bb  (2)a>b,b>ca>c(傳遞性)  (3)a>ba+">

亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

時(shí)間:2023-06-08 11:28:54 知識(shí)點(diǎn)總結(jié) 我要投稿

高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié) (合集20篇)

  總結(jié)是在一段時(shí)間內(nèi)對(duì)學(xué)習(xí)和工作生活等表現(xiàn)加以總結(jié)和概括的一種書面材料,它可以提升我們發(fā)現(xiàn)問(wèn)題的能力,為此要我們寫一份總結(jié)?偨Y(jié)怎么寫才不會(huì)流于形式呢?下面是小編收集整理的高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié) ,供大家參考借鑒,希望可以幫助到有需要的朋友。

高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié) (合集20篇)

  高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1

  等式的性質(zhì):

 、俨坏仁降男再|(zhì)可分為不等式基本性質(zhì)和不等式運(yùn)算性質(zhì)兩部分。

  不等式基本性質(zhì)有:

  (1)a>bb

  (2)a>b,b>ca>c(傳遞性)

  (3)a>ba+c>b+c(c∈R)

  (4)c>0時(shí),a>bac>bc

  c<0時(shí),a>bac

  運(yùn)算性質(zhì)有:

  (1)a>b,c>da+c>b+d。

  (2)a>b>0,c>d>0ac>bd。

  (3)a>b>0an>bn(n∈N,n>1)。

  (4)a>b>0>(n∈N,n>1)。

  應(yīng)注意,上述性質(zhì)中,條件與結(jié)論的邏輯關(guān)系有兩種:“”和“”即推出關(guān)系和等價(jià)關(guān)系。一般地,證明不等式就是從條件出發(fā)施行一系列的推出變換。解不等式就是施行一系列的等價(jià)變換。因此,要正確理解和應(yīng)用不等式性質(zhì)。

 、陉P(guān)于不等式的性質(zhì)的考察,主要有以下三類問(wèn)題:

  (1)根據(jù)給定的不等式條件,利用不等式的性質(zhì),判斷不等式能否成立。

  (2)利用不等式的性質(zhì)及實(shí)數(shù)的性質(zhì),函數(shù)性質(zhì),判斷實(shí)數(shù)值的大小。

  (3)利用不等式的性質(zhì),判斷不等式變換中條件與結(jié)論間的充分或必要關(guān)系。

  高中數(shù)學(xué)集合復(fù)習(xí)知識(shí)點(diǎn)

  任一A,B,記做AB

  AB,BA ,A=B

  AB={|A|,且|B|}

  AB={|A|,或|B|}

  Card(AB)=card(A)+card(B)-card(AB)

  (1)命題

  原命題若p則q

  逆命題若q則p

  否命題若p則q

  逆否命題若q,則p

  (2)AB,A是B成立的充分條件

  BA,A是B成立的必要條件

  AB,A是B成立的充要條件

  1.集合元素具有①確定性;②互異性;③無(wú)序性

  2.集合表示方法①列舉法;②描述法;③韋恩圖;④數(shù)軸法

  (3)集合的運(yùn)算

  ①A∩(B∪C)=(A∩B)∪(A∩C)

 、贑u(A∩B)=CuA∪CuB

  Cu(A∪B)=CuA∩CuB

  (4)集合的性質(zhì)

  n元集合的字集數(shù):2n

  真子集數(shù):2n-1;

  非空真子集數(shù):2n-2

  高中數(shù)學(xué)集合知識(shí)點(diǎn)歸納

  1、集合的概念

  集合是數(shù)學(xué)中最原始的不定義的概念,只能給出,描述性說(shuō)明:某些制定的且不同的對(duì)象集合在一起就稱為一個(gè)集合。組成集合的對(duì)象叫元素,集合通常用大寫字母A、B、C、…來(lái)表示。元素常用小寫字母a、b、c、…來(lái)表示。

  集合是一個(gè)確定的整體,因此對(duì)集合也可以這樣描述:具有某種屬性的對(duì)象的全體組成的一個(gè)集合。

  2、元素與集合的關(guān)系元素與集合的關(guān)系有屬于和不屬于兩種:

  元素a屬于集合A,記做a∈A;元素a不屬于集合A,記做a?A。

  3、集合中元素的特性

  (1)確定性:設(shè)A是一個(gè)給定的集合,_是某一具體對(duì)象,則_或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。例如A={0,1,3,4},可知0∈A,6?A。

  (2)互異性:“集合張的元素必須是互異的”,就是說(shuō)“對(duì)于一個(gè)給定的集合,它的任何兩個(gè)元素都是不同的”。

  (3)無(wú)序性:集合與其中元素的排列次序無(wú)關(guān),如集合{a,b,c}與集合{c,b,a}是同一個(gè)集合。

  4、集合的分類

  集合科根據(jù)他含有的元素個(gè)數(shù)的多少分為兩類:

  有限集:含有有限個(gè)元素的集合。如“方程3_+1=0”的解組成的集合”,由“2,4,6,8,組成的集合”,它們的元素個(gè)數(shù)是可數(shù)的,因此兩個(gè)集合是有限集。

