(推薦)函數(shù)知識點總結15篇
總結是對某一特定時間段內的學習和工作生活等表現(xiàn)情況加以回顧和分析的一種書面材料,它有助于我們尋找工作和事物發(fā)展的規(guī)律,從而掌握并運用這些規(guī)律,不妨讓我們認真地完成總結吧。那么你知道總結如何寫嗎?以下是小編精心整理的函數(shù)知識點總結,僅供參考,歡迎大家閱讀。
函數(shù)知識點總結1
三角和的公式
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
倍角公式
tan2A = 2tanA/(1-tan2 A)
Sin2A=2SinA?CosA
Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A
三倍角公式
sin3A = 3sinA-4(sinA)3;
cos3A = 4(cosA)3 -3cosA
tan3a = tan a ? tan(π/3+a)? tan(π/3-a)
三角函數(shù)特殊值
α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞
α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2
α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)
a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2
α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2
α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3
α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)
α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2
α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1
α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞
α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1
α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞
三角函數(shù)記憶順口溜
1三角函數(shù)記憶口訣
“奇、偶”指的是π/2的倍數(shù)的奇偶,“變與不變”指的是三角函數(shù)的名稱的變化:“變”是指正弦變余弦,正切變余切。(反之亦然成立)“符號看象限”的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號還是負號。
以cos(π/2+α)=-sinα為例,等式左邊cos(π/2+α)中n=1,所以右邊符號為sinα,把α看成銳角,所以π/2<(π/2+α)<π,y=cosx在區(qū)間(π/2,π)上小于零,所以右邊符號為負,所以右邊為-sinα。
2符號判斷口訣
全,S,T,C,正。這五個字口訣的意思就是說:第一象限內任何一個角的四種三角函數(shù)值都是“+”;第二象限內只有正弦是“+”,其余全部是“-”;第三象限內只有正切是“+”,其余全部是“-”;第四象限內只有余弦是“+”,其余全部是“-”。
也可以這樣理解:一、二、三、四指的'角所在象限。全正、正弦、正切、余弦指的是對應象限三角函數(shù)為正值的名稱。口訣中未提及的都是負值。
“ASTC”反Z。意即為“all(全部)”、“sin”、“tan”、“cos”按照將字母Z反過來寫所占的象限對應的三角函數(shù)為正值。
3三角函數(shù)順口溜
三角函數(shù)是函數(shù),象限符號坐標注。函數(shù)圖像單位圓,周期奇偶增減現(xiàn)。
同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;
中心記上數(shù)字一,連結頂點三角形。向下三角平方和,倒數(shù)關系是對角,
頂點任意一函數(shù),等于后面兩根除。誘導公式就是好,負化正后大化小,
變成銳角好查表,化簡證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,
將其后者視銳角,符號原來函數(shù)判。兩角和的余弦值,化為單角好求值,
余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。
計算證明角先行,注意結構函數(shù)名,保持基本量不變,繁難向著簡易變。
逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。
萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;
一加余弦想余弦,一減余弦想正弦,冪升一次角減半,升冪降次它為范;
三角函數(shù)反函數(shù),實質就是求角度,先求三角函數(shù)值,再判角取值范圍;
利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集。
函數(shù)知識點總結2
特別地,二次函數(shù)(以下稱函數(shù))y=ax+bx+c。
當y=0時,二次函數(shù)為關于x的一元二次方程(以下稱方程),即ax+bx+c=0。
此時,函數(shù)圖像與x軸有無交點即方程有無實數(shù)根。函數(shù)與x軸交點的橫坐標即為方程的根。
1.二次函數(shù)y=ax,y=a(x-h),y=a(x-h)+k,y=ax+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同。當h>0時,y=a(x-h)的圖象可由拋物線y=ax向右平行移動h個單位得到。
當h<0時,則向xxx移動|h|個單位得到。
當h>0,k>0時,將拋物線y=ax向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x-h)+k的圖象。
當h>0,k<0時,將拋物線y=ax向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)+k的圖象。
當h<0,k>0時,將拋物線向xxx移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x-h)+k的圖象。
當h<0,k<0時,將拋物線向xxx移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)+k的圖象。
因此,研究拋物線y=ax+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便。
2.拋物線y=ax+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b]/4a)。
3.拋物線y=ax+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小。
4.拋物線y=ax+bx+c的圖象與坐標軸的交點:
(1)圖象與y軸一定相交,交點坐標為(0,c)。
(2)當△=b^2-4ac>0,圖象與x軸交于兩點A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax+bx+c=0(a≠0)的'兩根.這兩點間的距離AB=|x-x|。
當△=0.圖象與x軸只有一個交點;當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數(shù)時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數(shù)時,都有y<0。
5.拋物線y=ax+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b)/4a。
頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值。
6.用待定系數(shù)法求二次函數(shù)的解析式
(1)當題給條件為已知圖象經(jīng)過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:y=ax+bx+c(a≠0)。
