)(2(另法):xR,由2.

  2x)0,lga10,a110110f(x)f(x)得f(0)0,即lga10,a,2x22x5(x1)244,

  而011,log1x22x5log1422222alog14283.log147log145log1435ab,log3528

  ablog1435141log14log14(214)1log14271(1log147)2a

  log1435log1435log1435log1435ab4.1,1∵0A,y又∵1B,y0,∴l(xiāng)g(xy)0,xy1

  51,∴x1,而x1,∴x1,且y1

  3215.

  5322log32log32532log321515ex11y6.(1,1)y,ex0,1y1ex11y三、解答題1.解:(1)∵1.71.701,0.82.10.801,∴1.73.30.82.1

  0.70.80.70.80.80.8(2)∵3.33.3,3.33.4,∴3.33.4(3)log827log23,log925log35,

  3.333332log22log222log23,log332log333log35,223∴l(xiāng)og925log827.

  2x2xxxx2.解:(1)(3)63270,(33)(39)0,而330

  3x90,3x32,

  x22x4x22x2x(2)()()1,()()10

  39332251()x0,則()x,332

  xlog23512

  3.解:由已知得14x32x37,

  xxxx43237(21)(24)0,得x即

  xxx43231(21)(22)0xx即021,或224∴x0,或1x2。

  xx4.解:aa0,aa,x1,即定義域?yàn)?,1);

  ax0,0aaxa,loga(aax)1,即值域?yàn)?,1)。

  擴(kuò)展閱讀:高一數(shù)學(xué)上冊(cè) 第二章基本初等函數(shù)之對(duì)數(shù)函數(shù)知識(shí)點(diǎn)總結(jié)及練習(xí)題(含答案)

  〖2.2〗對(duì)數(shù)函數(shù)

  【2.2.1】對(duì)數(shù)與對(duì)數(shù)運(yùn)算

  (1)對(duì)數(shù)的定義

  ①若axN(a0,且a1),則x叫做以a為底N的對(duì)數(shù),記作xlogaN,其中a叫做底數(shù),

  N叫做真數(shù).

  ②負(fù)數(shù)和零沒有對(duì)數(shù).③對(duì)數(shù)式與指數(shù)式的互化:xlogaNaxN(a0,a1,N0).

  (2)幾個(gè)重要的對(duì)數(shù)恒等式:loga10,logaa1,logaabb.

  N;自然對(duì)數(shù):lnN,即loge(3)常用對(duì)數(shù)與自然對(duì)數(shù):常用對(duì)數(shù):lgN,即log10…).e2.71828(4)對(duì)數(shù)的運(yùn)算性質(zhì)如果a0,a1,M①加法:logaN(其中

  0,N0,那么

  MlogaNloga(MN)

  M②減法:logaMlogaNlogaN③數(shù)乘:nlogaMlogaMn(nR)

  ④

  alogaNN

  nlogaM(b0,nR)bn⑤logabM⑥換底公式:logaNlogbN(b0,且b1)

  logba【2.2.2】對(duì)數(shù)函數(shù)及其性質(zhì)

  (5)對(duì)數(shù)函數(shù)函數(shù)名稱定義函數(shù)對(duì)數(shù)函數(shù)ylogax(a0且a1)叫做對(duì)數(shù)函數(shù)a1yx10a1yx1ylogaxylogax圖象O(1,0)O(1,0)xx定義域值域過定點(diǎn)奇偶性(0,)R圖象過定點(diǎn)(1,0),即當(dāng)x1時(shí),y0.非奇非偶單調(diào)性在(0,)上是增函數(shù)在(0,)上是減函數(shù)logax0(x1)函數(shù)值的變化情況logax0(x1)logax0(x1)logax0(0x1)logax0(x1)logax0(0x1)a變化對(duì)圖象的影響在第一象限內(nèi),a越大圖象越靠低,越靠近x軸在第一象限內(nèi),a越小圖象越靠低,越靠近x軸在第四象限內(nèi),a越大圖象越靠高,越靠近y軸在第四象限內(nèi),a越小圖象越靠高,越靠近y軸(6)反函數(shù)的概念

  設(shè)函數(shù)果對(duì)于

  yf(x)的定義域?yàn)锳,值域?yàn)镃,從式子yf(x)中解出x,得式子x(y).如

  y在C中的任何一個(gè)值,通過式子x(y),x在A中都有唯一確定的值和它對(duì)應(yīng),那么式子

  x(y)表示x是y的函數(shù),函數(shù)x(y)叫做函數(shù)yf(x)的反函數(shù),記作xf1(y),習(xí)慣

  上改寫成

  yf1(x).

  (7)反函數(shù)的求法

  ①確定反函數(shù)的定義域,即原函數(shù)的值域;②從原函數(shù)式③將xyf(x)中反解出xf1(y);

  f1(y)改寫成yf1(x),并注明反函數(shù)的定義域.

  (8)反函數(shù)的性質(zhì)

  ①原函數(shù)②函數(shù)

  yf(x)與反函數(shù)yf1(x)的圖象關(guān)于直線yx對(duì)稱.

  yf(x)的定義域、值域分別是其反函數(shù)yf1(x)的值域、定義域.

  yf(x)的圖象上,則P"(b,a)在反函數(shù)yf1(x)的圖象上.

  ③若P(a,b)在原函數(shù)④一般地,函數(shù)

  yf(x)要有反函數(shù)則它必須為單調(diào)函數(shù).

  一、選擇題:1.

  log89的值是log23A.

  ()

  23B.1C.

  32D.2

  2.已知x=2+1,則log4(x3-x-6)等于

  A.

  ()C.0

  D.

  32B.

  54123.已知lg2=a,lg3=b,則

  lg12等于lg15()

  A.

  2ab

  1abB.

  a2b

  1abC.

  2ab

  1abD.

  a2b

  1ab4.已知2lg(x-2y)=lgx+lgy,則x的值為

  yA.1

  B.4

  ()C.1或4C.(C.ln5

  D.4或-1()

  5.函數(shù)y=log1(2x1)的定義域?yàn)?/p>

  2A.(

  1,+∞)B.[1,+∞)2B.5e

  1,1]2D.(-∞,1)()D.log5e()

  y6.已知f(ex)=x,則f(5)等于

  A.e5

  7.若f(x)logax(a0且a1),且f1(2)1,則f(x)的圖像是

  yyyABCD

  8.設(shè)集合A{x|x10},B{x|log2x0|},則AB等于

  A.{x|x1}C.{x|x1}

  B.{x|x0}D.{x|x1或x1}

  2OxOxOxOx()

  9.函數(shù)ylnx1,x(1,)的反函數(shù)為()x1ex1,x(0,)B.yxe1ex1,x(,0)D.yxe1ex1,x(0,)A.yxe1ex1,x(,0)C.yxe1二、填空題

函數(shù)知識(shí)點(diǎn)總結(jié)2

  一、函數(shù)對(duì)稱性:

  1.2.3.4.5.6.7.8.

  f(a+x)=f(a-x)==>f(x)關(guān)于x=a對(duì)稱

  f(a+x)=f(b-x)==>f(x)關(guān)于x=(a+b)/2對(duì)稱f(a+x)=-f(a-x)==>f(x)關(guān)于點(diǎn)(a,0)對(duì)稱f(a+x)=-f(a-x)+2b==>f(x)關(guān)于點(diǎn)(a,b)對(duì)稱

  f(a+x)=-f(b-x)+c==>f(x)關(guān)于點(diǎn)[(a+b)/2,c/2]對(duì)稱y=f(x)與y=f(-x)關(guān)于x=0對(duì)稱y=f(x)與y=-f(x)關(guān)于y=0對(duì)稱y=f(x)與y=-f(-x)關(guān)于點(diǎn)(0,0)對(duì)稱

  例1:證明函數(shù)y=f(a+x)與y=f(b-x)關(guān)于x=(b-a)/2對(duì)稱。

  【解析】求兩個(gè)不同函數(shù)的對(duì)稱軸,用設(shè)點(diǎn)和對(duì)稱原理作解。

  證明:假設(shè)任意一點(diǎn)P(m,n)在函數(shù)y=f(a+x)上,令關(guān)于x=t的對(duì)稱點(diǎn)Q(2tm,n),那么n=f(a+m)=f[b(2tm)]

  ∴b2t=a,==>t=(b-a)/2,即證得對(duì)稱軸為x=(b-a)/2.

