亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

高中數學知識點總結

時間:2024-05-15 16:38:03 知識點總結 我要投稿

高中數學知識點總結(實用)

  總結是事后對某一時期、某一項目或某些工作進行回顧和分析,從而做出帶有規律性的結論,它可以幫助我們總結以往思想,發揚成績,因此我們要做好歸納,寫好總結。但是總結有什么要求呢?以下是小編幫大家整理的高中數學知識點總結,僅供參考,希望能夠幫助到大家。

高中數學知識點總結(實用)

高中數學知識點總結1

  導數及其應用

  一.導數概念的引入

  1.導數的物理意義:瞬時速率。一般的,函數yf(x)在xx0處的瞬時變化率是

  x0limf(x0x)f(x0),

  x我們稱它為函數yf(x)在xx0處的導數,記作f(x0)或y|xx0,即f(x0)=limx0f(x0x)f(x0)

  x例1.在高臺跳水運動中,運動員相對于水面的高度h(單位:m)與起跳后的時間t(單位:

  s)存在函數關系

  h(t)4.9t26.5t10

  運動員在t=2s時的瞬時速度是多少?解:根據定義

  vh(2)limh(2x)h(2)13.1

  x0x即該運動員在t=2s是13.1m/s,符號說明方向向下

  2.導數的幾何意義:曲線的切線.通過圖像,我們可以看出當點Pn趨近于P時,直線PT與

  曲線相切。容易知道,割線PPn的斜率是knf(xn)f(x0),當點Pn趨近于P時,

  xnx0函數yf(x)在xx0處的導數就是切線PT的斜率k,即klimx0f(xn)f(x0)f(x0)

  xnx03.導函數:當x變化時,f(x)便是x的一個函數,我們稱它為f(x)的導函數.yf(x)的導函數有時也記作y,即f(x)lim

  二.導數的計算

  1.函數yf(x)c的導數2.函數yf(x)x的'導數3.函數yf(x)x的導數

  2x0f(xx)f(x)

  x

  4.函數yf(x)1的導數x基本初等函數的導數公式:

  1若f(x)c(c為常數),則f(x)0;

  2若f(x)x,則f(x)x1;

  3若f(x)sinx,則f(x)cosx

  4若f(x)cosx,則f(x)sinx;

  5若f(x)ax,則f(x)axlna6若f(x)e,則f(x)e

  xx1xlna18若f(x)lnx,則f(x)

  xx7若f(x)loga,則f(x)導數的運算法則

  1.[f(x)g(x)]f(x)g(x)

  2.[f(x)g(x)]f(x)g(x)f(x)g(x)

  3.[f(x)f(x)g(x)f(x)g(x)]g(x)[g(x)]

  2復合函數求導

  yf(u)和ug(x),稱則y可以表示成為x的函數,即yf(g(x))為一個復合函數yf(g(x))g(x)

  三.導數在研究函數中的應用

  1.函數的單調性與導數:

  一般的,函數的單調性與其導數的正負有如下關系:

  在某個區間(a,b)內,如果f(x)0,那么函數yf(x)在這個區間單調遞增;如果f(x)0,那么函數yf(x)在這個區間單調遞減.2.函數的極值與導數

  極值反映的是函數在某一點附近的大小情況.求函數yf(x)的極值的方法是:

  (1)如果在x0附近的左側f(x)0,右側f(x)0,那么f(x0)是極大值;

  (2)如果在x0附近的左側f(x)0,右側f(x)0,那么f(x0)是極小值;

  4.函數的最大(小)值與導數

  函數極大值與最大值之間的關系.

  求函數yf(x)在[a,b]上的最大值與最小值的步驟

  (1)求函數yf(x)在(a,b)內的極值;

  (2)將函數yf(x)的各極值與端點處的函數值f(a),f(b)比較,其中最大的是一個最大值,最小的是最小值.

  四.生活中的優化問題

  利用導數的知識,求函數的最大(小)值,從而解決實際問題

  第二章推理與證明

  考點一合情推理與類比推理

  根據一類事物的部分對象具有某種性質,退出這類事物的所有對象都具有這種性質的推理,叫做歸納推理,歸納是從特殊到一般的過程,它屬于合情推理

  根據兩類不同事物之間具有某些類似(或一致)性,推測其中一類事物具有與另外一類事物類似的性質的推理,叫做類比推理.

  類比推理的一般步驟:

  (1)找出兩類事物的相似性或一致性;

  (2)用一類事物的性質去推測另一類事物的性質,得出一個明確的命題(猜想);

  (3)一般的,事物之間的各個性質并不是孤立存在的,而是相互制約的如果兩個事物在某些性質上相同或相似,那么他們在另一寫性質上也可能相同或類似,類比的結論可能是真的

  (4)一般情況下,如果類比的相似性越多,相似的性質與推測的性質之間越相關,那么類比得出的命題越可靠.

  考點二演繹推理(俗稱三段論)

  由一般性的命題推出特殊命題的過程,這種推理稱為演繹推理.

  考點三數學歸納法

  1.它是一個遞推的數學論證方法.

  2.步驟:A.命題在n=1(或n0)時成立,這是遞推的基礎;B.假設在n=k時命題成立C.證明n=k+1時命題也成立,

  完成這兩步,就可以斷定對任何自然數(或n>=n0,且nN)結論都成立。

  考點三證明

  1.反證法:

  2.分析法:

  3.綜合法:

  第一章數系的擴充和復數的概念考點一:復數的概念

  (1)復數:形如abi(aR,bR)的數叫做復數,a和b分別叫它的實部和虛部.

  (2)分類:復數abi(aR,bR)中,當b0,就是實數;b0,叫做虛數;當a0,b0時,叫做純虛數.

  (3)復數相等:如果兩個復數實部相等且虛部相等就說這兩個復數相等.

  (4)共軛復數:當兩個復數實部相等,虛部互為相反數時,這兩個復數互為共軛復數.

  (5)復平面:建立直角坐標系來表示復數的平面叫做復平面,x軸叫做實軸,y軸除去原點的部分叫做虛軸。

  (6)兩個實數可以比較大小,但兩個復數如果不全是實數就不能比較大小。

高中數學知識點總結2

  數學選修2-2導數及其應用知識點必記

  1.函數的平均變化率是什么?答:平均變化率為

  f(x2)f(x1)f(x1x)f(x1)yfx2x1xxx注1:其中x是自變量的改變量,可正,可負,可零。

  注2:函數的平均變化率可以看作是物體運動的平均速度。

  2、導函數的概念是什么?

  答:函數yf(x)在xx0處的瞬時變化率是limf(x0x)f(x0)y,則稱limx0xx0x函數yf(x)在點x0處可導,并把這個極限叫做yf(x)在x0處的導數,記作f"(x0)或y"|xx0,即f"(x0)=limf(x0x)f(x0)y.limx0xx0x

  3.平均變化率和導數的幾何意義是什么?

  答:函數的平均變化率的幾何意義是割線的斜率;函數的導數的幾何意義是切線的斜率。

  4導數的背景是什么?

  答:(1)切線的斜率;(2)瞬時速度;(3)邊際成本。

  5、常見的函數導數和積分公式有哪些?函數導函數不定積分ycy"0xn1xdxn1nyxnnN*y"nxn1yaxa0,a1y"alnay"exxaxadxlnaxyexedxexxylogaxa0,a1,x0ylnxy"1xlna1x1xdxlnxy"ysinxy"cosxcosxdxsinxsinxdxcosxycosxy"sinx

  6、常見的導數和定積分運算公式有哪些?答:若fx,gx均可導(可積),則有:和差的導數運算f(x)g(x)f(x)g(x)""f"(x)g"(x)f"(x)g(x)f(x)g"(x)積的導數運算特別地:Cfx"Cf"x商的導數運算f(x)f"(x)g(x)f(x)g"(x)(g(x)0)g(x)2g(x)"1g"(x)特別地:"2gxgx復合函數的導數yxyuux微積分基本定理fxdxab(其中F"xfx)和差的積分運算ba[f1(x)f2(x)]dxf1(x)dxf2(x)dxaabb特別地:積分的區間可加性bakf(x)dxkf(x)dx(k為常數)abbaf(x)dxf(x)dxf(x)dx(其中acb)accb

  7.用導數求函數單調區間的步驟是什么?答:①求函數f(x)的導數f"(x)

  ②令f"(x)>0,解不等式,得x的范圍就是遞增區間.③令f"(x)

  8.利用導數求函數的最值的步驟是什么?

  答:求f(x)在a,b上的最大值與最小值的步驟如下:⑴求f(x)在a,b上的極值;

  ⑵將f(x)的各極值與f(a),f(b)比較,其中最大的一個是最大值,最小的一個是最小值。

  注:實際問題的開區間唯一極值點就是所求的最值點;

  9.求曲邊梯形的思想和步驟是什么?

  答:分割近似代替求和取極限(“以直代曲”的思想)

  10.定積分的性質有哪些?