(2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)+k(a≠0)。
(3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x)(x-x)(a≠0)。
函數(shù)知識點總結3
倍角公式
二倍角公式
正弦形式:sin2α=2sinαcosα
正切形式:tan2α=2tanα/(1-tan^2(α))
余弦形式:cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a=tana·tan(π/3+a)·tan(π/3-a)
四倍角公式
sin4A=-4*(cosA*sinA*(2*sinA^2-1))
cos4A=1+(-8*cosA^2+8*cosA^4)
tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)
半角公式
正弦
sin(A/2)=√((1-cosA)/2)
sin(A/2)=-√((1-cosA)/2)
余弦
cos(A/2)=√((1+cosA)/2)
cos(A/2)=-√((1+cosA)/2)
正切
tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
積化和差
sina*cosb=[sin(a+b)+sin(a-b)]/2
cosa*sinb=[sin(a+b)-sin(a-b)]/2
cosa*cosb=[cos(a+b)+cos(a-b)]/2
sina*sinb=[cos(a-b)-cos(a+b)]/2
和差化積
sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]
sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]
cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]
cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]
誘導公式
任意角α與-α的三角函數(shù)值之間的關系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
設α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
設α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
π/2±α及3π/2±α與α的三角函數(shù)值之間的關系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
拓展閱讀:三角函數(shù)常用知識點
1、勾股定理:直角三角形兩直角邊a、b的'平方和等于斜邊c的平方。
2、在Rt△ABC中,∠C為直角,則∠A的銳角三角函數(shù)為(∠A可換成∠B)
3、任意銳角的正弦值等于它的余角的余弦值;任意銳角的余弦值等于它的余角的正弦值。
4、任意銳角的正切值等于它的余角的余切值;任意銳角的余切值等于它的余角的正切值。
5、正弦、余弦的增減性:當0°≤α≤90°時,sinα隨α的增大而增大,cosα隨α的增大而減小。
6、正切、余切的增減性:當0°<α<90°時,tanα隨α的增大而增大,cotα隨α的增大而減小。
函數(shù)知識點總結4
第一、求函數(shù)定義域題忽視細節(jié)函數(shù)的定義域是使函數(shù)有意義的自變量的取值范圍,考生想要在考場上準確求出定義域,就要根據(jù)函數(shù)解析式把各種情況下的自變量的限制條件找出來,列成不等式組,不等式組的解集就是該函數(shù)的定義域。
在求一般函數(shù)定義域時,要注意以下幾點:分母不為0;偶次被開放式非負;真數(shù)大于0以及0的0次冪無意義。函數(shù)的定義域是非空的數(shù)集,在解答函數(shù)定義域類的題時千萬別忘了這一點。復合函數(shù)要注意外層函數(shù)的定義域由內層函數(shù)的值域決定。
第二、帶絕對值的函數(shù)單調性判斷錯誤帶絕對值的函數(shù)實質上就是分段函數(shù),判斷分段函數(shù)的單調性有兩種方法:第一,在各個段上根據(jù)函數(shù)的解析式所表示的函數(shù)的單調性求出單調區(qū)間,然后對各個段上的單調區(qū)間進行整合;第二,畫出這個分段函數(shù)的圖象,結合函數(shù)圖象、性質能夠進行直觀的判斷。函數(shù)題離不開函數(shù)圖象,而函數(shù)圖象反應了函數(shù)的所有性質,考生在解答函數(shù)題時,要第一時間在腦海中畫出函數(shù)圖象,從圖象上分析問題,解決問題。
對于函數(shù)不同的單調遞增(減)區(qū)間,千萬記住,不要使用并集,指明這幾個區(qū)間是該函數(shù)的單調遞增(減)區(qū)間即可。
第三、求函數(shù)奇偶性的常見錯誤求函數(shù)奇偶性類的題最常見的錯誤有求錯函數(shù)定義域或忽視函數(shù)定義域,對函數(shù)具有奇偶性的前提條件不清,對分段函數(shù)奇偶性判斷方法不當?shù)鹊取E袛嗪瘮?shù)的奇偶性,首先要考慮函數(shù)的定義域,一個函數(shù)具備奇偶性的必要條件是這個函數(shù)的定義域區(qū)間關于原點對稱,如果不具備這個條件,函數(shù)一定是非奇非偶的函數(shù)。在定義域區(qū)間關于原點對稱的前提下,再根據(jù)奇偶函數(shù)的定義進行判斷。
在用定義進行判斷時,要注意自變量在定義域區(qū)間內的任意性。
第四、抽象函數(shù)推理不嚴謹很多抽象函數(shù)問題都是以抽象出某一類函數(shù)的共同“特征”而設計的,在解答此類問題時,考生可以通過類比這類函數(shù)中一些具體函數(shù)的性質去解決抽象函數(shù)。多用特殊賦值法,通過特殊賦可以找到函數(shù)的不變性質,這往往是問題的突破口。
抽象函數(shù)性質的證明屬于代數(shù)推理,和幾何推理證明一樣,考生在作答時要注意推理的嚴謹性。每一步都要有充分的條件,別漏掉條件,更不能臆造條件,推理過程層次分明,還要注意書寫規(guī)范。
第五、函數(shù)零點定理使用不當若函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,且有f(a)f(b)<0。那么函數(shù)y=f(x)在區(qū)間(a,b)內有零點,即存在c∈(a,b),使得f(c)=0。這個c也可以是方程f(c)=0的根,稱之為函數(shù)的`零點定理,分為“變號零點”和“不變號零點”,而對于“不變號零點”,函數(shù)的零點定理是“無能為力”的,在解決函數(shù)的零點時,考生需格外注意這類問題。
第六、混淆兩類切線曲線上一點處的切線是指以該點為切點的曲線的切線,這樣的切線只有一條;曲線的過一個點的切線是指過這個點的曲線的所有切線,這個點如果在曲線上當然包括曲線在該點處的切線,曲線的過一個點的切線可能不止一條。
因此,考生在求解曲線的切線問題時,首先要區(qū)分是什么類型的切線。
第七、混淆導數(shù)與單調性的關系一個函數(shù)在某個區(qū)間上是增函數(shù)的這類題型,如果考生認為函數(shù)的導函數(shù)在此區(qū)間上恒大于0,很容易就會出錯。
解答函數(shù)的單調性與其導函數(shù)的關系時一定要注意,一個函數(shù)的導函數(shù)在某個區(qū)間上單調遞增(減)的充要條件是這個函數(shù)的導函數(shù)在此區(qū)間上恒大(小)于等于0,且導函數(shù)在此區(qū)間的任意子區(qū)間上都不恒為零。
第八、導數(shù)與極值關系不清考生在使用導數(shù)求函數(shù)極值類問題時,容易出現(xiàn)的錯誤就是求出使導函數(shù)等于0的點,卻沒有對這些點左右兩側導函數(shù)的符號進行判斷,誤以為使導函數(shù)等于0的點就是函數(shù)的極值點,往往就會出錯,出錯原因就是考生對導數(shù)與極值關系沒搞清楚。可導函數(shù)在一個點處的導函數(shù)值為零只是這個函數(shù)在此點處取到極值的必要條件,小編在此提醒廣大考生,在使用導數(shù)求函數(shù)極值時,一定要對極值點進行仔細檢查。
函數(shù)知識點總結5
當h>0時,y=a(_-h)^2的圖象可由拋物線y=a_^2向右平行移動h個單位得到,
當h<0時,則向左平行移動|h|個單位得到.