  例2:證明函數(shù)y=f(a-x)與y=f(xb)關(guān)于x=(a+b)/2對(duì)稱。

  證明:假設(shè)任意一點(diǎn)P(m,n)在函數(shù)y=f(a-x)上,令關(guān)于x=t的對(duì)稱點(diǎn)Q(2tm,n),那么n=f(a-m)=f[(2tm)b]

  ∴2t-b=a,==>t=(a+b)/2,即證得對(duì)稱軸為x=(a+b)/2.

  二、函數(shù)的`周期性

  令a,b均不為零,若:

  1、函數(shù)y=f(x)存在f(x)=f(x+a)==>函數(shù)最小正周期T=|a|

  2、函數(shù)y=f(x)存在f(a+x)=f(b+x)==>函數(shù)最小正周期T=|b-a|

  3、函數(shù)y=f(x)存在f(x)=-f(x+a)==>函數(shù)最小正周期T=|2a|

  4、函數(shù)y=f(x)存在f(x+a)=1/f(x)==>函數(shù)最小正周期T=|2a|

  5、函數(shù)y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函數(shù)最小正周期T=|4a|

  這里只對(duì)第2~5點(diǎn)進(jìn)行解析。

  第2點(diǎn)解析:

  令X=x+a,f[a+(xa)]=f[b+(xa)]∴f(x)=f(x+ba)==>T=ba

  第3點(diǎn)解析:同理,f(x+a)=-f(x+2a)……

  ①f(x)=-f(x+a)……

  ②∴由①和②解得f(x)=f(x+2a)∴函數(shù)最小正周期T=|2a|

  第4點(diǎn)解析:

  f(x+2a)=1/f(x+a)==>f(x+a)=1/f(x+2a)

  又∵f(x+a)=1/f(x)∴f(x)=f(x+2a)

  ∴函數(shù)最小正周期T=|2a|

  第5點(diǎn)解析:

  ∵f(x+a)={2[1f(x)]}/[1f(x)]=2/[1f(x)]1

  ∴1f(x)=2/[f(x)+1]移項(xiàng)得f(x)=12/[f(x+a)+1]

  那么f(x-a)=12/[f(x)+1],等式右邊通分得f(x-a)=[f(x)1]/[1+f(x)]∴1/[f(x-a)=[1+f(x)]/[f(x)1],即-1/[f(x-a)=[1+f(x)]/[1-f(x)]∴-1/[f(x-a)=f(x+a),-1/[f(x2a)=f(x)==>-1/f(x)=f(x-2a)①,又∵-1/f(x)=f(x+2a)②,

  由①②得f(x+2a)=f(x-2a)==>f(x)=f(x+4a)

  ∴函數(shù)最小正周期T=|4a|

  擴(kuò)展閱讀:函數(shù)對(duì)稱性、周期性和奇偶性的規(guī)律總結(jié)

  函數(shù)對(duì)稱性、周期性和奇偶性規(guī)律總結(jié)

  (一)同一函數(shù)的函數(shù)的奇偶性與對(duì)稱性:(奇偶性是一種特殊的對(duì)稱性)

  1、奇偶性:

  (1)奇函數(shù)關(guān)于(0,0)對(duì)稱,奇函數(shù)有關(guān)系式f(x)f(x)0

  (2)偶函數(shù)關(guān)于y(即x=0)軸對(duì)稱,偶函數(shù)有關(guān)系式f(x)f(x)

  2、奇偶性的拓展:同一函數(shù)的對(duì)稱性

  (1)函數(shù)的軸對(duì)稱:

  函數(shù)yf(x)關(guān)于xa對(duì)稱f(ax)f(ax)

  f(ax)f(ax)也可以寫成f(x)f(2ax)或f(x)f(2ax)

  若寫成:f(ax)f(bx),則函數(shù)yf(x)關(guān)于直線x稱

  (ax)(bx)ab對(duì)22證明:設(shè)點(diǎn)(x1,y1)在yf(x)上,通過f(x)f(2ax)可知,y1f(x1)f(2ax1),

  即點(diǎn)(2ax1,y1)也在yf(x)上,而點(diǎn)(x1,y1)與點(diǎn)(2ax1,y1)關(guān)于x=a對(duì)稱。得證。

  說明:關(guān)于xa對(duì)稱要求橫坐標(biāo)之和為2a,縱坐標(biāo)相等。

  ∵(ax1,y1)與(ax1,y1)關(guān)于xa對(duì)稱,∴函數(shù)yf(x)關(guān)于xa對(duì)稱

  f(ax)f(ax)

  ∵(x1,y1)與(2ax1,y1)關(guān)于xa對(duì)稱,∴函數(shù)yf(x)關(guān)于xa對(duì)稱

  f(x)f(2ax)

  ∵(x1,y1)與(2ax1,y1)關(guān)于xa對(duì)稱,∴函數(shù)yf(x)關(guān)于xa對(duì)稱

  f(x)f(2ax)

  (2)函數(shù)的點(diǎn)對(duì)稱:

  函數(shù)yf(x)關(guān)于點(diǎn)(a,b)對(duì)稱f(ax)f(ax)2b

  上述關(guān)系也可以寫成f(2ax)f(x)2b或f(2ax)f(x)2b

  若寫成:f(ax)f(bx)c,函數(shù)yf(x)關(guān)于點(diǎn)(abc,)對(duì)稱2證明:設(shè)點(diǎn)(x1,y1)在yf(x)上,即y1f(x1),通過f(2ax)f(x)2b可知,f(2ax1)f(x1)2b,所以f(2ax1)2bf(x1)2by1,所以點(diǎn)(2ax1,2by1)也在yf(x)上,而點(diǎn)(2ax1,2by1)與(x1,y1)關(guān)于(a,b)對(duì)稱。得證。

  說明:關(guān)于點(diǎn)(a,b)對(duì)稱要求橫坐標(biāo)之和為2a,縱坐標(biāo)之和為2b,如(ax)與(ax)之和為2a。

  (3)函數(shù)yf(x)關(guān)于點(diǎn)yb對(duì)稱:假設(shè)函數(shù)關(guān)于yb對(duì)稱,即關(guān)于任一個(gè)x值,都有兩個(gè)y值與其對(duì)應(yīng),顯然這不符合函數(shù)的定義,故函數(shù)自身不可能關(guān)于yb對(duì)稱。但在曲線c(x,y)=0,則有可能會(huì)出現(xiàn)關(guān)于yb對(duì)稱,比如圓c(x,y)x2y240它會(huì)關(guān)于y=0對(duì)稱。

  (4)復(fù)合函數(shù)的奇偶性的性質(zhì)定理:

  性質(zhì)1、復(fù)數(shù)函數(shù)y=f[g(x)]為偶函數(shù),則f[g(-x)]=f[g(x)]。復(fù)合函數(shù)y=f[g(x)]為奇函數(shù),則f[g(-x)]=-f[g(x)]。

  性質(zhì)2、復(fù)合函數(shù)y=f(x+a)為偶函數(shù),則f(x+a)=f(-x+a);復(fù)合函數(shù)y=f(x+a)為奇函數(shù),則f(-x+a)=-f(a+x)。

  性質(zhì)3、復(fù)合函數(shù)y=f(x+a)為偶函數(shù),則y=f(x)關(guān)于直線x=a軸對(duì)稱。復(fù)合函數(shù)y=f(x+a)為奇函數(shù),則y=f(x)關(guān)于點(diǎn)(a,0)中心對(duì)稱。

  總結(jié):x的系數(shù)一個(gè)為1,一個(gè)為-1,相加除以2,可得對(duì)稱軸方程

  總結(jié):x的系數(shù)一個(gè)為1,一個(gè)為-1,f(x)整理成兩邊,其中一個(gè)的系數(shù)是為1,另一個(gè)為-1,存在對(duì)稱中心。

  總結(jié):x的系數(shù)同為為1,具有周期性。

  (二)兩個(gè)函數(shù)的圖象對(duì)稱性

  1、yf(x)與yf(x)關(guān)于X軸對(duì)稱。

  證明:設(shè)yf(x)上任一點(diǎn)為(x1,y1)則y1f(x1),所以yf(x)經(jīng)過點(diǎn)(x1,y1)

  ∵(x1,y1)與(x1,y1)關(guān)于X軸對(duì)稱,∴y1f(x1)與yf(x)關(guān)于X軸對(duì)稱.注:換種說法:yf(x)與yg(x)f(x)若滿足f(x)g(x),即它們關(guān)于y0對(duì)稱。