  根據定積分的定義,不難得出定積分的如下性質:

  11.

  ababbbbb性質5若f(x)0,xa,b,則f(x)dx0

  ①推廣:[f1(x)f2(x)fm(x)]dxf1(x)dxf2(x)dxfm(x)

  aaaa②推廣:f(x)dxf(x)dxf(x)dxf(x)dx

  aac1ckbc1c2b11定積分的取值情況有哪幾種?

  答:定積分的值可能取正值,也可能取負值,還可能是0.

  (l)當對應的曲邊梯形位于x軸上方時,定積分的值取正值,且等于x軸上方的圖形面積;

  (2)當對應的曲邊梯形位于x軸下方時,定積分的值取負值,且等于x軸上方圖形面積的相反數;

  (3)當位于x軸上方的曲邊梯形面積等于位于x軸下方的曲邊梯形面積時,定積分的值為0,且等于x軸上方圖形的面積減去下方的圖形的面積.

  12.物理中常用的微積分知識有哪些?答:(1)位移的導數為速度,速度的導數為加速度。(2)力的積分為功。

  數學選修2-2推理與證明知識點必記

  13.歸納推理的定義是什么?答:從個別事實中推演出一般性的結論,像這樣的推理通常稱為歸納推理。歸納推理是由部分到整體,由個別到一般的推理。

  14.歸納推理的思維過程是什么?答:大致如圖:

  實驗、觀察概括、推廣猜測一般性結論

  15.歸納推理的特點有哪些?

  答:①歸納推理的前提是幾個已知的特殊現象,歸納所得的結論是尚屬未知的一般現象。

  ②由歸納推理得到的結論具有猜測的性質,結論是否真實,還需經過邏輯證明和實驗檢驗,因此,它不能作為數學證明的工具。③歸納推理是一種具有創造性的推理,通過歸納推理的猜想,可以作為進一步研究的起點,幫助人們發現問題和提出問題。

  16.類比推理的定義是什么?

  答:根據兩個(或兩類)對象之間在某些方面的相似或相同,推演出它們在其他方面也相似或相同,這樣的推理稱為類比推理。類比推理是由特殊到特殊的推理。

  17.類比推理的思維過程是什么?答:

  觀察、比較聯想、類推推測新的結論

  18.演繹推理的定義是什么?

  答:演繹推理是根據已有的事實和正確的結論(包括定義、公理、定理等)按照嚴格的邏輯法則得到新結論的推理過程。演繹推理是由一般到特殊的推理。

  19.演繹推理的主要形式是什么?答:三段論

  20.“三段論”可以表示為什么?

  答:①大前題:M是P②小前提:S是M③結論:S是P。

  其中①是大前提,它提供了一個一般性的原理;②是小前提,它指出了一個特殊對象;③是結論,它是根據一般性原理,對特殊情況做出的判斷。

  21.什么是直接證明?它包括哪幾種證明方法?

  答:直接證明是從命題的條件或結論出發,根據已知的定義、公理、定理,直接推證結論的`真實性。直接證明包括綜合法和分析法。

  22.什么是綜合法?

  答:綜合法就是“由因導果”,從已知條件出發,不斷用必要條件代替前面的條件,直至推出要證的結論。

  23.什么是分析法?答:分析法就是從所要證明的結論出發,不斷地用充分條件替換前面的條件或者一定成立的式子,可稱為“由果索因”。

  要注意敘述的形式:要證A,只要證B,B應是A成立的充分條件.分析法和綜合法常結合使用,不要將它們割裂開。

  24什么是間接證明?

  答:即反證法:是指從否定的結論出發,經過邏輯推理,導出矛盾,證實結論的否定是錯誤的,從而肯定原結論是正確的證明方法。

  25.反證法的一般步驟是什么?

  答:(1)假設命題結論不成立,即假設結論的反面成立;

  (2)從假設出發,經過推理論證,得出矛盾;

  (3)從矛盾判定假設不正確,即所求證命題正確。

  26常見的“結論詞”與“反義詞”有哪些?原結論詞反義詞原結論詞至少有一個至多有一個至少有n個至多有n個一個也沒有至少有兩個至多有n-1個至少有n+1個對任意x不成立p或qp且q反義詞存在x使成立p且qp或q對所有的x都成立存在x使不成立

  27.反證法的思維方法是什么?答:正難則反....

  28.如何歸繆矛盾?

  答:(1)與已知條件矛盾;(2)與已有公理、定理、定義矛盾;

  (3)自相矛盾.

  29.數學歸納法(只能證明與正整數有關的數學命題)的步驟是什么?nnN答:(1)證明:當n取第一個值時命題成立;00

  (2)假設當n=k(k∈N*,且k≥n0)時命題成立,證明當n=k+1時命題也成立由(1),(2)可知,命題對于從n0開始的所有正整數n都正確注:常用于證明不完全歸納法推測所得命題的正確性的證明。

  數學選修2-2數系的擴充和復數的概念知識點必記

  30.復數的概念是什么?答:形如a+bi的數叫做復數,其中i叫虛數單位,a叫實部,b叫虛部,數集

  Cabi|a,bR叫做復數集。

  規定:abicdia=c且,強調:兩復數不能比較大小,只有相等或不相b=d等。實數(b0)

  31.數集的關系有哪些?答:復數Z一般虛數(a0)

  虛數(b0)純虛數(a0)

  32.復數的幾何意義是什么?答:復數與平面內的點或有序實數對一一對應。

  33.什么是復平面?

  答:根據復數相等的定義,任何一個復數zabi,都可以由一個有序實數對

  (a,b)唯一確定。由于有序實數對(a,b)與平面直角坐標系中的點一一對應,因此

  復數集與平面直角坐標系中的點集之間可以建立一一對應。這個建立了直角坐標系來表示復數的平面叫做復平面,x軸叫做實軸,y軸叫做虛軸。實軸上的點都表示實數,除了原點外,虛軸上的點都表示純虛數。

  34.如何求復數的模(絕對值)?答:與復數z對應的向量OZ的模r叫做復數zabi的模(也叫絕對值)記作z或abi。由模的定義可知:zabia2b2

  35.復數的加、減法運算及幾何意義是什么?

  答:①復數的加、減法法則:z1abi與z2cdi,則z1z2ac(bd)i。

  注:復數的加、減法運算也可以按向量的加、減法來進行。

  ②復數的乘法法則:(abi)(cdi)acbdadbci。

  ③復數的除法法則:

  abi(abi)(cdi)acbdbcadicdi(cdi)(cdi)c2d2c2d2其中cdi叫做實數化因子

  36.什么是共軛復數?

  答:兩復數abi與abi互為共軛復數,當b0時,它們叫做共軛虛數。

高中數學知識點總結3

  :平面

  1.經過不在同一條直線上的三點確定一個面.

  注:兩兩相交且不過同一點的四條直線必在同一平面內.

  2.兩個平面可將平面分成3或4部分.(①兩個平面平行,②兩個平面相交)

  3.過三條互相平行的直線可以確定1或3個平面.(①三條直線在一個平面內平行,②三條直線不在一個平面內平行)

  [注]:三條直線可以確定三個平面,三條直線的公共點有0或1個.

  4.三個平面最多可把空間分成8部分.(X、Y、Z三個方向)

  :空間的直線與平面

  ⒈平面的基本性質⑴三個公理及公理三的三個推論和它們的用途. ⑵斜二測畫法.

  ⒉空間兩條直線的位置關系:相交直線、平行直線、異面直線.

  ⑴公理四(平行線的傳遞性).等角定理.

  ⑵異面直線的判定:判定定理、反證法.

  ⑶異面直線所成的角:定義(求法)、范圍.

  ⒊直線和平面平行直線和平面的位置關系、直線和平面平行的判定與性質.

  ⒋直線和平面垂直

  ⑴直線和平面垂直:定義、判定定理.

  ⑵三垂線定理及逆定理.

  5.平面和平面平行

  兩個平面的位置關系、兩個平面平行的判定與性質.

  6.平面和平面垂直

  互相垂直的平面及其判定定理、性質定理.

  (二)直線與平面的平行和垂直的證明思路(見附圖)

  (三)夾角與距離

  7.直線和平面所成的角與二面角

  ⑴平面的斜線和平面所成的角:三面角余弦公式、最小角定理、斜線和平

  面所成的角、直線和平面所成的角.

  ⑵二面角:①定義、范圍、二面角的平面角、直二面角.

  ②互相垂直的平面及其判定定理、性質定理.

  8.距離

  ⑴點到平面的距離.

  ⑵直線到與它平行平面的距離.

  ⑶兩個平行平面的距離:兩個平行平面的公垂線、公垂線段.

  ⑷異面直線的距離:異面直線的公垂線及其性質、公垂線段.

  (四)簡單多面體與球

  9.棱柱與棱錐

  ⑴多面體.

  ⑵棱柱與它的性質:棱柱、直棱柱、正棱柱、棱柱的性質.

  ⑶平行六面體與長方體:平行六面體、直平行六面體、長方體、正四棱柱、

  正方體;平行六面體的性質、長方體的性質.

  ⑷棱錐與它的性質:棱錐、正棱錐、棱錐的性質、正棱錐的性質.