當h>0,k>0時,將拋物線y=a_^2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(_-h)^2+k的圖象;
當h>0,k<0時,將拋物線y=a_^2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(_-h)^2+k的圖象;
當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(_-h)^2+k的圖象;
當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(_-h)^2+k的圖象;
因此,研究拋物線y=a_^2+b_+c(a≠0)的圖象,通過配方,將一般式化為y=a(_-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.
2.拋物線y=a_^2+b_+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線_=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).
3.拋物線y=a_^2+b_+c(a≠0),若a>0,當_≤-b/2a時,y隨_的增大而減小;當_≥-b/2a時,y隨_的'增大而增大.若a<0,當_≤-b/2a時,y隨_的增大而增大;當_≥-b/2a時,y隨_的增大而減小.
4.拋物線y=a_^2+b_+c的圖象與坐標軸的交點:
(1)圖象與y軸一定相交,交點坐標為(0,c);
(2)當△=b^2-4ac>0,圖象與_軸交于兩點A(_?,0)和B(_?,0),其中的_1,_2是一元二次方程a_^2+b_+c=0
(a≠0)的兩根.這兩點間的距離AB=|_?-_?|
當△=0.圖象與_軸只有一個交點;
當△<0.圖象與_軸沒有交點.當a>0時,圖象落在_軸的上方,_為任何實數(shù)時,都有y>0;當a<0時,圖象落在_軸的下方,_為任何實數(shù)時,都有y<0.
5.拋物線y=a_^2+b_+c的最值:如果a>0(a<0),則當_=-b/2a時,y最小(大)值=(4ac-b^2)/4a.
頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值.
6.用待定系數(shù)法求二次函數(shù)的解析式
(1)當題給條件為已知圖象經(jīng)過三個已知點或已知_、y的三對對應值時,可設解析式為一般形式:
y=a_^2+b_+c(a≠0).
(2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(_-h)^2+k(a≠0).
(3)當題給條件為已知圖象與_軸的兩個交點坐標時,可設解析式為兩根式:y=a(_-_?)(_-_?)(a≠0).
7.二次函數(shù)知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數(shù)知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現(xiàn).
函數(shù)知識點總結6
一:函數(shù)及其表示
知識點詳解文檔包含函數(shù)的概念、映射、函數(shù)關系的判斷原則、函數(shù)區(qū)間、函數(shù)的三要素、函數(shù)的定義域、求具體或抽象數(shù)值的函數(shù)值、求函數(shù)值域、函數(shù)的表示方法等
1. 函數(shù)與映射的區(qū)別:
2. 求函數(shù)定義域
常見的用解析式表示的函數(shù)f(x)的定義域可以歸納如下:
①當f(x)為整式時,函數(shù)的定義域為R.
②當f(x)為分式時,函數(shù)的定義域為使分式分母不為零的實數(shù)集合。
③當f(x)為偶次根式時,函數(shù)的定義域是使被開方數(shù)不小于0的實數(shù)集合。
④當f(x)為對數(shù)式時,函數(shù)的定義域是使真數(shù)為正、底數(shù)為正且不為1的實數(shù)集合。
⑤如果f(x)是由幾個部分的數(shù)學式子構成的,那么函數(shù)定義域是使各部分式子都有意義的實數(shù)集合,即求各部分有意義的實數(shù)集合的交集。
⑥復合函數(shù)的定義域是復合的各基本的函數(shù)定義域的交集。
⑦對于由實際問題的背景確定的函數(shù),其定義域除上述外,還要受實際問題的制約。
3. 求函數(shù)值域
(1)、觀察法:通過對函數(shù)定義域、性質的觀察,結合函數(shù)的解析式,求得函數(shù)的值域;
(2)、配方法;如果一個函數(shù)是二次函數(shù)或者經(jīng)過換元可以寫成二次函數(shù)的形式,那么將這個函數(shù)的右邊配方,通過自變量的范圍可以求出該函數(shù)的值域;
(3)、判別式法:
(4)、數(shù)形結合法;通過觀察函數(shù)的`圖象,運用數(shù)形結合的方法得到函數(shù)的值域;
(5)、換元法;以新變量代替函數(shù)式中的某些量,使函數(shù)轉化為以新變量為自變量的函數(shù)形式,進而求出值域;
(6)、利用函數(shù)的單調性;如果函數(shù)在給出的定義域區(qū)間上是嚴格單調的,那么就可以利用端點的函數(shù)值來求出值域;
(7)、利用基本不等式:對于一些特殊的分式函數(shù)、高于二次的函數(shù)可以利用重要不等式求出函數(shù)的值域;
(8)、最值法:對于閉區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),可求出y=f(x)在區(qū)間[a,b]內的極值,并與邊界值f(a).f(b)作比較,求出函數(shù)的最值,可得到函數(shù)y的值域;
(9)、反函數(shù)法:如果函數(shù)在其定義域內存在反函數(shù),那么求函數(shù)的值域可以轉化為求反函數(shù)的定義域。
函數(shù)知識點總結7
一次函數(shù)知識點總結基本概念
1、變量:在一個變化過程中可以取不同數(shù)值的量。常量:在一個變化過程中只能取同一數(shù)值的量。
例題:在勻速運動公式svt中,v表示速度,t表示時間,s表示在時間t內所走的路程,則變量是________,常量是_______。在圓的周長公式C=2πr中,變量是________,常量是_________.