函數(shù)知識(shí)點(diǎn)總結(jié)3

  ∴當(dāng)x1時(shí)函數(shù)取得最大值,且ymax(1)2(1)13例4、已知函數(shù)f(x)x22(a1)x2

  4],求實(shí)數(shù)a的取值(1)若函數(shù)f(x)的遞減區(qū)間是(,4]上是減函數(shù),求實(shí)數(shù)a的取值范圍(2)若函數(shù)f(x)在區(qū)間(,分析:二次函數(shù)的單調(diào)區(qū)間是由其開口方向及對(duì)稱軸決定的,要分清函數(shù)在區(qū)間A上是單調(diào)函數(shù)及單調(diào)區(qū)間是A的區(qū)別與聯(lián)系

  解:(1)f(x)的對(duì)稱軸是x可得函數(shù)圖像開口向上

  2(a1)21a,且二次項(xiàng)系數(shù)為1>0

  1a]∴f(x)的單調(diào)減區(qū)間為(,∴依題設(shè)條件可得1a4,解得a3

  4]上是減函數(shù)(2)∵f(x)在區(qū)間(,4]是遞減區(qū)間(,1a]的子區(qū)間∴(,∴1a4,解得a3

  例5、函數(shù)f(x)x2bx2,滿足:f(3x)f(3x)

  (1)求方程f(x)0的兩根x1,x2的'和(2)比較f(1)、f(1)、f(4)的大小解:由f(3x)f(3x)知函數(shù)圖像的對(duì)稱軸為x(3x)(3x)23

  b3可得b62f(x)x26x2(x3)211

  而f(x)的圖像與x軸交點(diǎn)(x1,0)、(x2,0)關(guān)于對(duì)稱軸x3對(duì)稱

  x1x223,可得x1x26

  第三章第32頁(yè)由二次項(xiàng)系數(shù)為1>0,可知拋物線開口向上又134,132,431

  ∴依二次函數(shù)的對(duì)稱性及單調(diào)性可f(4)f(1)f(1)(III)課后作業(yè)練習(xí)六

  (Ⅳ)教學(xué)后記:

  第三章第33頁(yè)

  擴(kuò)展閱讀:初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)歸納

  學(xué)大教育

  初中數(shù)學(xué)函數(shù)板塊的知識(shí)點(diǎn)總結(jié)與歸類學(xué)習(xí)方法

  初中數(shù)學(xué)知識(shí)大綱中,函數(shù)知識(shí)占了很大的知識(shí)體系比例,學(xué)好了函數(shù),掌握了函數(shù)的基本性質(zhì)及其應(yīng)用,真正精通了函數(shù)的每一個(gè)模塊知識(shí),會(huì)做每一類函數(shù)題型,就讀于中考中數(shù)學(xué)成功了一大半,數(shù)學(xué)成績(jī)自然上高峰,同時(shí),函數(shù)的思想是學(xué)好其他理科類學(xué)科的基礎(chǔ)。初中數(shù)學(xué)從性質(zhì)上分,可以分為:一次函數(shù)、反比例函數(shù)、二次函數(shù)和銳角三角函數(shù),下面介紹各類函數(shù)的定義、基本性質(zhì)、函數(shù)圖象及函數(shù)應(yīng)用思維方式方法。

  一、一次函數(shù)

  1.定義:在定義中應(yīng)注意的問題y=kx+b中,k、b為常數(shù),且k≠0,x的指數(shù)一定為1。2.圖象及其性質(zhì)(1)形狀、直線

函數(shù)知識(shí)點(diǎn)總結(jié)4

  當(dāng)h>0時(shí),y=a(_-h)^2的圖象可由拋物線y=a_^2向右平行移動(dòng)h個(gè)單位得到,

  當(dāng)h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到.

  當(dāng)h>0,k>0時(shí),將拋物線y=a_^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(_-h)^2+k的圖象;

  當(dāng)h>0,k<0時(shí),將拋物線y=a_^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(_-h)^2+k的圖象;

  當(dāng)h<0,k>0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(_-h)^2+k的圖象;

  當(dāng)h<0,k<0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(_-h)^2+k的圖象;

  因此,研究拋物線y=a_^2+b_+c(a≠0)的圖象,通過配方,將一般式化為y=a(_-h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

  2.拋物線y=a_^2+b_+c(a≠0)的圖象:當(dāng)a>0時(shí),開口向上,當(dāng)a<0時(shí)開口向下,對(duì)稱軸是直線_=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b^2]/4a).

  3.拋物線y=a_^2+b_+c(a≠0),若a>0,當(dāng)_≤-b/2a時(shí),y隨_的增大而減小;當(dāng)_≥-b/2a時(shí),y隨_的增大而增大.若a<0,當(dāng)_≤-b/2a時(shí),y隨_的增大而增大;當(dāng)_≥-b/2a時(shí),y隨_的增大而減小.

  4.拋物線y=a_^2+b_+c的圖象與坐標(biāo)軸的交點(diǎn):

  (1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);

  (2)當(dāng)△=b^2-4ac>0,圖象與_軸交于兩點(diǎn)A(_?,0)和B(_?,0),其中的_1,_2是一元二次方程a_^2+b_+c=0

  (a≠0)的兩根.這兩點(diǎn)間的距離AB=|_?-_?|

  當(dāng)△=0.圖象與_軸只有一個(gè)交點(diǎn);

  當(dāng)△<0.圖象與_軸沒有交點(diǎn).當(dāng)a>0時(shí),圖象落在_軸的'上方,_為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在_軸的下方,_為任何實(shí)數(shù)時(shí),都有y<0.

  5.拋物線y=a_^2+b_+c的最值:如果a>0(a<0),則當(dāng)_=-b/2a時(shí),y最小(大)值=(4ac-b^2)/4a.

  頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值.

  6.用待定系數(shù)法求二次函數(shù)的解析式

  (1)當(dāng)題給條件為已知圖象經(jīng)過三個(gè)已知點(diǎn)或已知_、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:

  y=a_^2+b_+c(a≠0).

  (2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(_-h)^2+k(a≠0).

  (3)當(dāng)題給條件為已知圖象與_軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(_-_?)(_-_?)(a≠0).

  7.二次函數(shù)知識(shí)很容易與其它知識(shí)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識(shí)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn).

函數(shù)知識(shí)點(diǎn)總結(jié)5

  教學(xué)目標(biāo):

  (1)能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。

  (2)注重學(xué)生參與,聯(lián)系實(shí)際,豐富學(xué)生的感性認(rèn)識(shí),培養(yǎng)學(xué)生的良好的學(xué)習(xí)習(xí)慣

  教學(xué)重點(diǎn):能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。

  教學(xué)難點(diǎn):求出函數(shù)的自變量的取值范圍。

  教學(xué)過程:

  一、問題引新

  1.設(shè)矩形花圃的垂直于墻(墻長(zhǎng)18)的.一邊AB的長(zhǎng)為_m,先取_的一些值,算出矩形的另一邊BC的長(zhǎng),進(jìn)而得出矩形的面積ym2.試將計(jì)算結(jié)果填寫在下表的空格中,

  AB長(zhǎng)_(m) 1 2 3 4 5 6 7 8 9

  BC長(zhǎng)(m) 12

  面積y(m2) 48

  2._的值是否可以任意取?有限定范圍嗎?

  3.我們發(fā)現(xiàn),當(dāng)AB的長(zhǎng)(_)確定后,矩形的面積(y)也隨之確定,y是_的函數(shù),試寫出這個(gè)函數(shù)的關(guān)系式,教師可提出問題,(1)當(dāng)AB=_m時(shí),BC長(zhǎng)等于多少m?(2)面積y等于多少? y=_(20-2_)

  二、提出問題,解決問題

  1、引導(dǎo)學(xué)生看書第二頁(yè)問題一、二

  2、觀察概括

  y=6_2 d= n /2 (n-3) y= 20 (1-_)2

  以上函數(shù)關(guān)系式有什么共同特點(diǎn)? (都是含有二次項(xiàng))

  3、二次函數(shù)定義:形如y=a_2+b_+c(a、b、、c是常數(shù),a≠0)的函數(shù)叫做_的二次函數(shù),a叫做二次函數(shù)的系數(shù),b叫做一次項(xiàng)的系數(shù),c叫作常數(shù)項(xiàng).

  4、課堂練習(xí)

  (1) (口答)下列函數(shù)中,哪些是二次函數(shù)?

  (1)y=5_+1 (2)y=4_2-1

  (3)y=2_3-3_2 (4)y=5_4-3_+1

  (2).P3練習(xí)第1,2題。

  五、小結(jié)敘述二次函數(shù)的定義.