  ⑸直棱柱和正棱錐的直觀圖的畫法.

  10.多面體歐拉定理的發現

  ⑴簡單多面體的歐拉公式.

  ⑵正多面體.

  11.球

  ⑴球和它的性質:球體、球面、球的大圓、小圓、球面距離.

  ⑵球的.體積公式和表面積公式.

  :常用結論、方法和公式

  1.異面直線所成角的求法:

  (1)平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;

  (2)補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發現兩條異面直線間的關系;

  2.直線與平面所成的角

  斜線和平面所成的是一個直角三角形的銳角,它的三條邊分別是平面的垂線段、斜線段及斜線段在平面上的射影。通常通過斜線上某個特殊點作出平面的垂線段,垂足和斜足的連線,是產生線面角的關鍵;

  3.二面角的求法

  (1)定義法:直接在二面角的棱上取一點(特殊點),分別在兩個半平面內作棱的垂線,得出平面角,用定義法時,要認真觀察圖形的特性;

  (2)三垂線法:已知二面角其中一個面內一點到一個面的垂線,用三垂線定理或逆定理作出二面角的平面角;

  (3)垂面法:已知二面角內一點到兩個面的垂線時,過兩垂線作平面與兩個半平面的交線所成的角即為平面角,由此可知,二面角的平面角所在的平面與棱垂直;

  (4)射影法:利用面積射影公式S射=S原cos,其中為平面角的大小,此法不必在圖形中畫出平面角;

  特別:對于一類沒有給出棱的二面角,應先延伸兩個半平面,使之相交出現棱,然后再選用上述方法(尤其要考慮射影法)。

  4.空間距離的求法

  (1)兩異面直線間的距離,高考要求是給出公垂線,所以一般先利用垂直作出公垂線,然后再進行計算;

  (2)求點到直線的距離,一般用三垂線定理作出垂線再求解;

  (3)求點到平面的距離,一是用垂面法,借助面面垂直的性質來作,因此,確定已知面的垂面是關鍵;二是不作出公垂線,轉化為求三棱錐的高,利用等體積法列方程求解;

高中數學知識點總結4

  第一講相似三角形的判定及有關性質1.平行線等分線段定理

  平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等。

  推理1:經過三角形一邊的中點與另一邊平行的直線必平分第三邊。推理2:經過梯形一腰的中點,且與底邊平行的直線平分另一腰。

  2.平分線分線段成比例定理

  平分線分線段成比例定理:三條平行線截兩條直線,所得的對應線段成比例。

  推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長線)所得的對應線段成比例。

  3.相似三角形的判定及性質

  相似三角形的判定:

  定義:對應角相等,對應邊成比例的兩個三角形叫做相似三角形。相似三角形對應邊的比值叫做相似比(或相似系數)。

  由于從定義出發判斷兩個三角形是否相似,需考慮6個元素,即三組對應角是否分別相等,三組對應邊是否分別成比例,顯然比較麻煩。所以我們曾經給出過如下幾個判定兩個三角形相似的簡單方法:

  (1)兩角對應相等,兩三角形相似;

  (2)兩邊對應成比例且夾角相等,兩三角形相似;(3)三邊對應成比例,兩三角形相似。

  預備定理:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與三角形相似。

  判定定理1:對于任意兩個三角形,如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似。簡述為:兩角對應相等,兩三角形相似。

  判定定理2:對于任意兩個三角形,如果一個三角形的兩邊和另一個三角形的兩邊對應成比例,并且夾角相等,那么這兩個三角形相似。簡述為:兩邊對應成比例且夾角相等,兩三角形相似。

  判定定理3:對于任意兩個三角形,如果一個三角形的三條邊和另一個三角形的三條邊對應成比例,那么這兩個三角形相似。簡述為:三邊對應成比例,兩三角形相似。

  引理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊。定理:(1)如果兩個直角三角形有一個銳角對應相等,那么它們相似;

  (2)如果兩個直角三角形的兩條直角邊對應成比例,那么它們相似。

  定理:如果一個直角三角形的斜邊和一條直角邊與另一個三角形的斜邊和直角邊對應成比例,那么這兩個直角三角形相似。相似三角形的性質:

  (1)相似三角形對應高的比、對應中線的比和對應平分線的比都等于相似比;(2)相似三角形周長的比等于相似比;

  (3)相似三角形面積的比等于相似比的平方。

  相似三角形外接圓的直徑比、周長比等于相似比,外接圓的面積比等于相似比的平方。

  4.直角三角形的射影定理

  射影定理:直角三角形斜邊上的高是兩直角邊在斜邊上射影的比例中項;兩直角邊分別是它們在斜邊上射影與斜邊的比例中項。

  第二講直線與圓的位置關系1.圓周定理

  圓周角定理:圓上一條弧所對的圓周角等于它所對的圓周角的一半。圓心角定理:圓心角的度數等于它所對弧的度數。

  推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧相等。推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

  2.圓內接四邊形的性質與判定定理

  定理1:圓的內接四邊形的對角互補。

  定理2:圓內接四邊形的外角等于它的內角的對角。

  圓內接四邊形判定定理:如果一個四邊形的對角互補,那么這個四邊形的四個頂點共圓。推論:如果四邊形的一個外角等于它的內角的對角,那么這個四邊形的四個頂點共圓。

  3.圓的切線的性質及判定定理

  切線的性質定理:圓的切線垂直于經過切點的半徑。推論1:經過圓心且垂直于切線的直線必經過切點。推論2:經過切點且垂直于切線的直線必經過圓心。

  切線的判定定理:經過半徑的外端并且垂直于這條半徑的直線是圓的切線。

  4.弦切角的性質

  弦切角定理:弦切角等于它所夾的`弧所對的圓周角。

  5.與圓有關的比例線段

  相交弦定理:圓內的兩條相交弦,被交點分成的兩條線段長的積相等。

  割線定理:從園外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等。

  切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項。

  切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角。

  6.垂徑定理

  垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。

  7.三角形的五心

  (1)內心:三條角平分線的交點,也是三角形內切圓的圓心。性質:到三邊距離相等。(2)外心:三條中垂線的交點,也是三角形外接圓的圓心。性質:到三個頂點距離相等。(3)重心:三條中線的交點。性質:三條中線的三等分點,到頂點距離為到對邊中點距離的2倍。

  (4)垂心:三條高所在直線的交點。

  (5)旁心:三角形任意兩角的外角平分線和第三個角的內角平分線的交點。性質:到三邊的

  距離相等

  第三講圓錐曲線性質的探究1.平面與圓柱面的截線:

  當平面與圓柱的兩底面平行時,截面是個圓;當平面與圓柱的兩底面不平行時,截面是個橢

  圓;定理1:圓柱形物體的斜截口是橢圓。

  定理2:在空間中,取直線l為軸,直線l’與l相交于O點,夾角為α,l’圍繞l旋轉得

  到以O為頂點,l’為母線的圓錐面,任取平面π,若它與軸l的夾角為β(當π與l平行時,記β=0),則截面不過頂點時:

  (1)β>α,平面π與圓錐的交線為橢圓;(2)β=α,平面π與圓錐的交線為拋物線;(3)

  β<α,平面π與圓錐的交線為雙曲線;截面過頂點時:(1)截面和圓錐面只相交于頂點,交線為一個點。

  (2)截面和圓錐面相交于兩條母線,交線為兩條相交曲線。(3)截面和圓錐面相切,交線為兩

高中數學知識點總結5

  1.概率與統計:包括概率、統計、概率的意義、一維和二維正態分布、樣本和抽樣分布、參數估計、假設檢驗、方差分析、回歸分析等。

  2.微積分:包括極限、導數、微分、不定積分、定積分、常微分方程、偏微分方程、差分方程等。

  3.線性代數:包括矩陣、向量、線性方程組、矩陣的相似對角化、二次型、線性空間、線性變換、矩陣的行列式、矩陣的逆矩陣、矩陣的秩、向量組的相關性、向量組的極大線性無關組等。

  4.概率論與數理統計:包括隨機事件與概率、概率的基本性質與運算法則、古典概型、條件概率、獨立性、隨機變量與分布函數、正態分布、二維隨機變量與分布函數、條件概率與相互獨立性、期望、方差、協方差與相關系數、矩、中心極限定理等。

  5.平面幾何:包括點和距離、平行和垂直、三角形、四邊形、圓和扇形、平面圖形和空間圖形等。

  6.平面解析幾何:包括點與線的坐標、直線的方程與性質、圓的'標準方程與性質、橢圓的標準方程與性質、雙曲線的標準方程與性質、拋物線的標準方程與性質、參數方程與極坐標方程等。

  7.集合與函數:包括集合與集合運算、函數與映射、函數圖像與性質、指數與指數冪、對數與對數運算、函數圖像變換等。

  8.三角函數:包括三角函數的概念與圖像、同角三角函數基本關系式、正弦函數和余弦函數的圖像與性質、正切函數的圖像與性質、兩角和與差的正弦、余弦和正切函數、二倍角公式等。