2、函數(shù):一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有唯一確定的值與其對應,那么我們就把x稱為自變量,把y稱為因變量,y是x的函數(shù)。
*判斷Y是否為X的函數(shù),只要看X取值確定的時候,Y是否有唯一確定的值與之對應
1-12
例題:下列函數(shù)(1)y=πx(2)y=2x-1(3)y=(4)y=2-3x(5)y=x-1中,是一次函數(shù)的有()
x(A)4個(B)3個(C)2個(D)1個
3、定義域:一般的,一個函數(shù)的自變量允許取值的范圍,叫做這個函數(shù)的定義域。(x的'取值范圍)一次函數(shù)
1..自變量x和因變量y有如下關系:
y=kx+b(k為任意不為零實數(shù),b為任意實數(shù))則此時稱y是x的一次函數(shù)。特別的,當b=0時,y是x的正比例函數(shù)。即:y=kx(k為任意不為零實數(shù))
定義域:自變量的取值范圍,自變量的取值應使函數(shù)有意義;要與實際有意義。
2.當x=0時,b為函數(shù)在y軸上的截距。
一次函數(shù)性質:
1在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b(k≠0)。
2一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。3.函數(shù)不是數(shù),它是指某一變量過程中兩個變量之間的關系。
特別地,當b=0時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。
這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。4、特殊位置關系
當平面直角坐標系中兩直線平行時,其函數(shù)解析式中K值(即一次項系數(shù))相等
當平面直角坐標系中兩直線垂直時,其函數(shù)解析式中K值互為負倒數(shù)(即兩個K值的乘積為-1)
應用
一次函數(shù)y=kx+b的性質是:(1)當k>0時,y隨x的增大而增大;(2)當kx2B.x10,且y1>y2。根據(jù)一次函數(shù)的性質“當k>0時,y隨x的增大而增大”,得x1>x2。故選A。
判斷函數(shù)圖象的位置
例3.一次函數(shù)y=kx+b滿足kb>0,且y隨x的增大而減小,則此函數(shù)的圖象不經(jīng)過()A.第一象限B.第二象限
C.第三象限D.第四象限
解:由kb>0,知k、b同號。因為y隨x的增大而減小,所以k
解析式:y=kx(k是常數(shù),k≠0)必過點:(0,0)、(1,k)
走向:k>0時,圖像經(jīng)過一、三象限;k0,y隨x的增大而增大;k0時,向上平移;當b0,圖象經(jīng)過第一、三象限;k0,圖象經(jīng)過第一、二象限;b0,y隨x的增大而增大;k0時,將直線y=kx的圖象向上平移b個單位;當b
若直線yxa和直線yxb的交點坐標為(m,8),則ab____________.已知函數(shù)y=3x+1,當自變量增加m時,相應的函數(shù)值增加()A.3m+1B.3mC.mD.3m-1
11、一次函數(shù)y=kx+b的圖象的畫法.
根據(jù)幾何知識:經(jīng)過兩點能畫出一條直線,并且只能畫出一條直線,即兩點確定一條直線,所以畫一次函數(shù)的圖
象時,只要先描出兩點,再連成直線即可.一般情況下:是先選取它與兩坐標軸的交點:(0,b),坐標或縱坐標為0的點.
b>0經(jīng)過第一、二、三象限b0圖象從左到右上升,y隨x的增大而增大經(jīng)過第一、二、四象限經(jīng)過第二、三、四象限經(jīng)過第二、四象限k0時,向上平移;當b
某個一次函數(shù)的值為0時,求相應的自變量的值.從圖象上看,相當于已知直線y=ax+b確定它與x軸的交點的橫坐標的值.
函數(shù)知識點總結8
一次函數(shù)的定義
一般地,形如y=kx+b(k,b是常數(shù),且k≠0)的函數(shù),叫做一次函數(shù),其中x是自變量。當b=0時,一次函數(shù)y=kx,又叫做正比例函數(shù)。
1、一次函數(shù)的解析式的形式是y=kx+b,要判斷一個函數(shù)是否是一次函數(shù),就是判斷是否能化成以上形式。
2、當b=0,k≠0時,y=kx仍是一次函數(shù)。
3、當k=0,b≠0時,它不是一次函數(shù)。
4、正比例函數(shù)是一次函數(shù)的特例,一次函數(shù)包括正比例函數(shù)。
一次函數(shù)的圖像及性質
1、在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。
2、一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(—b/k,0)。
3、正比例函數(shù)的圖像總是過原點。
4、k,b與函數(shù)圖像所在象限的關系:
當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小。
當k>0,b>0時,直線通過一、二、三象限;
當k>0,b<0時,直線通過一、三、四象限;
當k<0,b>0時,直線通過一、二、四象限;
當k<0,b<0時,直線通過二、三、四象限;
當b=0時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。
這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。
一次函數(shù)的圖象與性質的口訣
一次函數(shù)是直線,圖象經(jīng)過三象限;
正比例函數(shù)更簡單,經(jīng)過原點一直線;
兩個系數(shù)k與b,作用之大莫小看,
k是斜率定夾角,b與y軸來相見,
k為正來右上斜,x增減y增減;
k為負來左下展,變化規(guī)律正相反;
k的絕對值越大,線離橫軸就越遠。
拓展閱讀:一次函數(shù)的解題方法
理解一次函數(shù)和其它知識的聯(lián)系
一次函數(shù)和代數(shù)式以及方程有著密不可分的聯(lián)系。如一次函數(shù)和正比例函數(shù)仍然是函數(shù),同時,等號的兩邊又都是代數(shù)式。需要注意的是,與一般代數(shù)式有很大區(qū)別。首先,一次函數(shù)和正比例函數(shù)都只能存在兩個變量,而代數(shù)式可以是多個變量;其次,一次函數(shù)中的變量指數(shù)只能是1,而代數(shù)式中變量指數(shù)還可以是1以外的數(shù)。另外,一次函數(shù)解析式也可以理解為二元一次方程。