  第二課時(shí):26.1二次函數(shù)(2)

  教學(xué)目標(biāo):

  1、使學(xué)生會(huì)用描點(diǎn)法畫出y=a_2的圖象,理解拋物線的有關(guān)概念。

  2、使學(xué)生經(jīng)歷、探索二次函數(shù)y=a_2圖象性質(zhì)的過程,培養(yǎng)學(xué)生觀察、思考、歸納的良好思維習(xí)慣。

  教學(xué)重點(diǎn):使學(xué)生理解拋物線的有關(guān)概念,會(huì)用描點(diǎn)法畫出二次函數(shù)y=a_2的圖象

  教學(xué)難點(diǎn):用描點(diǎn)法畫出二次函數(shù)y=a_2的圖象以及探索二次函數(shù)性質(zhì)。

函數(shù)知識(shí)點(diǎn)總結(jié)6

  一、二次函數(shù)概念:

  a0)b,c是常數(shù)

  1.二次函數(shù)的概念:一般地,形如yax2bxc(a,的函數(shù),叫做二次函數(shù)。這c可以為零.二次函數(shù)的定義域是全體實(shí)里需要強(qiáng)調(diào):和一元二次方程類似,二次項(xiàng)系數(shù)a0,而b,數(shù).

  2.二次函數(shù)yax2bxc的結(jié)構(gòu)特征:

  ⑴等號(hào)左邊是函數(shù),右邊是關(guān)于自變量x的二次式,x的最高次數(shù)是2.b,c是常數(shù),a是二次項(xiàng)系數(shù),b是一次項(xiàng)系數(shù),c是常數(shù)項(xiàng).

  ⑵a,二、二次函數(shù)的基本形式

  1.二次函數(shù)基本形式:yax2的性質(zhì):a的絕對(duì)值越大,拋物線的開口越小。

  a的符號(hào)a0開口方向頂點(diǎn)坐標(biāo)對(duì)稱軸向上00,00,性質(zhì)x0時(shí),y隨x的增大而增大;x0時(shí),y隨y軸x的增大而減小;x0時(shí),y有最小值0.x0時(shí),y隨x的增大而減小;x0時(shí),y隨a0向下y軸x的增大而增大;x0時(shí),y有最大值0.

  2.yax2c的性質(zhì):上加下減。

  a的符號(hào)a0開口方向頂點(diǎn)坐標(biāo)對(duì)稱軸向上c0,c0,性質(zhì)x0時(shí),y隨x的增大而增大;x0時(shí),y隨y軸x的增大而減小;x0時(shí),y有最小值c.x0時(shí),y隨x的增大而減小;x0時(shí),y隨a0向下y軸x的增大而增大;x0時(shí),y有最大值c.

  3.yaxh的性質(zhì):左加右減。

  2a的符號(hào)a0開口方向頂點(diǎn)坐標(biāo)對(duì)稱軸向上0h,0h,性質(zhì)xh時(shí),y隨x的增大而增大;xh時(shí),y隨X=hx的增大而減小;xh時(shí),y有最小值0.xh時(shí),y隨x的增大而減小;xh時(shí),y隨a02向下X=hx的增大而增大;xh時(shí),y有最大值0.

  4.yaxhk的性質(zhì):

  a的符號(hào)開口方向頂點(diǎn)坐標(biāo)對(duì)稱軸性質(zhì)a0向上h,kh,kX=hxh時(shí),y隨x的增大而增大;xh時(shí),y隨x的增大而減小;xh時(shí),y有最小值k.xh時(shí),y隨x的增大而減小;xh時(shí),y隨a0向下X=hx的增大而增大;xh時(shí),y有最大值k.

  三、二次函數(shù)圖象的平移

  1.平移步驟:

  方法一:

  ⑴將拋物線解析式轉(zhuǎn)化成頂點(diǎn)式y(tǒng)axhk,確定其頂點(diǎn)坐標(biāo)h,k;

  ⑵保持拋物線yax2的形狀不變,將其頂點(diǎn)平移到h,k處,具體平移方法如下:

  向上(k>0)【或向下(k0)【或左(h0)【或左(h0)【或下(k0)【或左(h0)【或下(k

  畫草圖時(shí)應(yīng)抓住以下幾點(diǎn):開口方向,對(duì)稱軸,頂點(diǎn),與x軸的交點(diǎn),與y軸的交點(diǎn).

  六、二次函數(shù)yax2bxc的性質(zhì)

  b4acb2b1.當(dāng)a0時(shí),拋物線開口向上,對(duì)稱軸為x,頂點(diǎn)坐標(biāo)為,.

  2a4a2a當(dāng)xbbb時(shí),y隨x的增大而減小;當(dāng)x時(shí),y隨x的增大而增大;當(dāng)x時(shí),y有最小2a2a2a4acb2值.

  4ab4acb2bb2.當(dāng)a0時(shí),拋物線開口向下,對(duì)稱軸為x,頂點(diǎn)坐標(biāo)為,時(shí),y隨.當(dāng)x2a4a2a2a4acb2bb.x的增大而增大;當(dāng)x時(shí),y隨x的增大而減小;當(dāng)x時(shí),y有最大值

  2a2a4a

  七、二次函數(shù)解析式的表示方法

  1.一般式:yax2bxc(a,b,c為常數(shù),a0);

  2.頂點(diǎn)式:ya(xh)2k(a,h,k為常數(shù),a0);

  3.兩根式:ya(xx1)(xx2)(a0,x1,x2是拋物線與x軸兩交點(diǎn)的橫坐標(biāo)).

  注意:任何二次函數(shù)的解析式都可以化成一般式或頂點(diǎn)式,但并非所有的二次函數(shù)都可以寫成交點(diǎn)式,只有拋物線與x軸有交點(diǎn),即b24ac0時(shí),拋物線的解析式才可以用交點(diǎn)式表示.二次函數(shù)解析式的這三種形式可以互化.

  八、二次函數(shù)的圖象與各項(xiàng)系數(shù)之間的關(guān)系

  1.二次項(xiàng)系數(shù)a

  二次函數(shù)yax2bxc中,a作為二次項(xiàng)系數(shù),顯然a0.

  ⑴當(dāng)a0時(shí),拋物線開口向上,a的值越大,開口越小,反之a(chǎn)的值越小,開口越大;

  ⑵當(dāng)a0時(shí),拋物線開口向下,a的值越小,開口越小,反之a(chǎn)的值越大,開口越大.

  總結(jié)起來,a決定了拋物線開口的大小和方向,a的正負(fù)決定開口方向,a的大小決定開口的大小.

  2.一次項(xiàng)系數(shù)b

  在二次項(xiàng)系數(shù)a確定的前提下,b決定了拋物線的對(duì)稱軸.

  ⑴在a0的前提下,當(dāng)b0時(shí),當(dāng)b0時(shí),當(dāng)b0時(shí),b0,即拋物線的對(duì)稱軸在y軸左側(cè);2ab0,即拋物線的對(duì)稱軸就是y軸;2ab0,即拋物線對(duì)稱軸在y軸的右側(cè).2a⑵在a0的前提下,結(jié)論剛好與上述相反,即當(dāng)b0時(shí),當(dāng)b0時(shí),當(dāng)b0時(shí),b0,即拋物線的`對(duì)稱軸在y軸右側(cè);2ab0,即拋物線的對(duì)稱軸就是y軸;2ab0,即拋物線對(duì)稱軸在y軸的左側(cè).2a

  總結(jié)起來,在a確定的前提下,b決定了拋物線對(duì)稱軸的位置.

  ab的符號(hào)的判定:對(duì)稱軸xb在y軸左邊則ab0,在y軸的右側(cè)則ab0,概括的說就是“左同2a右異”總結(jié):

  3.常數(shù)項(xiàng)c

  ⑴當(dāng)c0時(shí),拋物線與y軸的交點(diǎn)在x軸上方,即拋物線與y軸交點(diǎn)的縱坐標(biāo)為正;

  ⑵當(dāng)c0時(shí),拋物線與y軸的交點(diǎn)為坐標(biāo)原點(diǎn),即拋物線與y軸交點(diǎn)的縱坐標(biāo)為0;

  ⑶當(dāng)c0時(shí),拋物線與y軸的交點(diǎn)在x軸下方,即拋物線與y軸交點(diǎn)的縱坐標(biāo)為負(fù).總結(jié)起來,c決定了拋物線與y軸交點(diǎn)的位置.

  b,c都確定,那么這條拋物線就是唯一確定的.總之,只要a,二次函數(shù)解析式的確定:

  根據(jù)已知條件確定二次函數(shù)解析式,通常利用待定系數(shù)法.用待定系數(shù)法求二次函數(shù)的解析式必須根據(jù)題目的特點(diǎn),選擇適當(dāng)?shù)男问剑拍苁菇忸}簡(jiǎn)便.一般來說,有如下幾種情況:

  1.已知拋物線上三點(diǎn)的坐標(biāo),一般選用一般式;

  2.已知拋物線頂點(diǎn)或?qū)ΨQ軸或最大(小)值,一般選用頂點(diǎn)式;

  3.已知拋物線與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo),一般選用兩根式;

  4.已知拋物線上縱坐標(biāo)相同的兩點(diǎn),常選用頂點(diǎn)式.