  9.數列:包括數列的概念與表示、等差數列與等比數列的概念與性質、數列的通項公式與通項公式求法、數列的求和公式、數列的極限等。

  10.立體幾何:包括多面體和旋轉體的體積和表面積、平面基本性質、直線和平面、平面和平面、直線、平面之間的位置關系、平行和垂直的判定和性質、以及角度和平面角、距離等。

  以上是高中數學知識點總結,具體的學習方法和應對考試技巧需要根據個人情況來制定。

高中數學知識點總結6

  簡單隨機抽樣的定義:

  一般地,設一個總體含有N個個體,從中逐個不放回地抽取n個個體作為樣本(n≤N),如果每次抽取時總體內的各個個體被抽到的機會都相等,就把這種抽樣方法叫做簡單隨機抽樣。

  簡單隨機抽樣的特點:

  (1)用簡單隨機抽樣從含有N個個體的總體中抽取一個容量為n的樣本時,每次抽取一個個體時任一個體被抽到的概率為___;在整個抽樣過程中各個個體被抽到的概率為____。

  (2)簡單隨機抽樣的特點是,逐個抽取,且各個個體被抽到的概率相等。

  (3)簡單隨機抽樣方法,體現了抽樣的客觀性與公平性,是其他更復雜抽樣方法的基礎。

  (4)簡單隨機抽樣是不放回抽樣;它是逐個地進行抽取;它是一種等概率抽樣。

  簡單抽樣常用方法:

  (1)抽簽法:先將總體中的`所有個體(共有N個)編號(號碼可從1到N),并把號碼寫在形狀、大小相同的號簽上(號簽可用小球、卡片、紙條等制作),然后將這些號簽放在同一個箱子里,進行均勻攪拌,抽簽時每次從中抽一個號簽,連續抽取n次,就得到一個容量為n的樣本適用范圍:總體的個體數不多時優點:抽簽法簡便易行,當總體的個體數不太多時適宜采用抽簽法。

  (2)隨機數表法:隨機數表抽樣“三步曲”:第一步,將總體中的個體編號;第二步,選定開始的數字;第三步,獲取樣本號碼概率。

高中數學知識點總結7

  等比數列公式性質知識點

  1.等比數列的有關概念

  (1)定義:

  如果一個數列從第2項起,每一項與它的前一項的比等于同一個常數(不為零),那么這個數列就叫做等比數列.這個常數叫做等比數列的公比,通常用字母q表示,定義的表達式為an+1/an=q(n∈N_,q為非零常數).

  (2)等比中項:

  如果a、G、b成等比數列,那么G叫做a與b的等比中項.即:G是a與b的等比中項a,G,b成等比數列G2=ab.

  2.等比數列的有關公式

  (1)通項公式:an=a1qn-1.

  3.等比數列{an}的常用性質

  (1)在等比數列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N_),則am·an=ap·aq=a.

  特別地,a1an=a2an-1=a3an-2=….

  (2)在公比為q的等比數列{an}中,數列am,am+k,am+2k,am+3k,…仍是等比數列,公比為qk;數列Sm,S2m-Sm,S3m-S2m,…仍是等比數列(此時q≠-1);an=amqn-m.

  4.等比數列的特征

  (1)從等比數列的定義看,等比數列的任意項都是非零的',公比q也是非零常數.

  (2)由an+1=qan,q≠0并不能立即斷言{an}為等比數列,還要驗證a1≠0.

  5.等比數列的前n項和Sn

  (1)等比數列的前n項和Sn是用錯位相減法求得的,注意這種思想方法在數列求和中的運用.

  (2)在運用等比數列的前n項和公式時,必須注意對q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導致解題失誤.

  等比數列知識點

  1.等比中項

  如果在a與b中間插入一個數G,使a,G,b成等比數列,那么G叫做a與b的等比中項。

  有關系:

  注:兩個非零同號的實數的等比中項有兩個,它們互為相反數,所以G2=ab是a,G,b三數成等比數列的必要不充分條件。

  2.等比數列通項公式

  an=a1_q’(n-1)(其中首項是a1,公比是q)

  an=Sn-S(n-1)(n≥2)

  前n項和

  當q≠1時,等比數列的前n項和的公式為

  Sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)

  當q=1時,等比數列的前n項和的公式為

  Sn=na1

  3.等比數列前n項和與通項的關系

  an=a1=s1(n=1)

  an=sn-s(n-1)(n≥2)

  4.等比數列性質

  (1)若m、n、p、q∈N_,且m+n=p+q,則am·an=ap·aq;

  (2)在等比數列中,依次每k項之和仍成等比數列。

  (3)從等比數列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

  (4)等比中項:q、r、p成等比數列,則aq·ap=ar2,ar則為ap,aq等比中項。

  記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

  另外,一個各項均為正數的等比數列各項取同底指數冪后構成一個等差數列;反之,以任一個正數C為底,用一個等差數列的各項做指數構造冪Can,則是等比數列。在這個意義下,我們說:一個正項等比數列與等差數列是“同構”的。

  (5)等比數列前n項之和Sn=a1(1-q’n)/(1-q)

  (6)任意兩項am,an的`關系為an=am·q’(n-m)

  (7)在等比數列中,首項a1與公比q都不為零。

  注意:上述公式中a’n表示a的n次方。

  等比數列知識點總結

  等比數列:如果一個數列從第2項起,每一項與它的前一項的比等于同一個常數,這個數列就叫做等比數列。這個常數叫做等比數列的公比,公比通常用字母q表示(q≠0)。

  1:等比數列通項公式:an=a1_q^(n-1);推廣式:an=am·q^(n-m);

  2:等比數列求和公式:等比求和:Sn=a1+a2+a3+.......+an

  ①當q≠1時,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)

  ②當q=1時,Sn=n×a1(q=1)記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

  3:等比中項:aq·ap=ar^2,ar則為ap,aq等比中項。

  4:性質:

  ①若m、n、p、q∈N,且m+n=p+q,則am·an=ap_aq;

  ②在等比數列中,依次每k項之和仍成等比數列.

  例題:設ak,al,am,an是等比數列中的第k、l、m、n項,若k+l=m+n,求證:ak_al=am_an

  證明:設等比數列的首項為a1,公比為q,則ak=a1·q^(k-1),al=a1·q^(l-1),am=a1·q^(m-1),an=a1·q^(n-1)

  所以:ak_al=a^2_q^(k+l-2),am_an=a^2_q(m+n-2),故:ak_al=am_an

  說明:這個例題是等比數列的一個重要性質,它在解題中常常會用到。它說明等比數列中距離兩端(首末兩項)距離等遠的兩項的乘積等于首末兩項的乘積,即:a(1+k)·a(n-k)=a1·an

  對于等差數列,同樣有:在等差數列中,距離兩端等這的兩項之和等于首末兩項之和。即:a(1+k)+a(n-k)=a1+an

高中數學知識點總結8

  1.有關平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復遇到的,而且是以各種各樣的問題(包括論證、計算角、與距離等)中不可缺少的內容,因此在主體幾何的總復習中,首先應從解決平行與垂直的有關問題著手,通過較為基本問題,熟悉公理、定理的內容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉化的思想,以提高邏輯思維能力和空間想象能力。

  2. 判定兩個平面平行的方法:

  (1)根據定義--證明兩平面沒有公共點;

  (2)判定定理--證明一個平面內的兩條相交直線都平行于另一個平面;

  (3)證明兩平面同垂直于一條直線。

  3.兩個平面平行的主要性質:

  (1)由定義知:兩平行平面沒有公共點。

  (2)由定義推得:兩個平面平行,其中一個平面內的直線必平行于另一個平面。

  (3)兩個平面平行的性質定理:如果兩個平行平面同時和第三個平面相交,那么它們的交線平行。

  (4)一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面。

  (5)夾在兩個平行平面間的平行線段相等。

  (6)經過平面外一點只有一個平面和已知平面平行。

  以上性質(2)、(3)、(5)、(6)在課文中雖未直接列為性質定理,但在解題過程中均可直接作為性質定理引用。

  數學必修單元知識點

  第一,函數與導數。主要考查集合運算、函數的有關概念定義域、值域、解析式、函數的極限、連續、導數。

  第二,平面向量與三角函數、三角變換及其應用。這一部分是高考的重點但不是難點,主要出一些基礎題或中檔題。

  第三,數列及其應用。這部分是高考的重點而且是難點,主要出一些綜合題。

  第四,不等式。主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小。是高考的重點和難點

  第五,概率和統計。這部分和我們的生活聯系比較大,屬應用題。

  第六,空間位置關系的定性與定量分析,主要是證明平行或垂直,求角和距離。

  第七,解析幾何。是高考的難點,運算量大,一般含參數。

  高中數學知識點梳理

  函數與導數

  第一、求函數定義域題忽視細節函數的定義域是使函數有意義的自變量的取值范圍,考生想要在考場上準確求出定義域,就要根據函數解析式把各種情況下的自變量的限制條件找出來,列成不等式組,不等式組的解集就是該函數的定義域。

  在求一般函數定義域時,要注意以下幾點:分母不為0;偶次被開放式非負;真數大于0以及0的0次冪無意義。函數的定義域是非空的數集,在解答函數定義域類的題時千萬別忘了這一點。復合函數要注意外層函數的定義域由內層函數的值域決定。