掌握一次函數(shù)的解析式的.特征
一次函數(shù)解析式的結構特征:kx+b是關于x的一次二項式,其中常數(shù)b可以是任意實數(shù),一次項系數(shù)k必須是非零數(shù),k≠0,因為當k = 0時,y = b(b是常數(shù)),由于沒有一次項,這樣的函數(shù)不是一次函數(shù);而當b = 0,k≠0,y = kx既是正比例函數(shù),也是一次函數(shù)。
應用一次函數(shù)解決實際問題
1、分清哪些是已知量,哪些是未知量,尤其要弄清哪兩種量是相關聯(lián)的量,且其中一種量因另一種量的變化而變化;
2、找出具有相關聯(lián)的兩種量的等量關系之后,明確哪種量是另一種量的函數(shù);
3、在實際問題中,一般存在著三種量,如距離、時間、速度等等,在這三種量中,當且僅當其中一種量時間(或速度)不變時,距離與速度(或時間)才成正比例,也就是說,距離(s)是時間(t)或速度( )的正比例函數(shù);
4、求一次函數(shù)與正比例函數(shù)的關系式,一般采取待定系數(shù)法。
數(shù)形結合
方程,不等式,不等式組,方程組我們都可以用一次函數(shù)的觀點來理解。一元一次不等式實際上就看兩條直線上下方的關系,求出端點后可以很容易把握解集,至于一元一次方程可以把左右兩邊看為兩條直線來認識,直線交點的橫坐標就是方程的解,至于二元一次方程組就是對應2條直線,方程組的解就是直線的交點,結合圖形可以認識兩直線的位置關系也可以把握交點個數(shù)。
如果一個交點時候兩條直線的k不同,如果無窮個交點就是k,b都一樣,如果平行無交點就是k相同,b不一樣。至于函數(shù)平移的問題可以化歸為對應點平移。k反正不變然后用待定系數(shù)法得到平移后的方程。這就是化一般為特殊的解題方法。
函數(shù)知識點總結9
1、變量與常量
在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有確定的值與它對應,那么就說x是自變量,y是x的函數(shù)。
2、函數(shù)解析式
用來表示函數(shù)關系的數(shù)學式子叫做函數(shù)解析式或函數(shù)關系式。
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。
3、函數(shù)的三種表示法及其優(yōu)缺點
(1)解析法
兩個變量間的函數(shù)關系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做解析法。
(2)列表法
把自變量x的一系列值和函數(shù)y的對應值列成一個表來表示函數(shù)關系,這種表示法叫做列表法。
(3)圖像法
用圖像表示函數(shù)關系的方法叫做圖像法。
4、由函數(shù)解析式畫其圖像的一般步驟
(1)列表:列表給出自變量與函數(shù)的一些對應值
(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點
(3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。
初中怎樣學好數(shù)學
學好初中數(shù)學培養(yǎng)運算能力
初中數(shù)學涉及到大量的運算內容,比如有理數(shù)的運算、因式分解、根式的運算和解方程,這些都是初中數(shù)學涉及到的知識內容,如果初中生數(shù)學運算能力不過關,那么成績怎么能提高呢?所以運算是學好初中數(shù)學的基本功,這個基本功一定要扎實,不然以后的初中數(shù)學就可以不用學習了。
初中生在解答運算題的時候,不要急躁,靜下心來。初中數(shù)學運算的過程是很重要的,這也是初中生對于數(shù)學邏輯和思維的培養(yǎng)過程,結果要準確;同時初中生還有要絕對的自信,不要求速度可以慢一點的,盡量一次做對。
學好初中數(shù)學做題的數(shù)量不能少
不可否認,想要學好初中數(shù)學,就要做一定量的數(shù)學題。不贊同大量的刷題,那樣沒有什么意義。初中生做數(shù)學題主要是以基礎題的練習為主,將初中數(shù)學的基礎題弄懂的同時,反復的做一些比較典型的題,這樣才是初中生正確的學習數(shù)學方式。
在初中階段,學生要鍛煉自己數(shù)學的抽象思維能力,最好的結果是在不用書寫的情況下,就能夠得到正確的答案,這也就是我們常說的熟能生巧。同時也是初中生數(shù)學基礎知識牢固的體現(xiàn)。相反的,有的初中生在做練習題的時候,比較盲目和急躁,這樣的結果就是粗心大意,馬虎出錯。
課上重視聽講課下及時復習
初中生數(shù)學能力的培養(yǎng)一部分在于平時做題的過程中,另一部分就在課堂上。所以初中生想要學好數(shù)學,就要重視課內的`學習效率,在課上的時候要跟緊老師的思路,大膽的推測老師下一步講課的知識,尤其是基礎知識的學習。在課后初中生還要對學習的數(shù)學知識點及時復習。對于每個階段初中數(shù)學的學習要進行知識點歸納和整理。
初中數(shù)學多項式知識點
1、幾個單項式的和叫做多項式。
2、多項式中的每一個單項式叫做多項式的項。
3、多項式中不含字母的項叫做常數(shù)項。
4、一個多項式有幾項,就叫做幾項式。
5、多項式的每一項都包括項前面的符號。
6、多項式?jīng)]有系數(shù)的概念,但有次數(shù)的概念。
7、多項式中次數(shù)的項的次數(shù),叫做這個多項式的次數(shù)。
函數(shù)知識點總結10
教學目標:
(1)能夠根據(jù)實際問題,熟練地列出二次函數(shù)關系式,并求出函數(shù)的自變量的取值范圍。
(2)注重學生參與,聯(lián)系實際,豐富學生的感性認識,培養(yǎng)學生的良好的學習習慣
教學重點:能夠根據(jù)實際問題,熟練地列出二次函數(shù)關系式,并求出函數(shù)的自變量的取值范圍。
教學難點:求出函數(shù)的自變量的取值范圍。
教學過程:
一、問題引新
1.設矩形花圃的垂直于墻(墻長18)的一邊AB的長為_m,先取_的一些值,算出矩形的另一邊BC的長,進而得出矩形的面積ym2.試將計算結果填寫在下表的空格中,
AB長_(m) 1 2 3 4 5 6 7 8 9
BC長(m) 12
面積y(m2) 48
2._的值是否可以任意取?有限定范圍嗎?