  九、二次函數(shù)圖象的對(duì)稱

  二次函數(shù)圖象的對(duì)稱一般有五種情況,可以用一般式或頂點(diǎn)式表達(dá)

  1.關(guān)于x軸對(duì)稱

  yax2bxc關(guān)于x軸對(duì)稱后,得到的解析式是yax2bxc;

  yaxhk關(guān)于x軸對(duì)稱后,得到的解析式是yaxhk;

  2.關(guān)于y軸對(duì)稱

  yax2bxc關(guān)于y軸對(duì)稱后,得到的解析式是yax2bxc;

  22yaxhk關(guān)于y軸對(duì)稱后,得到的解析式是yaxhk;

  3.關(guān)于原點(diǎn)對(duì)稱

  yax2bxc關(guān)于原點(diǎn)對(duì)稱后,得到的解析式是yax2bxc;yaxhk關(guān)于原點(diǎn)對(duì)稱后,得到的解析式是yaxhk;

  4.關(guān)于頂點(diǎn)對(duì)稱(即:拋物線繞頂點(diǎn)旋轉(zhuǎn)180°)

  2222b2yaxbxc關(guān)于頂點(diǎn)對(duì)稱后,得到的解析式是yaxbxc;

  2a22yaxhk關(guān)于頂點(diǎn)對(duì)稱后,得到的解析式是yaxhk.n對(duì)稱

  5.關(guān)于點(diǎn)m,n對(duì)稱后,得到的解析式是yaxh2m2nkyaxhk關(guān)于點(diǎn)m,根據(jù)對(duì)稱的性質(zhì),顯然無論作何種對(duì)稱變換,拋物線的形狀一定不會(huì)發(fā)生變化,因此a永遠(yuǎn)不變.求拋物線的對(duì)稱拋物線的表達(dá)式時(shí),可以依據(jù)題意或方便運(yùn)算的原則,選擇合適的形式,習(xí)慣上是先確定原拋物線(或表達(dá)式已知的拋物線)的頂點(diǎn)坐標(biāo)及開口方向,再確定其對(duì)稱拋物線的頂點(diǎn)坐標(biāo)及開口方向,然后再寫出其對(duì)稱拋物線的表達(dá)式.

  十、二次函數(shù)與一元二次方程:

  1.二次函數(shù)與一元二次方程的關(guān)系(二次函數(shù)與x軸交點(diǎn)情況):

  一元二次方程ax2bxc0是二次函數(shù)yax2bxc當(dāng)函數(shù)值y0時(shí)的特殊情況.圖象與x軸的交點(diǎn)個(gè)數(shù):

  ①當(dāng)b24ac0時(shí),圖象與x軸交于兩點(diǎn)Ax1,0,Bx2,0(x1x2),其中的x1,x2是一元二次

  b24ac方程axbxc0a0的兩根.這兩點(diǎn)間的距離ABx2x1.

  a2

  ②當(dāng)0時(shí),圖象與x軸只有一個(gè)交點(diǎn);

  ③當(dāng)0時(shí),圖象與x軸沒有交點(diǎn).

  1"當(dāng)a0時(shí),圖象落在x軸的上方,無論x為任何實(shí)數(shù),都有y0;

  2"當(dāng)a0時(shí),圖象落在x軸的下方,無論x為任何實(shí)數(shù),都有y0.

  2.拋物線yax2bxc的圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);

  3.二次函數(shù)常用解題方法總結(jié):

  ⑴求二次函數(shù)的圖象與x軸的交點(diǎn)坐標(biāo),需轉(zhuǎn)化為一元二次方程;

  ⑵求二次函數(shù)的最大(小)值需要利用配方法將二次函數(shù)由一般式轉(zhuǎn)化為頂點(diǎn)式;

  ⑶根據(jù)圖象的位置判斷二次函數(shù)yax2bxc中a,b,c的符號(hào),或由二次函數(shù)中a,b,c的符號(hào)判斷圖象的位置,要數(shù)形結(jié)合;

  ⑷二次函數(shù)的圖象關(guān)于對(duì)稱軸對(duì)稱,可利用這一性質(zhì),求和已知一點(diǎn)對(duì)稱的點(diǎn)坐標(biāo),或已知與x軸的一個(gè)交點(diǎn)坐標(biāo),可由對(duì)稱性求出另一個(gè)交點(diǎn)坐標(biāo).

  ⑸與二次函數(shù)有關(guān)的還有二次三項(xiàng)式,二次三項(xiàng)式ax2bxc(a0)本身就是所含字母x的二次函數(shù);下面以a0時(shí)為例,揭示二次函數(shù)、二次三項(xiàng)式和一元二次方程之間的內(nèi)在聯(lián)系:

  0拋物線與x軸有兩個(gè)交點(diǎn)0二次三項(xiàng)式的值可正、可零、可負(fù)二次三項(xiàng)式的值為非負(fù)二次三項(xiàng)式的值恒為正一元二次方程有兩個(gè)不相等實(shí)根一元二次方程有兩個(gè)相等的實(shí)數(shù)根一元二次方程無實(shí)數(shù)根.0拋物線與x軸只有一個(gè)交點(diǎn)拋物線與x軸無交點(diǎn)y=2x2y=x2y=3(x+4)2二次函數(shù)圖像參考:

  y=3x2y=3(x-2)2y=x22

  y=2x2y=2(x-4)2y=2(x-4)2-3y=2x2+2y=2x2y=2x2-4x2y=-2y=-x2y=-2x2十一、函數(shù)的應(yīng)用

  剎車距離二次函數(shù)應(yīng)用何時(shí)獲得最大利潤(rùn)

  最大面積是多少y=-2(x+3)2y=-2x2y=-2(x-3)2

函數(shù)知識(shí)點(diǎn)總結(jié)7

  反比例函數(shù)的表達(dá)式

  X是自變量,Y是X的函數(shù)

  y=k/x=k·1/x

  xy=k

  y=k·x^(-1)(即:y等于x的負(fù)一次方,此處X必須為一次方)

  y=kx(k為常數(shù)且k≠0,x≠0)若y=k/nx此時(shí)比例系數(shù)為:k/n

  函數(shù)式中自變量取值的范圍

  ①k≠0;②在一般的情況下,自變量x的取值范圍可以是不等于0的任意實(shí)數(shù);③函數(shù)y的取值范圍也是任意非零實(shí)數(shù)。  解析式y(tǒng)=k/x其中X是自變量,Y是X的函數(shù),其定義域是不等于0的一切實(shí)數(shù)

  y=k/x=k·1/x  xy=k  y=k·x^(-1)  y=kx(k為常數(shù)(k≠0),x不等于0)

  反比例函數(shù)圖象

  反比例函數(shù)的圖像屬于以原點(diǎn)為對(duì)稱中心的中心對(duì)稱的雙曲線,反比例函數(shù)圖像中每一象限的每一支曲線會(huì)無限接近X軸Y軸但不會(huì)與坐標(biāo)軸相交(K≠0)。

  反比例函數(shù)中k的幾何意義是什么?有哪些應(yīng)用

  過反比例函數(shù)y=k/x(k≠0),圖像上一點(diǎn)P(x,y),作兩坐標(biāo)軸的垂線,兩垂足、原點(diǎn)、P點(diǎn)組成一個(gè)矩形,矩形的面積S=x的絕對(duì)值*y的絕對(duì)值=(x*y)的絕對(duì)值=|k|

  研究函數(shù)問題要透視函數(shù)的本質(zhì)特征。反比例函數(shù)中,比例系數(shù)k有一個(gè)很重要的幾何意義,那就是:過反比例函數(shù)圖象上任一點(diǎn)P作x軸、y軸的垂線PM、PN,垂足為M、N則矩形PMON的'面積S=PM·PN=|y|·|x|=|xy|=|k|。

  所以,對(duì)雙曲線上任意一點(diǎn)作x軸、y軸的垂線,它們與x軸、y軸所圍成的矩形面積為常數(shù)。從而有k的絕對(duì)值。在解有關(guān)反比例函數(shù)的問題時(shí),若能靈活運(yùn)用反比例函數(shù)中k的幾何意義,會(huì)給解題帶來很多方便。