  第二、帶絕對值的函數單調性判斷錯誤帶絕對值的函數實質上就是分段函數,判斷分段函數的單調性有兩種方法:第一,在各個段上根據函數的解析式所表示的函數的單調性求出單調區間,然后對各個段上的單調區間進行整合;第二,畫出這個分段函數的圖象,結合函數圖象、性質能夠進行直觀的判斷。函數題離不開函數圖象,而函數圖象反應了函數的所有性質,考生在解答函數題時,要第一時間在腦海中畫出函數圖象,從圖象上分析問題,解決問題。

  對于函數不同的單調遞增(減)區間,千萬記住,不要使用并集,指明這幾個區間是該函數的單調遞增(減)區間即可。

  第三、求函數奇偶性的常見錯誤求函數奇偶性類的題最常見的錯誤有求錯函數定義域或忽視函數定義域,對函數具有奇偶性的前提條件不清,對分段函數奇偶性判斷方法不當等等。判斷函數的奇偶性,首先要考慮函數的定義域,一個函數具備奇偶性的必要條件是這個函數的定義域區間關于原點對稱,如果不具備這個條件,函數一定是非奇非偶的函數。在定義域區間關于原點對稱的前提下,再根據奇偶函數的定義進行判斷。

  在用定義進行判斷時,要注意自變量在定義域區間內的.任意性。

  第四、抽象函數推理不嚴謹很多抽象函數問題都是以抽象出某一類函數的共同特征而設計的,在解答此類問題時,考生可以通過類比這類函數中一些具體函數的性質去解決抽象函數。多用特殊賦值法,通過特殊賦可以找到函數的不變性質,這往往是問題的突破口。

  抽象函數性質的證明屬于代數推理,和幾何推理證明一樣,考生在作答時要注意推理的嚴謹性。每一步都要有充分的條件,別漏掉條件,更不能臆造條件,推理過程層次分明,還要注意書寫規范。

  第五、函數零點定理使用不當若函數y=f(x)在區間[a,b]上的圖象是連續不斷的一條曲線,且有f(a)f(b)0。那么函數y=f(x)在區間(a,b)內有零點,即存在c(a,b),使得f(c)=0。這個c也可以是方程f(c)=0的根,稱之為函數的零點定理,分為變號零點和不變號零點,而對于不變號零點,函數的零點定理是無能為力的,在解決函數的零點時,考生需格外注意這類問題。

  第六、混淆兩類切線曲線上一點處的切線是指以該點為切點的曲線的切線,這樣的切線只有一條;曲線的過一個點的切線是指過這個點的曲線的所有切線,這個點如果在曲線上當然包括曲線在該點處的切線,曲線的過一個點的切線可能不止一條。

  因此,考生在求解曲線的切線問題時,首先要區分是什么類型的切線。

  第七、混淆導數與單調性的關系一個函數在某個區間上是增函數的這類題型,如果考生認為函數的導函數在此區間上恒大于0,很容易就會出錯。

  解答函數的單調性與其導函數的關系時一定要注意,一個函數的導函數在某個區間上單調遞增(減)的充要條件是這個函數的導函數在此區間上恒大(小)于等于0,且導函數在此區間的任意子區間上都不恒為零。

  第八、導數與極值關系不清考生在使用導數求函數極值類問題時,容易出現的錯誤就是求出使導函數等于0的點,卻沒有對這些點左右兩側導函數的符號進行判斷,誤以為使導函數等于0的點就是函數的極值點,往往就會出錯,出錯原因就是考生對導數與極值關系沒搞清楚。

高中數學知識點總結9

  空間兩條直線只有三種位置關系:平行、相交、異面。

  按是否共面可分為兩類:

  (1)共面:平行、相交

  (2)異面:

  異面直線的定義:不同在任何一個平面內的兩條直線或既不平行也不相交。

  異面直線判定定理:用平面內一點與平面外一點的直線,與平面內不經過該點的直線是異面直線。

  兩異面直線所成的角:范圍為(0°,90°)esp。空間向量法。

  兩異面直線間距離:公垂線段(有且只有一條)esp。空間向量法。

  若從有無公共點的角度看可分為兩類:

  (1)有且僅有一個公共點——相交直線;(2)沒有公共點——平行或異面。

  直線和平面的位置關系:

  直線和平面只有三種位置關系:在平面內、與平面相交、與平面平行。

  ①直線在平面內——有無數個公共點

  ②直線和平面相交——有且只有一個公共點

  直線與平面所成的角:平面的一條斜線和它在這個平面內的射影所成的銳角。

  空間向量法(找平面的法向量)

  規定:a、直線與平面垂直時,所成的角為直角;b、直線與平面平行或在平面內,所成的角為0°角。

  由此得直線和平面所成角的取值范圍為[0°,90°]。

  最小角定理:斜線與平面所成的角是斜線與該平面內任一條直線所成角中的最小角。

  三垂線定理及逆定理:如果平面內的一條直線,與這個平面的一條斜線的射影垂直,那么它也與這條斜線垂直。

  直線和平面垂直

  直線和平面垂直的定義:如果一條直線a和一個平面內的任意一條直線都垂直,我們就說直線a和平面互相垂直。直線a叫做平面的垂線,平面叫做直線a的垂面。

  直線與平面垂直的判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直于這個平面。

  直線與平面垂直的性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。直線和平面平行——沒有公共點

  直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。

  直線和平面平行的判定定理:如果平面外一條直線和這個平面內的一條直線平行,那么這條直線和這個平面平行。

  直線和平面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那么這條直線和交線平行。

  數學常用解題技巧有哪些

  第一,應堅持由易到難的做題順序。近年來高考數學試題的設置是8道選擇題、6道填空題、6到大題,通常稱為866結構。在實體設置的結構中有三個小高峰,選擇題是由易到難,最難的題是第8題。填空題同樣是這樣設置的。也是第9題容易到第14題最難,大題從第15題到第20題,它們的設置也是這樣的。根據這樣的試題結構,應先做前面容易的,基礎好一點的考生就先做前7個選擇,前5個填空、前5個大題,稱為是755結構。基礎差的就是644,先把自己能做的、會做的拿到手。這是第一點。

  第二,審題是關鍵。把題給看清楚了再動筆答題,看清楚題以后問什么、已知什么、讓你做什么,把這些問題搞清楚了,自己制訂了一個完整的解題策略,在開始寫的時候,這個時候是很快就可以完成的。

  第三,屬于非智力因素導致想不起來。本來是很簡單的題比如說是做到第三題、第四題的時候不是難題,但想不起來了,卡住了,這時候怎么辦?雖然是簡單題卻不會做怎么辦?應先跳過去,不是這道題不會做嗎?后面還有很多的簡單題呢,把后面的題做一做,不要在考場上愣神,先跳過去做其他的題,等穩定下來以后再回過頭來看會頓悟,豁然開朗。

  第四,做選擇題的時候應運用最好的解題方法。因為選擇題和填空題都是看結果不看過程,因此在這個過程中都應不擇手段,只要是能把正確的結論找到就行。考生常用的方法是直接法,從已知的開始也不看它的四個選項,從頭到尾寫完了之后一看答案就寫上去了。另外就是特質法(音),一些出現字母、特別是不等式,這時候給它賦一個值,代進去這時候速度會比較快,正確地找出結果來。再就是數形結合法。最后實在不行了,就將四個選項代入驗證,看看哪個符合就是哪個了。填空題用上述的.直接法、特質法、數形結合法三種方法都適合。做大題的時候要特別注意解題步驟,規范答題可以減少失分。簡單地說,規范答題就是從上一步的原因到下一步的結論,這是一個必然的過程,讓誰寫、誰看都是這樣的。因為什么所以什么是一個必然的過程,這是規范答題。

  學霸分享的數學復習技巧

  1、把答案蓋住看例題

  例題不能帶著答案去看,不然會認為自己就是這么,其實自己并沒有理解透徹。

  所以,在看例題時,把解答蓋住,自己去做,做完或做不出時再去看。這時要想一想,自己做的哪里與解答不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。

  經過上面的訓練,自己的思維空間擴展了,看問題也全面了。如果把題目徹底搞清了,在題后精煉幾個批注,說明此題的“題眼”及巧妙之處,收獲會更大。

  2、研究每題都考什么

  數學能力的提高離不開做題,“熟能生巧”這個簡單的道理大家都懂。但做題不是搞題海戰術,而是要通過一題聯想到很多題。

  3、錯一次反思一次

  每次業及考試或多或少會發生些錯誤,這并不可怕,要緊的是避免類似的錯誤再次重現。因此平時注意把錯題記下來。

  學生若能將每次考試或練習中出現的錯誤記錄下來分析,并盡力保證在下次考試時不發生同樣錯誤,那么以后人生中最重要的高考也就能避免犯錯了.