  無(wú)限集:含有無(wú)限個(gè)元素的集合,如“到平面上兩個(gè)定點(diǎn)的距離相等于所有點(diǎn)”“所有的`三角形”,組成上述集合的元素不可數(shù)的,因此他們是無(wú)限集。

  特別的,我們把不含有任何元素的集合叫做空集,記錯(cuò)F,如{|R|+1=0}。

  5、特定的集合的表示

  為了書寫方便,我們規(guī)定常見(jiàn)的數(shù)集用特定的字母表示,下面是幾種常見(jiàn)的數(shù)集表示方法,請(qǐng)牢記。

  (1)全體非負(fù)整數(shù)的集合通常簡(jiǎn)稱非負(fù)整數(shù)集(或自然數(shù)集),記做N。

  (2)非負(fù)整數(shù)集內(nèi)排出0的集合,也稱正整數(shù)集,記做N_或N+。

  (3)全體整數(shù)的集合通常簡(jiǎn)稱為整數(shù)集Z。

  (4)全體有理數(shù)的集合通常簡(jiǎn)稱為有理數(shù)集,記做Q。

  (5)全體實(shí)數(shù)的集合通常簡(jiǎn)稱為實(shí)數(shù)集,記做R。

  高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2

  1、圓柱體:

  表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

  2、圓錐體:

  表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

  3、正方體

  a—邊長(zhǎng),S=6a2,V=a3

  4、長(zhǎng)方體

  a—長(zhǎng),b—寬,c—高S=2(ab+ac+bc)V=abc

  5、棱柱

  S—底面積h—高V=Sh

  6、棱錐

  S—底面積h—高V=Sh/3

  7、棱臺(tái)

  S1和S2—上、下底面積h—高V=h[S1+S2+(S1S2)^1/2]/3

  8、擬柱體

  S1—上底面積,S2—下底面積,S0—中截面積

  h—高,V=h(S1+S2+4S0)/6

  9、圓柱

  r—底半徑,h—高,C—底面周長(zhǎng)

  S底—底面積,S側(cè)—側(cè)面積,S表—表面積C=2πr

  S底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h

  10、空心圓柱

  R—外圓半徑,r—內(nèi)圓半徑h—高V=πh(R^2—r^2)

  11、直圓錐

  r—底半徑h—高V=πr^2h/3

  12、圓臺(tái)

  r—上底半徑,R—下底半徑,h—高V=πh(R2+Rr+r2)/3

  13、球

  r—半徑d—直徑V=4/3πr^3=πd^3/6

  14、球缺

  h—球缺高,r—球半徑,a—球缺底半徑V=πh(3a2+h2)/6=πh2(3r—h)/3

  15、球臺(tái)

  r1和r2—球臺(tái)上、下底半徑h—高V=πh[3(r12+r22)+h2]/6

  16、圓環(huán)體

  R—環(huán)體半徑D—環(huán)體直徑r—環(huán)體截面半徑d—環(huán)體截面直徑

  V=2π2Rr2=π2Dd2/4

  17、桶狀體

  D—桶腹直徑d—桶底直徑h—桶高

  V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)

  V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

  高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3

  第一部分集合

 。1)含n個(gè)元素的集合的子集數(shù)為2^n,真子集數(shù)為2^n—1;非空真子集的數(shù)為2^n—2;

  (2)注意:討論的時(shí)候不要遺忘了的情況。

  第二部分函數(shù)與導(dǎo)數(shù)

  1、映射:注意①第一個(gè)集合中的元素必須有象;②一對(duì)一,或多對(duì)一。

  2、函數(shù)值域的求法:①分析法;②配方法;③判別式法;④利用函數(shù)單調(diào)性;⑤換元法;⑥利用均值不等式;⑦利用數(shù)形結(jié)合或幾何意義(斜率、距離、絕對(duì)值的意義等);⑧利用函數(shù)有界性(、、等);⑨導(dǎo)數(shù)法

  3、復(fù)合函數(shù)的'有關(guān)問(wèn)題

 。1)復(fù)合函數(shù)定義域求法:

 、偃鬴(x)的定義域?yàn)椤瞐,b〕,則復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出

  ②若f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域。

 。2)復(fù)合函數(shù)單調(diào)性的判定:

 、偈紫葘⒃瘮(shù)分解為基本函數(shù):內(nèi)函數(shù)與外函數(shù);

 、诜謩e研究?jī)?nèi)、外函數(shù)在各自定義域內(nèi)的單調(diào)性;

 、鄹鶕(jù)“同性則增,異性則減”來(lái)判斷原函數(shù)在其定義域內(nèi)的單調(diào)性。

  注意:外函數(shù)的定義域是內(nèi)函數(shù)的值域。

  4、分段函數(shù):值域(最值)、單調(diào)性、圖象等問(wèn)題,先分段解決,再下結(jié)論。

  5、函數(shù)的奇偶性

 、藕瘮(shù)的定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)具有奇偶性的必要條件;

 、剖瞧婧瘮(shù);

 、鞘桥己瘮(shù);

  ⑷奇函數(shù)在原點(diǎn)有定義,則;