函數(shù)知識(shí)點(diǎn)總結(jié)8

  首先,把主要精力放在基礎(chǔ)知識(shí)、基本技能、基本方法這三個(gè)方面上、因?yàn)槊看慰荚囌冀^大部分的是基礎(chǔ)性的題目,而對(duì)于那些難題及綜合性較強(qiáng)的題目作為調(diào)劑,認(rèn)真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納,調(diào)整好自己的心態(tài),使自己在任何時(shí)候鎮(zhèn)靜,思路有條不紊,克服浮躁情緒、特別是對(duì)自己要有信心,永遠(yuǎn)鼓勵(lì)自己,除了自己,誰(shuí)也不能把我打倒,要有自己不垮,誰(shuí)也不能把我打垮的自豪感、

  在考試前要做好準(zhǔn)備,練練常規(guī)題,把自己的思路展開,切忌考前在保證正確率的前提下提高解題速度、對(duì)于一些容易的基礎(chǔ)題,要有十二分的把握拿滿分;對(duì)于一些難題,也要盡量拿分,考試中要嘗試得分,使自己的水平正常甚至超常發(fā)揮、

  要想學(xué)好初中數(shù)學(xué),多做題目是難免的,熟悉掌握各種題型的解題思路、剛開始要以基礎(chǔ)題目入手,以課上的題目為準(zhǔn),提高自己的分析解決能力,掌握一般的解題思路、對(duì)于一些易錯(cuò)題,可備有錯(cuò)題集,寫出自己的解題思路、正確的解題過程,兩者一起比較找出自己的錯(cuò)誤所在,以便及時(shí)更正、在平時(shí)養(yǎng)成良好的解題習(xí)慣、讓自己的精力高度集中,使大腦興奮思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運(yùn)用自如、實(shí)踐證明:越到關(guān)鍵的'時(shí)候,你所表現(xiàn)的解題習(xí)慣與平時(shí)解題無異、如果平時(shí)解題時(shí)隨便、粗心、大意等,往往在大考中充分暴露,故在平時(shí)養(yǎng)成良好的解題習(xí)慣是非常重要的、

  初中數(shù)學(xué)解題方法

  第一點(diǎn):卓絕點(diǎn):熟悉數(shù)學(xué)習(xí)題中常設(shè)計(jì)的內(nèi)容,定義、公式、原理等等

  第二點(diǎn):做題有步驟,先易后難

  初中數(shù)學(xué)做題技巧有一點(diǎn),那就是先易后難、正所謂“一屋不掃何以掃天下?”,如果同學(xué)們連那些簡(jiǎn)單容易的數(shù)學(xué)題目都解答不出來又怎么能夠解答那些疑難的數(shù)學(xué)題目呢?先易后難的做數(shù)學(xué)題目不僅能夠增加同學(xué)們做數(shù)學(xué)題的信心,還能夠讓同學(xué)享受解答數(shù)學(xué)題的那個(gè)過程、

  第三點(diǎn):認(rèn)真做好歸納總結(jié)

函數(shù)知識(shí)點(diǎn)總結(jié)9

  1.函數(shù)的定義

  函數(shù)是高考數(shù)學(xué)中的重點(diǎn)內(nèi)容,學(xué)習(xí)函數(shù)需要首先掌握函數(shù)的各個(gè)知識(shí)點(diǎn),然后運(yùn)用函數(shù)的各種性質(zhì)來解決具體的問題。

  設(shè)A、B是非空的數(shù)集,如果按照某種確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A-B為從集合A到集合B的一個(gè)函數(shù),記作y=f(x),xA

  2.函數(shù)的定義域

  函數(shù)的定義域分為自然定義域和實(shí)際定義域兩種,如果給定的函數(shù)的解析式(不注明定義域),其定義域應(yīng)指的是使該解析式有意義的自變量的取值范圍(稱為自然定義域),如果函數(shù)是有實(shí)際問題確定的,這時(shí)應(yīng)根據(jù)自變量的實(shí)際意義來確定,函數(shù)的值域是由全體函數(shù)值組成的集合。

  3.求解析式

  求函數(shù)的解析式一般有三種種情況:

  (1)根據(jù)實(shí)際問題建立函數(shù)關(guān)系式,這種情況需引入合適的.變量,根據(jù)數(shù)學(xué)的有關(guān)知識(shí)找出函數(shù)關(guān)系式。

  (2)有時(shí)體中給出函數(shù)特征,求函數(shù)的解析式,可用待定系數(shù)法。

  (3)換元法求解析式,f[h(x)]=g(x)求f(x)的問題,往往可設(shè)h(x)=t,從中解出x,代入g(x)進(jìn)行換元來解。掌握求函數(shù)解析式的前提是,需要對(duì)各種函數(shù)的性質(zhì)了解且熟悉。

  目前我們已經(jīng)學(xué)習(xí)了常數(shù)函數(shù)、指數(shù)與指數(shù)函數(shù)、對(duì)數(shù)與對(duì)數(shù)函數(shù)、冪函數(shù)、三角函數(shù)、反比例函數(shù)、二次函數(shù)以及由以上幾種函數(shù)加減乘除,或者復(fù)合的一些相對(duì)較復(fù)雜的函數(shù),但是這種函數(shù)也是初等函數(shù)。

函數(shù)知識(shí)點(diǎn)總結(jié)10

  1二次函數(shù)的定義

  一般地,形如y=ax2+bx+c(a,b,c為常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù).如y=3x2,y=3x2-2,y=2x2+x-1等都是二次函數(shù).

  注意:(1)二次函數(shù)是關(guān)于自變量的二次式,二次項(xiàng)系數(shù)a必須是非零實(shí)數(shù),即a≠0,而b,c是任意實(shí)數(shù),二次函數(shù)的表達(dá)式是一個(gè)整式;

  (2)二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0),自變量x的取值范圍是全體實(shí)數(shù);

  (3)當(dāng)b=c=0時(shí),二次函數(shù)y=ax2是最簡(jiǎn)單的二次函數(shù);

  (4)一個(gè)函數(shù)是否是二次函數(shù),要化簡(jiǎn)整理后,對(duì)照定義才能下結(jié)論,例如y=x2-x(x-1)化簡(jiǎn)后變?yōu)閥=x,故它不是二次函數(shù).

  2二次函數(shù)解析式的幾種形式

  (1)一般式:y=ax2+bx+c (a,b,c為常數(shù),a≠0).

  (2)頂點(diǎn)式:y=a(x-h)2+k(a,h,k為常數(shù),a≠0).

  (3)兩根式:y=a(x-x1)(x-x2),其中x1,x2是拋物線與x軸的交點(diǎn)的橫坐標(biāo),即一元二次方程ax2+bx+c=0的兩個(gè)根,a≠0.

  說明:(1)任何一個(gè)二次函數(shù)通過配方都可以化為頂點(diǎn)式y(tǒng)=a(x-h)2+k,拋物線的頂點(diǎn)坐標(biāo)是(h,k),h=0時(shí),拋物線y=ax2+k的頂點(diǎn)在y軸上;當(dāng)k=0時(shí),拋物線a(x-h)2的頂點(diǎn)在x軸上;當(dāng)h=0且k=0時(shí),拋物線y=ax2的頂點(diǎn)在原點(diǎn)

  3二次函數(shù)y=ax2+c的.圖象與性質(zhì)

  (1)拋物線y=ax2+c的形狀由a決定,位置由c決定.

  (2)二次函數(shù)y=ax2+c的圖象是一條拋物線,頂點(diǎn)坐標(biāo)是(0,c),對(duì)稱軸是y軸.

  當(dāng)a>0時(shí),圖象的開口向上,有最低點(diǎn)(即頂點(diǎn)),當(dāng)x=0時(shí),y最小值=c.在y軸左側(cè),y隨x的增大而減小;在y軸右側(cè),y隨x增大而增大.

  當(dāng)a<0時(shí),圖象的開口向下,有最高點(diǎn)(即頂點(diǎn)),當(dāng)x=0時(shí),y最大值=c.在y軸左側(cè),y隨x的增大而增大;在y軸右側(cè),y隨x增大而減小.

  (3)拋物線y=ax2+c與y=ax2的關(guān)系.

  拋物線y=ax2+c與y=ax2形狀相同,只有位置不同.拋物線y=ax2+c可由拋物線y=ax2沿y軸向上或向下平行移動(dòng)|c|個(gè)單位得到.當(dāng)c>0時(shí),向上平行移動(dòng),當(dāng)c<0時(shí),向下平行移動(dòng).