  4、分析試卷總結經驗

  每次考試結束試卷發下來,要認真分析得失,總結經驗教訓。特別是將試卷中出現的錯誤進行分類。

  數學解題方法分別有哪些

  1、配方法

  所謂的公式是使用變換解析方程的同構方法,并將其中的一些分配給一個或多個多項式正整數冪的和形式。通過配方解決數學問題的公式。其中,用的最多的是配成完全平方式。匹配方法是數學中不斷變形的重要方法,其應用非常廣泛,在分解,簡化根,它通常用于求解方程,證明方程和不等式,找到函數的極值和解析表達式。

  2、因式分解法

  因式分解是將多項式轉換為幾個積分產品的乘積。分解是恒定變形的基礎。除了引入中學教科書中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進行因式分解。還有一些項目,如拆除物品的使用,根分解,替換,未確定的系數等等。

  3、換元法

  替代方法是數學中一個非常重要和廣泛使用的解決問題的方法。我們通常稱未知或變元。用新的參數替換原始公式的一部分或重新構建原始公式可以更簡單,更容易解決。

  4、判別式法與韋達定理

  一元二次方程 ax2+ bx+ c=0( a、 b、 c屬于 R, a≠0)根的判別, = b2-4 ac,不僅用來確定根的性質,還作為一個問題解決方法,代數變形,求解方程(組),求解不等式,研究函數,甚至幾何以及三角函數都有非常廣泛的應用。

  韋達定理除了知道二次方程的根外,還找到另一根;考慮到兩個數的和和乘積的簡單應用并尋找這兩個數,也可以找到根的對稱函數并量化二次方程根的符號。求解對稱方程并解決一些與二次曲線有關的問題等,具有非常廣泛的應用。

  5、待定系數法

  在解決數學問題時,如果我們首先判斷我們所尋找的結果具有一定的形式,其中包含某些未決的系數,然后根據問題的條件列出未確定系數的方程,最后找到未確定系數的值或這些待定系數之間的關系。為了解決數學問題,這種問題解決方法被稱為待定系數法。它是中學數學中常用的方法之一。

  6、構造法

  在解決問題時,我們通常通過分析條件和結論來使用這些方法來構建輔助元素。它可以是一個圖表,一個方程(組),一個方程,一個函數,一個等價的命題等,架起連接條件和結論的橋梁。為了解決這個問題,這種解決問題的數學方法,我們稱之為構造方法。運用結構方法解決問題可以使代數,三角形,幾何等數學知識相互滲透,有助于解決問題。

  數學經常遇到的問題解答

  1、要提高數學成績首先要做什么?

  這一點,是很多學生所關注的,要提高數學成績,首先就應該從基礎知識學起。不少同學覺得基礎知識過于簡單,看兩遍基本上就都會了。這種“自我感覺良好”其實是一種錯覺,而真正考試時又覺得無從下手,這還是基礎不牢的表現,因此要提高數學成績先要把基礎夯實。

  2、基礎不好怎么學好數學?

  對于基礎差的同學來說,課本是就是學好數學的秘籍,把課本上的定義、公式、定理全部弄懂,力爭在理解的基礎上全部背熟,每一道例題、每一道課后題都要掌握。我們知道只有把公式、定理爛熟于心,才能舉一反三、活學活用,把課本的知識學透有兩個好處,第一,強化基礎;第二,提高得分能力。

  3、是否要采用題海戰術?

  方法君曾不止一次提到了“題海戰術”,題海戰術究竟可不可取呢?“題海戰術”其實也是一種學習方法,但很多學生只知道做題,不懂得總結,體現不出任何的學習效果。因此在做題后要總結至關重要,只有認真總結才能不斷積累做題經驗,這樣才能取得理想成績。

  4、做題總是粗心怎么辦?

  很多學生成績不好,會說自己是因為粗心導致的,其實“粗心”只是借口,真正的原因就是題做得少、基礎知識不牢、沒有清晰的解題思路、計算能力不強。因此在平時的學習中,一定要注重熟練度和精準度的練習。如果總是給自己找“粗心”的借口,也就變相否定了自己的學習弱點,所以,要告訴自己,高中數學沒有“粗心”只有“不用心”。

高中數學知識點總結10

  一次函數

  一、定義與定義式:

  自變量x和因變量y有如下關系:

  y=kx+b

  則此時稱y是x的一次函數。

  特別地,當b=0時,y是x的正比例函數。

  即:y=kx (k為常數,k0)

  二、一次函數的性質:

  1、y的變化值與對應的x的變化值成正比例,比值為k

  即:y=kx+b (k為任意不為零的實數b取任何實數)

  2、當x=0時,b為函數在y軸上的截距。

  三、一次函數的圖像及性質:

  1、作法與圖形:通過如下3個步驟

  (1)列表;

  (2)描點;

  (3)連線,可以作出一次函數的圖像一條直線。因此,作一次函數的圖像只需知道2點,并連成直線即可。(通常找函數圖像與x軸和y軸的交點)

  2、性質:(1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(—b/k,0)正比例函數的圖像總是過原點。

  3、k,b與函數圖像所在象限:

  當k0時,直線必通過一、三象限,y隨x的增大而增大;

  當k0時,直線必通過二、四象限,y隨x的增大而減小。

  當b0時,直線必通過一、二象限;

  當b=0時,直線通過原點

  當b0時,直線必通過三、四象限。

  特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數的圖像。

  這時,當k0時,直線只通過一、三象限;當k0時,直線只通過二、四象限。

  四、確定一次函數的表達式:

  已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數的表達式。

  (1)設一次函數的表達式(也叫解析式)為y=kx+b。

  (2)因為在一次函數上的任意一點P(x,y),都滿足等式y=kx+b。所以可以列出2個方程:y1=kx1+b ①和y2=kx2+b ②

  (3)解這個二元一次方程,得到k,b的值。

  (4)最后得到一次函數的表達式。

  五、一次函數在生活中的應用:

  1、當時間t一定,距離s是速度v的一次函數。s=vt。

  2、當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數。設水池中原有水量S。g=S—ft。

  六、常用公式:(不全,希望有人補充)

  1、求函數圖像的k值:(y1—y2)/(x1—x2)

  2、求與x軸平行線段的中點:|x1—x2|/2

  3、求與y軸平行線段的中點:|y1—y2|/2

  4、求任意線段的長:(x1—x2)^2+(y1—y2)^2 (注:根號下(x1—x2)與(y1—y2)的平方和)

  二次函數

  I、定義與定義表達式

  一般地,自變量x和因變量y之間存在如下關系:

  y=ax^2+bx+c

  (a,b,c為常數,a0,且a決定函數的開口方向,a0時,開口方向向上,a0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大、)

  則稱y為x的二次函數。

  二次函數表達式的右邊通常為二次三項式。

  II、二次函數的三種表達式

  一般式:y=ax^2+bx+c(a,b,c為常數,a0)

  頂點式:y=a(x—h)^2+k [拋物線的頂點P(h,k)]

  交點式:y=a(x—x)(x—x ) [僅限于與x軸有交點A(x,0)和B(x,0)的拋物線]

  注:在3種形式的互相轉化中,有如下關系:

  h=—b/2ak=(4ac—b^2)/4a x,x=(—bb^2—4ac)/2a

  III、二次函數的圖像

  在平面直角坐標系中作出二次函數y=x^2的圖像,

  可以看出,二次函數的圖像是一條拋物線。

  IV、拋物線的性質

  1、拋物線是軸對稱圖形。對稱軸為直線

  x= —b/2a。

  對稱軸與拋物線唯一的交點為拋物線的頂點P。

  特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

  2、拋物線有一個頂點P,坐標為

  P( —b/2a,(4ac—b^2)/4a )

  當—b/2a=0時,P在y軸上;當= b^2—4ac=0時,P在x軸上。

  3、二次項系數a決定拋物線的開口方向和大小。

  當a0時,拋物線向上開口;當a0時,拋物線向下開口。

  |a|越大,則拋物線的開口越小。

  4、一次項系數b和二次項系數a共同決定對稱軸的位置。

  當a與b同號時(即ab0),對稱軸在y軸左;

  當a與b異號時(即ab0),對稱軸在y軸右。

  5、常數項c決定拋物線與y軸交點。

  拋物線與y軸交于(0,c)

  6、拋物線與x軸交點個數

  = b^2—4ac0時,拋物線與x軸有2個交點。

  = b^2—4ac=0時,拋物線與x軸有1個交點。

  = b^2—4ac0時,拋物線與x軸沒有交點。X的取值是虛數(x= —bb^2—4ac的值的相反數,乘上虛數i,整個式子除以2a)

  V、二次函數與一元二次方程

  特別地,二次函數(以下稱函數)y=ax^2+bx+c,

  當y=0時,二次函數為關于x的一元二次方程(以下稱方程),

  即ax^2+bx+c=0

  此時,函數圖像與x軸有無交點即方程有無實數根。

  函數與x軸交點的橫坐標即為方程的根。

  1、二次函數y=ax^2,y=a(x—h)^2,y=a(x—h)^2+k,y=ax^2+bx+c(各式中,a0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:

  解析式頂點坐標對稱軸

  y=ax^2(0,0) x=0

  y=a(x—h)^2(h,0) x=h

  y=a(x—h)^2+k(h,k) x=h

  y=ax^2+bx+c(—b/2a,[4ac—b^2]/4a) x=—b/2a

  當h0時,y=a(x—h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

  當h0時,則向左平行移動|h|個單位得到、

  當h0,k0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x—h)^2+k的圖象;

  當h0,k0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x—h)^2+k的圖象;

  當h0,k0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x—h)^2+k的圖象;

  當h0,k0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(x—h)^2+k的圖象;

  因此,研究拋物線y=ax^2+bx+c(a0)的圖象,通過配方,將一般式化為y=a(x—h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了、這給畫圖象提供了方便、

  2、拋物線y=ax^2+bx+c(a0)的圖象:當a0時,開口向上,當a0時開口向下,對稱軸是直線x=—b/2a,頂點坐標是(—b/2a,[4ac—b^2]/4a)、

  3、拋物線y=ax^2+bx+c(a0),若a0,當x —b/2a時,y隨x的增大而減小;當x —b/2a時,y隨x的.增大而增大、若a0,當x —b/2a時,y隨x的增大而增大;當x —b/2a時,y隨x的增大而減小、

  4、拋物線y=ax^2+bx+c的圖象與坐標軸的交點:

  (1)圖象與y軸一定相交,交點坐標為(0,c);

  (2)當△=b^2—4ac0,圖象與x軸交于兩點A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=

  (a0)的兩根、這兩點間的距離AB=|x—x|

  當△=0、圖象與x軸只有一個交點;

  當△0、圖象與x軸沒有交點、當a0時,圖象落在x軸的上方,x為任何實數時,都有y0;當a0時,圖象落在x軸的下方,x為任何實數時,都有y0、

  5、拋物線y=ax^2+bx+c的最值:如果a0(a0),則當x= —b/2a時,y最小(大)值=(4ac—b^2)/4a、

  頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值、

  6、用待定系數法求二次函數的解析式

  (1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:

  y=ax^2+bx+c(a0)、

  (2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x—h)^2+k(a0)、

  (3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x—x)(x—x)(a0)、

  7、二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現、

  反比例函數

  形如y=k/x(k為常數且k0)的函數,叫做反比例函數。

  自變量x的取值范圍是不等于0的一切實數。

  反比例函數圖像性質:

  反比例函數的圖像為雙曲線。

  由于反比例函數屬于奇函數,有f(—x)=—f(x),圖像關于原點對稱。

  另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

  如圖,上面給出了k分別為正和負(2和—2)時的函數圖像。

  當K0時,反比例函數圖像經過一,三象限,是減函數

  當K0時,反比例函數圖像經過二,四象限,是增函數

  反比例函數圖像只能無限趨向于坐標軸,無法和坐標軸相交。

  知識點:

  1、過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為| k |。

  2、對于雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/(xm)m為常數),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)

高中數學知識點總結11

  空間兩條直線只有三種位置關系:平行、相交、異面

  按是否共面可分為兩類:

  (1)共面:平行、相交

  (2)異面:

  異面直線的定義:不同在任何一個平面內的兩條直線或既不平行也不相交。

  異面直線判定定理:用平面內一點與平面外一點的直線,與平面內不經過該點的直線是異面直線。

  兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法

  兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法

  若從有無公共點的角度看可分為兩類:

  (1)有且僅有一個公共點——相交直線;

  (2)沒有公共點——平行或異面

  直線和平面的位置關系:

  直線和平面只有三種位置關系:在平面內、與平面相交、與平面平行

  ①直線在平面內——有無數個公共點

  ②直線和平面相交——有且只有一個公共點

  直線與平面所成的角:平面的一條斜線和它在這個平面內的射影所成的`銳角。

  空間向量法(找平面的法向量)

  規定:

  a、直線與平面垂直時,所成的角為直角,

  b、直線與平面平行或在平面內,所成的角為0°角

  由此得直線和平面所成角的取值范圍為[0°,90°]

  最小角定理:斜線與平面所成的角是斜線與該平面內任一條直線所成角中的最小角

  三垂線定理及逆定理:如果平面內的一條直線,與這個平面的一條斜線的射影垂直,那么它也與這條斜線垂直

  直線和平面垂直

  直線和平面垂直的定義:如果一條直線a和一個平面內的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。

  直線與平面垂直的判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直于這個平面。

  直線與平面垂直的性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。③直線和平面平行——沒有公共點

  直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。

  直線和平面平行的判定定理:如果平面外一條直線和這個平面內的一條直線平行,那么這條直線和這個平面平行。

  直線和平面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那么這條直線和交線平行。

高中數學知識點總結12

  集合的分類:

  (1)按元素屬性分類,如點集,數集。

  (2)按元素的個數多少,分為有/無限集

  關于集合的概念:

  (1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。

  (2)互異性:對于一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。

  (3)無序性:判斷一些對象時候構成集合,關鍵在于看這些對象是否有明確的標準。

  集合可以根據它含有的元素的個數分為兩類:

  含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。

  非負整數全體構成的集合,叫做自然數集,記作N。

  在自然數集內排除0的集合叫做正整數集,記作N+或N_。

  整數全體構成的集合,叫做整數集,記作Z。

  有理數全體構成的集合,叫做有理數集,記作Q。(有理數是整數和分數的統稱,一切有理數都可以化成分數的形式。)

  實數全體構成的集合,叫做實數集,記作R。(包括有理數和無理數。其中無理數就是無限不循環小數,有理數就包括整數和分數。數學上,實數直觀地定義為和數軸上的'點一一對應的數。)

  1、列舉法:如果一個集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括號“{}”內表示這個集合,例如,由兩個元素0,1構成的集合可表示為{0,1}。

  有些集合的元素較多,元素的排列又呈現一定的規律,在不致于發生誤解的情況下,也可以列出幾個元素作為代表,其他元素用省略號表示。

  例如:不大于100的自然數的全體構成的集合,可表示為{0,1,2,3,…,100}。

  無限集有時也用上述的列舉法表示,例如,自然數集N可表示為{1,2,3,…,n,…}。

  2、描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質來描述。

  例如:正偶數構成的集合,它的每一個元素都具有性質:“能被2整除,且大于0”

  而這個集合外的.其他元素都不具有這種性質,因此,我們可以用上述性質把正偶數集合表示為{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括號內豎線左邊的X表示這個集合的任意一個元素,元素X從實數集合中取值,在豎線右邊寫出只有集合內的元素x才具有的性質。

  一般地,如果在集合I中,屬于集合A的任意一個元素x都具有性質p(x),而不屬于集合A的元素都不具有的性質p(x),則性質p(x)叫做集合A的一個特征性質。于是,集合A可以用它的性質p(x)描述為{x∈I│p(x)}它表示集合A是由集合I中具有性質p(x)的所有元素構成的,這種表示集合的方法,叫做特征性質描述法,簡稱描述法。

  例如:集合A={x∈R│x2—1=0}的特征是X2—1=0

高中數學知識點總結13

  1、算法的概念:

  ①由基本運算及規定的運算順序所構成的完整的解題步驟,或者是按照要求設計好的有限的計算序列,并且這樣的步驟或序列能解決一類問題。

  ②算法的五個重要特征:

  ⅰ有窮性:一個算法必須保證執行有限步后結束;

  ⅱ確切性:算法的每一步必須有確切的定義;

  ⅲ可行性:算法原則上能夠精確地運行,而且人們用筆和紙做有限次即可完成;

  ⅳ輸入:一個算法有0個或多個輸入,以刻劃運算對象的初始條件。所謂0個輸入是指算法本身定出了初始條件。

  ⅴ輸出:一個算法有1個或多個輸出,以反映對輸入數據加工后的結果。沒有輸出的算法是毫無意義的。

  2、程序框圖也叫流程圖,是人們將思考的過程和工作的順序進行分析、整理,用規定的文字、符號、圖形的組合加以直觀描述的方法

  (1)程序框圖的基本符號:

  (2)畫流程圖的基本規則:

  ①使用標準的框圖符號

  ②從上倒下、從左到右

  ③開始符號只有一個退出點,結束符號只有一個進入點,判斷符號允許有多個退出點

  ④判斷可以是兩分支結構,也可以是多分支結構

  ⑤語言簡練

  ⑥循環框可以被替代

  3、三種基本的邏輯結構:順序結構、條件結構和循環結構

  (1)順序結構:

  順序結構描述的是是最簡單的算法結構,語句與語句之間,框與框之間是按從上到下的順序進行的。

  (2)條件結構:分支結構的一般形式

  兩種結構的共性:

  ①一個入口,一個出口。特別注意:一個判斷框可以有兩個出口,但一個條件分支結構只有一個出口。

  ②結構中每個部分都有可能被執行,即對每一個框都有從入口進、出口出的路徑。

  以上兩點是用來檢查流程圖是否合理的基本方法(當然,學習循環結構后,循環結構也有此特點)

  (3)循環結構的一般形式:

  在一些算法中,經常會出現從某處開始,按照一定條件,反復執行某一處理步驟的情況,這就是循環結構,反復執行的處理步驟為循環體,顯然,循環結構中一定包含條件結構。

  循環結構又稱重復結構,循環結構可細分為兩類:

  ①如左下圖所示,它的功能是當給定的條件成立時,執行A框,框執行完畢后,再判斷條件是否成立,如果仍然成立,再執行A框,如此反復執行框,直到某一次條件不成立為止,此時不再執行A框,從b離開循環結構。

  ②如右上圖所示,它的功能是先執行,然后判斷給定的條件是否成立,如果仍然不成立,則繼續執行A框,直到某一次給定的條件成立為止,此時不再執行A框,從b點離開循環結構。

  高中數學算法初步知識點:算法的基本語句

  (1)賦值語句:在表述一個算法時,經常要引入變量,并賦給該變量一個值,用來表明賦給某一個變量的一個具體的確定值的語句叫做賦值語句。

  賦值語句的一般格式:變量名表達式

  ①=的意義和作用:賦值語句中的=號,稱作賦值號。

  ②賦值語句的作用:先計算出賦值號右邊表達式的值,然后把該值賦給賦值號左邊的變量,使該變量的值等于表達式的值。

  ③關于賦值語句,需要注意幾點:

  ⅰ賦值號左邊只能是變量名,而不是表達式。例如3。6=X,5=y;都是錯誤的

  ⅱ賦值號左右不能對換:賦值語句是將賦值號右邊的表達式賦值給賦值號左邊的變量,例如:Y=X,表示用X的值替代變量Y原先的取值,不能改寫成X=Y,因為后者表示用Y的值替代變量X的值。

  ⅲ不能利用賦值語句進行代數式(或符號)的演算:在賦值語句中的賦值符號右邊的表達式中的每一個變量都必須事先賦值給確定的值,不能用賦值語句進行如化簡、因式分解等演算,在一個賦值語句中只能給一個變量賦值,不能出現兩個或多個=。

  ⅳ賦值號和數學中的等號的意義不同:賦值號左邊的變量如果原來沒有值,則在執行賦值語句后,獲得一個值。例如X=5;Y=1等;如果原來已經有值,則執行該語句后,以賦值號右邊表達式的值代替該變量的原值,即將原值沖掉。例如:N=N+1在數學中是不成立的,但在賦值語句中,意思是將N的原值加1再賦給N,即N的值增加1。

  計算機執行這種形式的條件語句時,也是首先對IF后的條件進行判斷,如果條件符合,就執行語句,如果條件不符合,則直接結束該條件語句,轉而執行其他語句。其對應的.程序框圖為:(如下圖)

  條件語句的作用:在程序執行過程中,根據判斷是否滿足約定的條件而決定是否需要轉換到何處去。需要計算機按條件進行分析、比較、判斷,并按判斷后的不同情況進行不同的處理。

  (3)循環結構:

  算法中的循環結構是由循環語句來實現的。對應于程序框圖中的兩種循環結構,一般程序設計語言中也有當型(WHILE型)和直到型(for型)兩種語句結構。即WHILE語句和UNTIL語句。

  ①WHILE語句的一般格式是:

  其中循環體是由計算機反復執行的一組語句構成的。WHLIE后面的條件是用于控制計算機執行循環體或跳出循環體的。

  當計算機遇到WHILE語句時,先判斷條件的真假,如果條件符合,就執行WHILE與END之間的循環體;然后再檢查上述條件,如果條件仍符合,再次執行循環體,這個過程反復進行,直到某一次條件不符合為止。這時,計算機將不執行循環體,直接跳到END語句后,接著執行END之后的語句。其對應的程序結構框圖為:(如下圖)

  其對應的程序結構框圖為:(如上圖)

  從for型循環結構分析,計算機執行該語句時,先把初始值賦給循環變量,記下終值和步長,并比較初值和中止,如果初值超過終值,就執行end以后的語句,否則執行for語句下面的語句,執行到end語句時,計算機讓循環變量增加一個步長值,然后用增值后的循環變量值與終值比較,如果超過終值,就執行for語句以后的語句。是先執行循環體后進行條件判斷的循環語句。

  高中數學算法初步知識點:復習點睛

  1、什么是算法:一般地,算法是指在解決問題時按照某種機械程序步驟一定可以得到結果的處理過程。這種程序必須是確定的、有效的、有限的。要了解算法的基本思想、基本結構、程序框圖、基本語句、算法案例等。

  2、四種基本的程序框:

  4、基本算法語句:賦值語句、條件語句、循環語句;

  5、解決分段函數的求值等問題,一般可采用條件結構來設計算法;

  6、對于有規律的計算問題,一般可采用循環結構設計算法;

  7、在WHILE語句中,是當條件滿足時執行循環體,而在for語句中,是當條件不滿足時執行循環體

高中數學知識點總結14

  平均值等于每個小長方形面積(即概率)乘每組橫坐標的中點,然后加和。

  平均數,首先得直方圖應該歸一化,也就是說所有矩形的面積之和為1,然后每個矩形的面積代表其底邊中點橫坐標的數的頻率,那么面積乘以橫坐標就相當于頻率乘以橫坐標,得到的當然是平均數。

  頻率直方圖中是沒有樣本數據的在某一個分組里,分布在這個分組的樣本數據沒法找得出來,然后也分布不均勻,所以就用這個組的中點的橫坐標來表示這個分組的樣本數據的平均值。

  而每一個小長方形的面積是表示相應的`頻率,(相當于相應數據的百分比)所以平均數等于每個小長方形的面積乘以相應的分組的底邊中點橫坐標的之和。

  頻率分布直方圖的運用

  頻率分布直方圖能清楚顯示各組頻數分布情況又易于顯示各組之間頻數的差別。它主要是為了將我們獲取的數據直觀、形象地表示出來,讓我們能夠更好了解數據的分布情況,因此其中組距、組數起關鍵作用。

  分組過少,數據就非常集中;分組過多,數據就非常分散,這就掩蓋了分布的特征。當數據在100以內時,一般分5~12組為宜。

  從頻率分布直方圖可以估計出的幾個數據:

  眾數:頻率分布直方圖中最高矩形的底邊中點的橫坐標 。

  算術平均數:頻率分布直方圖每組數值的中間值乘以頻率后相加。

  加權平均數:加權平均數就是所有的頻率乘以數值后的和相加。

  中位數:把頻率分布直方圖分成兩個面積相等部分的平行于Y軸的直線橫坐標。

高中數學知識點總結15

  什么是不等式?

  一般地,用純粹的大于號“>”、小于號“<”連接的不等式稱為嚴格不等式,用不小于號(大于或等于號)“≥”、不大于號(小于或等于號)“≤”連接的不等式稱為非嚴格不等式,或稱廣義不等式。總的來說,用不等號(<,>,≥,≤,≠)連接的式子叫做不等式。

  通常不等式中的數是實數,字母也代表實數,不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z)(其中不等號也可以為<,≤,≥,>中某一個),兩邊的解析式的公共定義域稱為不等式的定義域,不等式既可以表達一個命題,也可以表示一個問題。

  數學知識點1、不等式性質比較大小方法:

  (1)作差比較法(2)作商比較法

  不等式的基本性質

  ①對稱性:a > b,b > a

  ②傳遞性:a > b,b > ca > c

  ③可加性:a > b a + c > b + c

  ④可積性:a > b,c > 0,ac > bc

  ⑤加法法則:a > b,c > d,a + c > b + d

  ⑥乘法法則:a > b > 0,c > d > 0,ac > bd

  ⑦乘方法則:a > b > 0,an > bn(n∈N)

  ⑧開方法則:a > b > 0

  數學知識點2、算術平均數與幾何平均數定理:

  (1)如果a、b∈R,那么a2 + b2 ≥2ab;(當且僅當a=b時等號)

  (2)如果a、b∈R+,那么(當且僅當a=b時等號)推廣:

  如果為實數,則重要結論

  (1)如果積xy是定值P,那么當x=y時,和x+y有最小值2;

  (2)如果和x+y是定值S,那么當x=y時,和xy有最大值S2/4。

  數學知識點3、證明不等式的常用方法:

  比較法:比較法是最基本、最重要的方法。

  當不等式的兩邊的差能分解因式或能配成平方和的形式,則選擇作差比較法;當不等式的兩邊都是正數且它們的商能與1比較大小,則選擇作商比較法;碰到絕對值或根式,我們還可以考慮作平方差。

  綜合法:從已知或已證明過的不等式出發,根據不等式的'性質推導出欲證的不等式。綜合法的放縮經常用到均值不等式。

  分析法:不等式兩邊的聯系不夠清楚,通過尋找不等式成立的充分條件,逐步將欲證的不等式轉化,直到尋找到易證或已知成立的結論。

【高中數學知識點總結】相關文章:

高中數學幾何知識點總結10-31

高中數學基本的知識點總結09-28

高中數學知識點總結02-20

高中數學知識點總結05-15

高中數學知識點總結04-23

高中數學知識點必修總結08-18

高中數學必修三知識點總結06-17

高中數學考試知識點總結06-08

高中數學必修2知識點總結11-22

高中數學必修2知識點總結11-30