3.我們發(fā)現(xiàn),當AB的長(_)確定后,矩形的面積(y)也隨之確定,y是_的函數(shù),試寫出這個函數(shù)的關系式,教師可提出問題,(1)當AB=_m時,BC長等于多少m?(2)面積y等于多少? y=_(20-2_)
二、提出問題,解決問題
1、引導學生看書第二頁問題一、二
2、觀察概括
y=6_2 d= n /2 (n-3) y= 20 (1-_)2
以上函數(shù)關系式有什么共同特點? (都是含有二次項)
3、二次函數(shù)定義:形如y=a_2+b_+c(a、b、、c是常數(shù),a≠0)的函數(shù)叫做_的二次函數(shù),a叫做二次函數(shù)的.系數(shù),b叫做一次項的系數(shù),c叫作常數(shù)項.
4、課堂練習
(1) (口答)下列函數(shù)中,哪些是二次函數(shù)?
(1)y=5_+1 (2)y=4_2-1
(3)y=2_3-3_2 (4)y=5_4-3_+1
(2).P3練習第1,2題。
五、小結敘述二次函數(shù)的定義.
第二課時:26.1二次函數(shù)(2)
教學目標:
1、使學生會用描點法畫出y=a_2的圖象,理解拋物線的有關概念。
2、使學生經(jīng)歷、探索二次函數(shù)y=a_2圖象性質的過程,培養(yǎng)學生觀察、思考、歸納的良好思維習慣。
教學重點:使學生理解拋物線的有關概念,會用描點法畫出二次函數(shù)y=a_2的圖象
教學難點:用描點法畫出二次函數(shù)y=a_2的圖象以及探索二次函數(shù)性質。
函數(shù)知識點總結11
1二次函數(shù)的定義
一般地,形如y=ax2+bx+c(a,b,c為常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù).如y=3x2,y=3x2-2,y=2x2+x-1等都是二次函數(shù).
注意:(1)二次函數(shù)是關于自變量的二次式,二次項系數(shù)a必須是非零實數(shù),即a≠0,而b,c是任意實數(shù),二次函數(shù)的表達式是一個整式;
(2)二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0),自變量x的取值范圍是全體實數(shù);
(3)當b=c=0時,二次函數(shù)y=ax2是最簡單的二次函數(shù);
(4)一個函數(shù)是否是二次函數(shù),要化簡整理后,對照定義才能下結論,例如y=x2-x(x-1)化簡后變?yōu)閥=x,故它不是二次函數(shù).
2二次函數(shù)解析式的幾種形式
(1)一般式:y=ax2+bx+c (a,b,c為常數(shù),a≠0).
(2)頂點式:y=a(x-h)2+k(a,h,k為常數(shù),a≠0).
(3)兩根式:y=a(x-x1)(x-x2),其中x1,x2是拋物線與x軸的交點的橫坐標,即一元二次方程ax2+bx+c=0的兩個根,a≠0.
說明:(1)任何一個二次函數(shù)通過配方都可以化為頂點式y(tǒng)=a(x-h)2+k,拋物線的頂點坐標是(h,k),h=0時,拋物線y=ax2+k的頂點在y軸上;當k=0時,拋物線a(x-h)2的頂點在x軸上;當h=0且k=0時,拋物線y=ax2的頂點在原點
3二次函數(shù)y=ax2+c的圖象與性質
(1)拋物線y=ax2+c的形狀由a決定,位置由c決定.
(2)二次函數(shù)y=ax2+c的圖象是一條拋物線,頂點坐標是(0,c),對稱軸是y軸.
當a>0時,圖象的`開口向上,有最低點(即頂點),當x=0時,y最小值=c.在y軸左側,y隨x的增大而減小;在y軸右側,y隨x增大而增大.
當a<0時,圖象的開口向下,有最高點(即頂點),當x=0時,y最大值=c.在y軸左側,y隨x的增大而增大;在y軸右側,y隨x增大而減小.
(3)拋物線y=ax2+c與y=ax2的關系.
拋物線y=ax2+c與y=ax2形狀相同,只有位置不同.拋物線y=ax2+c可由拋物線y=ax2沿y軸向上或向下平行移動|c|個單位得到.當c>0時,向上平行移動,當c<0時,向下平行移動.