函數(shù)知識(shí)點(diǎn)總結(jié)11

  一次函數(shù)的定義

  一般地,形如y=kx+b(k,b是常數(shù),且k≠0)的函數(shù),叫做一次函數(shù),其中x是自變量。當(dāng)b=0時(shí),一次函數(shù)y=kx,又叫做正比例函數(shù)。

  1、一次函數(shù)的解析式的形式是y=kx+b,要判斷一個(gè)函數(shù)是否是一次函數(shù),就是判斷是否能化成以上形式。

  2、當(dāng)b=0,k≠0時(shí),y=kx仍是一次函數(shù)。

  3、當(dāng)k=0,b≠0時(shí),它不是一次函數(shù)。

  4、正比例函數(shù)是一次函數(shù)的特例,一次函數(shù)包括正比例函數(shù)。

  一次函數(shù)的圖像及性質(zhì)

  1、在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。

  2、一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(—b/k,0)。

  3、正比例函數(shù)的圖像總是過原點(diǎn)。

  4、k,b與函數(shù)圖像所在象限的關(guān)系:

  當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小。

  當(dāng)k>0,b>0時(shí),直線通過一、二、三象限;

  當(dāng)k>0,b<0時(shí),直線通過一、三、四象限;

  當(dāng)k<0,b>0時(shí),直線通過一、二、四象限;

  當(dāng)k<0,b<0時(shí),直線通過二、三、四象限;

  當(dāng)b=0時(shí),直線通過原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。

  這時(shí),當(dāng)k>0時(shí),直線只通過一、三象限;當(dāng)k<0時(shí),直線只通過二、四象限。

  一次函數(shù)的圖象與性質(zhì)的口訣

  一次函數(shù)是直線,圖象經(jīng)過三象限;

  正比例函數(shù)更簡(jiǎn)單,經(jīng)過原點(diǎn)一直線;

  兩個(gè)系數(shù)k與b,作用之大莫小看,

  k是斜率定夾角,b與y軸來相見,

  k為正來右上斜,x增減y增減;

  k為負(fù)來左下展,變化規(guī)律正相反;

  k的絕對(duì)值越大,線離橫軸就越遠(yuǎn)。

  拓展閱讀:一次函數(shù)的解題方法

  理解一次函數(shù)和其它知識(shí)的聯(lián)系

  一次函數(shù)和代數(shù)式以及方程有著密不可分的聯(lián)系。如一次函數(shù)和正比例函數(shù)仍然是函數(shù),同時(shí),等號(hào)的兩邊又都是代數(shù)式。需要注意的是,與一般代數(shù)式有很大區(qū)別。首先,一次函數(shù)和正比例函數(shù)都只能存在兩個(gè)變量,而代數(shù)式可以是多個(gè)變量;其次,一次函數(shù)中的變量指數(shù)只能是1,而代數(shù)式中變量指數(shù)還可以是1以外的數(shù)。另外,一次函數(shù)解析式也可以理解為二元一次方程。

  掌握一次函數(shù)的解析式的特征

  一次函數(shù)解析式的結(jié)構(gòu)特征:kx+b是關(guān)于x的一次二項(xiàng)式,其中常數(shù)b可以是任意實(shí)數(shù),一次項(xiàng)系數(shù)k必須是非零數(shù),k≠0,因?yàn)楫?dāng)k = 0時(shí),y = b(b是常數(shù)),由于沒有一次項(xiàng),這樣的函數(shù)不是一次函數(shù);而當(dāng)b = 0,k≠0,y = kx既是正比例函數(shù),也是一次函數(shù)。

  應(yīng)用一次函數(shù)解決實(shí)際問題

  1、分清哪些是已知量,哪些是未知量,尤其要弄清哪兩種量是相關(guān)聯(lián)的量,且其中一種量因另一種量的變化而變化;

  2、找出具有相關(guān)聯(lián)的兩種量的'等量關(guān)系之后,明確哪種量是另一種量的函數(shù);

  3、在實(shí)際問題中,一般存在著三種量,如距離、時(shí)間、速度等等,在這三種量中,當(dāng)且僅當(dāng)其中一種量時(shí)間(或速度)不變時(shí),距離與速度(或時(shí)間)才成正比例,也就是說,距離(s)是時(shí)間(t)或速度( )的正比例函數(shù);

  4、求一次函數(shù)與正比例函數(shù)的關(guān)系式,一般采取待定系數(shù)法。

  數(shù)形結(jié)合

  方程,不等式,不等式組,方程組我們都可以用一次函數(shù)的觀點(diǎn)來理解。一元一次不等式實(shí)際上就看兩條直線上下方的關(guān)系,求出端點(diǎn)后可以很容易把握解集,至于一元一次方程可以把左右兩邊看為兩條直線來認(rèn)識(shí),直線交點(diǎn)的橫坐標(biāo)就是方程的解,至于二元一次方程組就是對(duì)應(yīng)2條直線,方程組的解就是直線的交點(diǎn),結(jié)合圖形可以認(rèn)識(shí)兩直線的位置關(guān)系也可以把握交點(diǎn)個(gè)數(shù)。

  如果一個(gè)交點(diǎn)時(shí)候兩條直線的k不同,如果無窮個(gè)交點(diǎn)就是k,b都一樣,如果平行無交點(diǎn)就是k相同,b不一樣。至于函數(shù)平移的問題可以化歸為對(duì)應(yīng)點(diǎn)平移。k反正不變?nèi)缓笥么ㄏ禂?shù)法得到平移后的方程。這就是化一般為特殊的解題方法。

函數(shù)知識(shí)點(diǎn)總結(jié)12

  奇函數(shù)和偶函數(shù)的定義

  奇函數(shù):如果函數(shù)f(x)的'定義域中任意x有f(—x)=—f(x),則函數(shù)f(x)稱為奇函數(shù)。

  偶數(shù)函數(shù):如果函數(shù)f(x)的定義域中任意x有f(—x)=f(x),則函數(shù)f(x)稱為偶數(shù)函數(shù)。

  性質(zhì)

  奇函數(shù)性質(zhì):

  1、圖象關(guān)于原點(diǎn)對(duì)稱

  2、滿足f(—x)= — f(x)

  3、關(guān)于原點(diǎn)對(duì)稱的區(qū)間上單調(diào)性一致

  4、如果奇函數(shù)在x=0上有定義,那么有f(0)=0

  5、定義域關(guān)于原點(diǎn)對(duì)稱(奇偶函數(shù)共有的)

  偶函數(shù)性質(zhì):

  1、圖象關(guān)于y軸對(duì)稱

  2、滿足f(—x)= f(x)

  3、關(guān)于原點(diǎn)對(duì)稱的區(qū)間上單調(diào)性相反

  4、如果一個(gè)函數(shù)既是奇函數(shù)有是偶函數(shù),那么有f(x)=0

  5、定義域關(guān)于原點(diǎn)對(duì)稱(奇偶函數(shù)共有的)

  常用運(yùn)算方法

  奇函數(shù)±奇函數(shù)=奇函數(shù)

  偶函數(shù)±偶函數(shù)=偶函數(shù)

  奇函數(shù)×奇函數(shù)=偶函數(shù)

  偶函數(shù)×偶函數(shù)=偶函數(shù)

  奇函數(shù)×偶函數(shù)=奇函數(shù)

  證明方法

  設(shè)f(x),g(x)為奇函數(shù),t(x)=f(x)+g(x),t(—x)=f(—x)+g(—x)=—f(x)+(—g(x))=—t(x),所以奇函數(shù)加奇函數(shù)還是奇函數(shù);

  若f(x),g(x)為偶函數(shù),t(x)=f(x)+g(x),t(—x)=f(—x)+g(—x)=f(x)+g(x)=t(x),所以偶函數(shù)加偶函數(shù)還是偶函數(shù)。

函數(shù)知識(shí)點(diǎn)總結(jié)13

  特別地,二次函數(shù)(以下稱函數(shù))y=ax+bx+c。

  當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),即ax+bx+c=0。

  此時(shí),函數(shù)圖像與x軸有無交點(diǎn)即方程有無實(shí)數(shù)根。函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。

  1.二次函數(shù)y=ax,y=a(x-h),y=a(x-h)+k,y=ax+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同。當(dāng)h>0時(shí),y=a(x-h)的圖象可由拋物線y=ax向右平行移動(dòng)h個(gè)單位得到。

  當(dāng)h<0時(shí),則向xxx移動(dòng)|h|個(gè)單位得到。

  當(dāng)h>0,k>0時(shí),將拋物線y=ax向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)+k的圖象。

  當(dāng)h>0,k<0時(shí),將拋物線y=ax向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)+k的圖象。

  當(dāng)h<0,k>0時(shí),將拋物線向xxx移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x-h)+k的'圖象。

  當(dāng)h<0,k<0時(shí),將拋物線向xxx移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)+k的圖象。

  因此,研究拋物線y=ax+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便。

  2.拋物線y=ax+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開口向上,當(dāng)a<0時(shí)開口向下,對(duì)稱軸是直線x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b]/4a)。

  3.拋物線y=ax+bx+c(a≠0),若a>0,當(dāng)x≤-b/2a時(shí),y隨x的增大而減小;當(dāng)x≥-b/2a時(shí),y隨x的增大而增大.若a<0,當(dāng)x≤-b/2a時(shí),y隨x的增大而增大;當(dāng)x≥-b/2a時(shí),y隨x的增大而減小。

  4.拋物線y=ax+bx+c的圖象與坐標(biāo)軸的交點(diǎn):

  (1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c)。

  (2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點(diǎn)A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax+bx+c=0(a≠0)的兩根.這兩點(diǎn)間的距離AB=|x-x|。

  當(dāng)△=0.圖象與x軸只有一個(gè)交點(diǎn);當(dāng)△<0.圖象與x軸沒有交點(diǎn).當(dāng)a>0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y<0。

  5.拋物線y=ax+bx+c的最值:如果a>0(a<0),則當(dāng)x=-b/2a時(shí),y最小(大)值=(4ac-b)/4a。

  頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值。

  6.用待定系數(shù)法求二次函數(shù)的解析式

  (1)當(dāng)題給條件為已知圖象經(jīng)過三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:y=ax+bx+c(a≠0)。

  (2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)+k(a≠0)。

  (3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x-x)(x-x)(a≠0)。

函數(shù)知識(shí)點(diǎn)總結(jié)14

  本節(jié)知識(shí)包括函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對(duì)稱性和函數(shù)的圖象等知識(shí)點(diǎn)。函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對(duì)稱性是學(xué)習(xí)函數(shù)的圖象的基礎(chǔ),函數(shù)的圖象是它們的綜合。所以理解了前面的幾個(gè)知識(shí)點(diǎn),函數(shù)的圖象就迎刃而解了。

  一、函數(shù)的單調(diào)性

  1、函數(shù)單調(diào)性的定義

  2、函數(shù)單調(diào)性的判斷和證明:

  (1)定義法

  (2)復(fù)合函數(shù)分析法

  (3)導(dǎo)數(shù)證明法

  (4)圖象法

  二、函數(shù)的奇偶性和周期性

  1、函數(shù)的.奇偶性和周期性的定義

  2、函數(shù)的奇偶性的判定和證明方法

  3、函數(shù)的周期性的判定方法

  三、函數(shù)的圖象

  1、函數(shù)圖象的作法

  (1)描點(diǎn)法

  (2)圖象變換法

  2、圖象變換包括圖象:平移變換、伸縮變換、對(duì)稱變換、翻折變換。

  常見考法

  本節(jié)是段考和高考必不可少的考查內(nèi)容,是段考和高考考查的重點(diǎn)和難點(diǎn)。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數(shù)學(xué)的每一章聯(lián)合考查,多屬于拔高題。多考查函數(shù)的單調(diào)性、最值和圖象等。

  誤區(qū)提醒

  1、求函數(shù)的單調(diào)區(qū)間,必須先求函數(shù)的定義域,即遵循“函數(shù)問題定義域優(yōu)先的原則”。

  2、單調(diào)區(qū)間必須用區(qū)間來表示,不能用集合或不等式,單調(diào)區(qū)間一般寫成開區(qū)間,不必考慮端點(diǎn)問題。

  3、在多個(gè)單調(diào)區(qū)間之間不能用“或”和“ ”連接,只能用逗號(hào)隔開。

  4、判斷函數(shù)的奇偶性,首先必須考慮函數(shù)的定義域,如果函數(shù)的定義域不關(guān)于原點(diǎn)對(duì)稱,則函數(shù)一定是非奇非偶函數(shù)。

  5、作函數(shù)的圖象,一般是首先化簡(jiǎn)解析式,然后確定用描點(diǎn)法或圖象變換法作函數(shù)的圖象。

函數(shù)知識(shí)點(diǎn)總結(jié)15

  一次函數(shù):一次函數(shù)圖像與性質(zhì)是中考必考的內(nèi)容之一。中考試題中分值約為10分左右題型多樣,形式靈活,綜合應(yīng)用性強(qiáng)。甚至有存在探究題目出現(xiàn)。

  主要考察內(nèi)容:

  ①會(huì)畫一次函數(shù)的圖像,并掌握其性質(zhì)。

  ②會(huì)根據(jù)已知條件,利用待定系數(shù)法確定一次函數(shù)的解析式。

  ③能用一次函數(shù)解決實(shí)際問題。

  ④考察一ic函數(shù)與二元一次方程組,一元一次不等式的關(guān)系。

  突破方法:

  ①正確理解掌握一次函數(shù)的概念,圖像和性質(zhì)。

  ②運(yùn)用數(shù)學(xué)結(jié)合的思想解與一次函數(shù)圖像有關(guān)的問題。

  ③掌握用待定系數(shù)法球一次函數(shù)解析式。

  ④做一些綜合題的訓(xùn)練,提高分析問題的能力。

  函數(shù)性質(zhì):

  1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k.即:y=kx+b(k,b為常數(shù),k≠0),∵當(dāng)x增加m,k(x+m)+b=y+km,km/m=k。

  2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的點(diǎn),坐標(biāo)為(0,b)。

  3當(dāng)b=0時(shí)(即y=kx),一次函數(shù)圖像變?yōu)檎壤瘮?shù),正比例函數(shù)是特殊的一次函數(shù)。

  4.在兩個(gè)一次函數(shù)表達(dá)式中:

  當(dāng)兩一次函數(shù)表達(dá)式中的k相同,b也相同時(shí),兩一次函數(shù)圖像重合;當(dāng)兩一次函數(shù)表達(dá)式中的k相同,b不相同時(shí),兩一次函數(shù)圖像平行;當(dāng)兩一次函數(shù)表達(dá)式中的k不相同,b不相同時(shí),兩一次函數(shù)圖像相交;當(dāng)兩一次函數(shù)表達(dá)式中的k不相同,b相同時(shí),兩一次函數(shù)圖像交于y軸上的同一點(diǎn)(0,b)。若兩個(gè)變量x,y間的關(guān)系式可以表示成Y=KX+b(k,b為常數(shù),k不等于0)則稱y是x的一次函數(shù)圖像性質(zhì)

  1、作法與圖形:通過如下3個(gè)步驟:

  (1)列表.

  (2)描點(diǎn);[一般取兩個(gè)點(diǎn),根據(jù)“兩點(diǎn)確定一條直線”的道理,也可叫“兩點(diǎn)法”。一般的y=kx+b(k≠0)的圖象過(0,b)和(-b/k,0)兩點(diǎn)畫直線即可。

  正比例函數(shù)y=kx(k≠0)的`圖象是過坐標(biāo)原點(diǎn)的一條直線,一般取(0,0)和(1,k)兩點(diǎn)。(3)連線,可以作出一次函數(shù)的圖象一條直線。因此,作一次函數(shù)的圖象只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖象與x軸和y軸的交點(diǎn)分別是-k分之b與0,0與b).

  2、性質(zhì):

  (1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b(k≠0)。

  (2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像都是過原點(diǎn)。

  3、函數(shù)不是數(shù),它是指某一變化過程中兩個(gè)變量之間的關(guān)系。

  4、k,b與函數(shù)圖像所在象限:

  y=kx時(shí)(即b等于0,y與x成正比例):

  當(dāng)k>0時(shí),直線必通過第一、三象限,y隨x的增大而增大;當(dāng)k0,b>0,這時(shí)此函數(shù)的圖象經(jīng)過第一、二、三象限;當(dāng)k>0,b

【函數(shù)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

函數(shù)知識(shí)點(diǎn)總結(jié)02-10

函數(shù)知識(shí)點(diǎn)總結(jié)06-23

[精華]函數(shù)知識(shí)點(diǎn)總結(jié)08-28

函數(shù)知識(shí)點(diǎn)總結(jié)(精)08-21

(精品)函數(shù)知識(shí)點(diǎn)總結(jié)08-22

(精)函數(shù)知識(shí)點(diǎn)總結(jié)08-25

(精)函數(shù)知識(shí)點(diǎn)總結(jié)08-25

函數(shù)知識(shí)點(diǎn)總結(jié)【熱門】08-21

[精選]函數(shù)知識(shí)點(diǎn)03-01

函數(shù)知識(shí)點(diǎn)03-01