函數(shù)知識點總結12
一次函數(shù)y=kx+b的性質:(一次函數(shù)的圖像是一條直線)
1、一次函數(shù)ykxb(k0)經(jīng)過(0,與y軸)點,(,0)點.與x軸交點坐標是(,0)交點坐標是(0,)。
2、k的正、負決定直線的傾斜方向
當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小。
3、|k|的大小決定直線的傾斜程度
|k|越大,直線與x軸相交的銳角度數(shù)越大(直線陡);|k|越小,直線與x軸相交的銳角度數(shù)越小(直線緩);
4、b的正負決定直線與y軸交點的.位置當b>0時,直線與y軸交于y軸正半軸上;當b<0時,直線與y軸交于y軸負半軸上;當b=0時,直線經(jīng)過原點。
5、k、b的符號不同,直線經(jīng)過的象限也不同。
當k>0時,直線經(jīng)過一、三象限;當k<0時,圖像經(jīng)過二、四象限。進一步:
當k>0,b>0時,直線經(jīng)過一、二、三象限(不經(jīng)過第四象限)當k>0,b<0時,直線經(jīng)過一、三、四象限(不經(jīng)過第二象限)當k>0,b=0時,直線經(jīng)過一、三、象限和原點
當k<0,b>0時,直線經(jīng)過一、二、四象限(不經(jīng)過第三象限)當k<0,b<0時,直線經(jīng)過二、三、四象限(不經(jīng)過第一象限)當k<0,b=0時,直線經(jīng)過二、四、象限和原點
反過來:不經(jīng)過第一象限指:經(jīng)過二、三、四象限或經(jīng)過二四象限和原點。其它類似。
函數(shù)知識點總結13
一、函數(shù)
(1)定義:設在某變化過程中有兩個變量x、y,對于x的每一個值,y都有唯一的值與之對應,那么就說x是自變量,y是因變量,此時,也稱y是x的.函數(shù)。
(2)本質:一一對應關系或多一對應關系。
有序實數(shù)對平面直角坐標系上的點
(3)表示方法:解析法、列表法、圖象法。
(4)自變量取值范圍:
對于實際問題,自變量取值必須使實際問題有意義;
對于純數(shù)學問題,自變量取值必須保證函數(shù)關系式有意義:
①分式中,分母≠0;
②二次根式中,被開方數(shù)≥0;
③整式中,自變量取全體實數(shù);
④混合運算式中,自變量取各解集的公共部份。
二、正比例函數(shù)與反比例函數(shù)
兩函數(shù)的異同點
三、一次函數(shù)(圖象為直線)
(1)定義式:y=kx+b(k、b為常數(shù),k≠0);自變量取全體實數(shù)。
(2)性質:
①k>0,過第一、三象限,y隨x的增大而增大;
k<0,過第二、四象限,y隨x的增大而減小。
②b=0,圖象過(0,0);
b>0,圖象與y軸的交點(0,b)在x軸上方;
b<0,圖象與y軸的交點(0,b)在x軸下方。
四、二次函數(shù)(圖象為拋物線)
(1)自變量取全體實數(shù)
一般式:y=ax2+bx+c(a、b、c為常數(shù),a≠0),其中(0,c)為拋物線與y軸的交點;
頂點式:y=a(x—h)2+k(a、h、k為常數(shù),a≠0),其中(h,k)為拋物線頂點;
h=—,k=零點式:y=a(x—x1)(x—x2)(a、x1、x2為常數(shù),a≠0)其中(x1,0)、(x2,0)為拋物線與x軸的交點。x1、x2 =(b 2 —4ac ≥0)
(2)性質:
①對稱軸:x=—或x=h;
②頂點:(—,)或(h,k);
③最值:當x=—時,y有最大(小)值,為或當x=h時,y有最大(小)值,為k;
函數(shù)知識點總結14
一、函數(shù)對稱性:
1.2.3.4.5.6.7.8.
f(a+x)=f(a-x)==>f(x)關于x=a對稱
f(a+x)=f(b-x)==>f(x)關于x=(a+b)/2對稱f(a+x)=-f(a-x)==>f(x)關于點(a,0)對稱f(a+x)=-f(a-x)+2b==>f(x)關于點(a,b)對稱
f(a+x)=-f(b-x)+c==>f(x)關于點[(a+b)/2,c/2]對稱y=f(x)與y=f(-x)關于x=0對稱y=f(x)與y=-f(x)關于y=0對稱y=f(x)與y=-f(-x)關于點(0,0)對稱
例1:證明函數(shù)y=f(a+x)與y=f(b-x)關于x=(b-a)/2對稱。
【解析】求兩個不同函數(shù)的對稱軸,用設點和對稱原理作解。
證明:假設任意一點P(m,n)在函數(shù)y=f(a+x)上,令關于x=t的對稱點Q(2tm,n),那么n=f(a+m)=f[b(2tm)]
∴b2t=a,==>t=(b-a)/2,即證得對稱軸為x=(b-a)/2.
例2:證明函數(shù)y=f(a-x)與y=f(xb)關于x=(a+b)/2對稱。
證明:假設任意一點P(m,n)在函數(shù)y=f(a-x)上,令關于x=t的對稱點Q(2tm,n),那么n=f(a-m)=f[(2tm)b]
∴2t-b=a,==>t=(a+b)/2,即證得對稱軸為x=(a+b)/2.
二、函數(shù)的周期性
令a,b均不為零,若:
1、函數(shù)y=f(x)存在f(x)=f(x+a)==>函數(shù)最小正周期T=|a|
2、函數(shù)y=f(x)存在f(a+x)=f(b+x)==>函數(shù)最小正周期T=|b-a|
3、函數(shù)y=f(x)存在f(x)=-f(x+a)==>函數(shù)最小正周期T=|2a|
4、函數(shù)y=f(x)存在f(x+a)=1/f(x)==>函數(shù)最小正周期T=|2a|
5、函數(shù)y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函數(shù)最小正周期T=|4a|
這里只對第2~5點進行解析。
第2點解析:
令X=x+a,f[a+(xa)]=f[b+(xa)]∴f(x)=f(x+ba)==>T=ba
第3點解析:同理,f(x+a)=-f(x+2a)……
①f(x)=-f(x+a)……
②∴由①和②解得f(x)=f(x+2a)∴函數(shù)最小正周期T=|2a|
第4點解析:
f(x+2a)=1/f(x+a)==>f(x+a)=1/f(x+2a)
又∵f(x+a)=1/f(x)∴f(x)=f(x+2a)
∴函數(shù)最小正周期T=|2a|
第5點解析:
∵f(x+a)={2[1f(x)]}/[1f(x)]=2/[1f(x)]1
∴1f(x)=2/[f(x)+1]移項得f(x)=12/[f(x+a)+1]
那么f(x-a)=12/[f(x)+1],等式右邊通分得f(x-a)=[f(x)1]/[1+f(x)]∴1/[f(x-a)=[1+f(x)]/[f(x)1],即-1/[f(x-a)=[1+f(x)]/[1-f(x)]∴-1/[f(x-a)=f(x+a),-1/[f(x2a)=f(x)==>-1/f(x)=f(x-2a)①,又∵-1/f(x)=f(x+2a)②,
由①②得f(x+2a)=f(x-2a)==>f(x)=f(x+4a)
∴函數(shù)最小正周期T=|4a|
擴展閱讀:函數(shù)對稱性、周期性和奇偶性的規(guī)律總結
函數(shù)對稱性、周期性和奇偶性規(guī)律總結
(一)同一函數(shù)的函數(shù)的奇偶性與對稱性:(奇偶性是一種特殊的對稱性)
1、奇偶性:
(1)奇函數(shù)關于(0,0)對稱,奇函數(shù)有關系式f(x)f(x)0
(2)偶函數(shù)關于y(即x=0)軸對稱,偶函數(shù)有關系式f(x)f(x)
2、奇偶性的拓展:同一函數(shù)的對稱性
(1)函數(shù)的軸對稱:
函數(shù)yf(x)關于xa對稱f(ax)f(ax)
f(ax)f(ax)也可以寫成f(x)f(2ax)或f(x)f(2ax)
若寫成:f(ax)f(bx),則函數(shù)yf(x)關于直線x稱
(ax)(bx)ab對22證明:設點(x1,y1)在yf(x)上,通過f(x)f(2ax)可知,y1f(x1)f(2ax1),
即點(2ax1,y1)也在yf(x)上,而點(x1,y1)與點(2ax1,y1)關于x=a對稱。得證。
說明:關于xa對稱要求橫坐標之和為2a,縱坐標相等。
∵(ax1,y1)與(ax1,y1)關于xa對稱,∴函數(shù)yf(x)關于xa對稱
f(ax)f(ax)
∵(x1,y1)與(2ax1,y1)關于xa對稱,∴函數(shù)yf(x)關于xa對稱
f(x)f(2ax)
∵(x1,y1)與(2ax1,y1)關于xa對稱,∴函數(shù)yf(x)關于xa對稱
f(x)f(2ax)
(2)函數(shù)的'點對稱:
函數(shù)yf(x)關于點(a,b)對稱f(ax)f(ax)2b
上述關系也可以寫成f(2ax)f(x)2b或f(2ax)f(x)2b
若寫成:f(ax)f(bx)c,函數(shù)yf(x)關于點(abc,)對稱2證明:設點(x1,y1)在yf(x)上,即y1f(x1),通過f(2ax)f(x)2b可知,f(2ax1)f(x1)2b,所以f(2ax1)2bf(x1)2by1,所以點(2ax1,2by1)也在yf(x)上,而點(2ax1,2by1)與(x1,y1)關于(a,b)對稱。得證。
說明:關于點(a,b)對稱要求橫坐標之和為2a,縱坐標之和為2b,如(ax)與(ax)之和為2a。
(3)函數(shù)yf(x)關于點yb對稱:假設函數(shù)關于yb對稱,即關于任一個x值,都有兩個y值與其對應,顯然這不符合函數(shù)的定義,故函數(shù)自身不可能關于yb對稱。但在曲線c(x,y)=0,則有可能會出現(xiàn)關于yb對稱,比如圓c(x,y)x2y240它會關于y=0對稱。
(4)復合函數(shù)的奇偶性的性質定理:
性質1、復數(shù)函數(shù)y=f[g(x)]為偶函數(shù),則f[g(-x)]=f[g(x)]。復合函數(shù)y=f[g(x)]為奇函數(shù),則f[g(-x)]=-f[g(x)]。
性質2、復合函數(shù)y=f(x+a)為偶函數(shù),則f(x+a)=f(-x+a);復合函數(shù)y=f(x+a)為奇函數(shù),則f(-x+a)=-f(a+x)。
性質3、復合函數(shù)y=f(x+a)為偶函數(shù),則y=f(x)關于直線x=a軸對稱。復合函數(shù)y=f(x+a)為奇函數(shù),則y=f(x)關于點(a,0)中心對稱。
總結:x的系數(shù)一個為1,一個為-1,相加除以2,可得對稱軸方程
總結:x的系數(shù)一個為1,一個為-1,f(x)整理成兩邊,其中一個的系數(shù)是為1,另一個為-1,存在對稱中心。
總結:x的系數(shù)同為為1,具有周期性。
(二)兩個函數(shù)的圖象對稱性
1、yf(x)與yf(x)關于X軸對稱。
證明:設yf(x)上任一點為(x1,y1)則y1f(x1),所以yf(x)經(jīng)過點(x1,y1)
∵(x1,y1)與(x1,y1)關于X軸對稱,∴y1f(x1)與yf(x)關于X軸對稱.注:換種說法:yf(x)與yg(x)f(x)若滿足f(x)g(x),即它們關于y0對稱。
函數(shù)知識點總結15
【—正比例函數(shù)公式】正比例函數(shù)要領:一般地,兩個變量x,y之間的關系式可以表示成形如y=kx(k為常數(shù),且k≠0)的函數(shù),那么y就叫做x的正比例函數(shù)。
正比例函數(shù)的性質
定義域:R(實數(shù)集)
值域:R(實數(shù)集)
奇偶性:奇函數(shù)
單調性:
當>0時,圖像位于第一、三象限,從左往右,y隨x的增大而增大(單調遞增),為增函數(shù);
當k<0時,圖像位于第二、四象限,從左往右,y隨x的增大而減小(單調遞減),為減函數(shù)。
周期性:不是周期函數(shù)。
對稱性:無軸對稱性,但關于原點中心對稱。
正比例函數(shù)圖像的作法
1、在x允許的范圍內取一個值,根據(jù)解析式求出y的值;
2、根據(jù)第一步求的`x、y的值描出點;
3、作出第二步描出的點和原點的直線(因為兩點確定一直線)。
【函數(shù)知識點總結】相關文章:
函數(shù)知識點總結06-23
函數(shù)知識點總結02-10
函數(shù)知識點03-01
[精選]函數(shù)知識點03-01
初二函數(shù)知識點總結01-13
關于高中函數(shù)的知識點總結03-30
函數(shù)知識點總結20篇04-20
初二函數(shù)知識點總結07-27
函數(shù)知識點總結(20篇)07-20