 、稍陉P(guān)于原點(diǎn)對(duì)稱的單調(diào)區(qū)間內(nèi):奇函數(shù)有相同的單調(diào)性,偶函數(shù)有相反的單調(diào)性;

 。6)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先等價(jià)變形,再判斷其奇偶性;

  1、對(duì)于函數(shù)f(x),如果對(duì)于定義域內(nèi)任意一個(gè)x,都有f(—x)=—f(x),那么f(x)為奇函數(shù);

  2、對(duì)于函數(shù)f(x),如果對(duì)于定義域內(nèi)任意一個(gè)x,都有f(—x)=f(x),那么f(x)為偶函數(shù);

  3、一般地,對(duì)于函數(shù)y=f(x),定義域內(nèi)每一個(gè)自變量x,都有f(a+x)=2b—f(a—x),則y=f(x)的圖象關(guān)于點(diǎn)(a,b)成中心對(duì)稱;

  4、一般地,對(duì)于函數(shù)y=f(x),定義域內(nèi)每一個(gè)自變量x都有f(a+x)=f(a—x),則它的圖象關(guān)于x=a成軸對(duì)稱。

  5、函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);

  6、由函數(shù)奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè)x,則—x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱)。

  高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4

  三角函數(shù)。

  注意歸一公式、誘導(dǎo)公式的正確性。

  數(shù)列題。

  1、證明一個(gè)數(shù)列是等差(等比)數(shù)列時(shí),最后下結(jié)論時(shí)要寫上以誰(shuí)為首項(xiàng),誰(shuí)為公差(公比)的等差(等比)數(shù)列;

  2、最后一問(wèn)證明不等式成立時(shí),如果一端是常數(shù),另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時(shí),當(dāng)n=k+1時(shí),一定利用上n=k時(shí)的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點(diǎn)是有難度的。簡(jiǎn)潔的方法是,用當(dāng)前的`式子減去目標(biāo)式子,看符號(hào),得到目標(biāo)式子,下結(jié)論時(shí)一定寫上綜上:由①②得證;

  3、證明不等式時(shí),有時(shí)構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡(jiǎn)單

  立體幾何題。

  1、證明線面位置關(guān)系,一般不需要去建系,更簡(jiǎn)單;

  2、求異面直線所成的角、線面角、二面角、存在性問(wèn)題、幾何體的高、表面積、體積等問(wèn)題時(shí),要建系;

  3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。

  概率問(wèn)題。

  1、搞清隨機(jī)試驗(yàn)包含的所有基本事件和所求事件包含的基本事件的個(gè)數(shù);

  2、搞清是什么概率模型,套用哪個(gè)公式;

  3、記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式;

  4、求概率時(shí),正難則反(根據(jù)p1+p2+……+pn=1);

  5、注意計(jì)數(shù)時(shí)利用列舉、樹(shù)圖等基本方法;

  6、注意放回抽樣,不放回抽樣;

  正弦、余弦典型例題。

  1、在△ABC中,∠C=90°,a=1,c=4,則sinA的值為

  2、已知α為銳角,且,則α的度數(shù)是()A、30°B、45°C、60°D、90°

  3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數(shù)是()A、75°B、90°C、105°D、120°

  4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60°

  5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點(diǎn),EF⊥BC,垂足為F,求sin∠EBF的值。

  正弦、余弦解題訣竅。

  1、已知兩角及一邊,或兩邊及一邊的對(duì)角(對(duì)三角形是否存在要討論)用正弦定理。

  2、已知三邊,或兩邊及其夾角用余弦定理

  3、余弦定理對(duì)于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負(fù),還是為零,就可以確定是鈍角。直角還是銳角。

  高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5

  1.不等式的定義

  在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學(xué)符號(hào)連接兩個(gè)數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號(hào)的式子,叫做不等式.

  2.比較兩個(gè)實(shí)數(shù)的大小

  兩個(gè)實(shí)數(shù)的大小是用實(shí)數(shù)的運(yùn)算性質(zhì)來(lái)定義的,

  有a-b>0?;a-b=0?;a-b<0?.

  另外,若b>0,則有>1?;=1?;<1?.

  概括為:作差法,作商法,中間量法等.

  3.不等式的性質(zhì)

  (1)對(duì)稱性:a>b?;

  (2)傳遞性:a>b,b>c?;

  (3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;

  (4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;

  (5)可乘方:a>b>0?(n∈N,n≥2);

  (6)可開(kāi)方:a>b>0?(n∈N,n≥2).

  復(fù)習(xí)指導(dǎo)

  1.“一個(gè)技巧”作差法變形的技巧:作差法中變形是關(guān)鍵,常進(jìn)行因式分解或配方.

  2.“一種方法”待定系數(shù)法:求代數(shù)式的'范圍時(shí),先用已知的代數(shù)式表示目標(biāo)式,再利用多項(xiàng)式相等的法則求出參數(shù),最后利用不等式的性質(zhì)求出目標(biāo)式的范圍.

  3.“兩條常用性質(zhì)”

  (1)倒數(shù)性質(zhì):①a>b,ab>0?<;②a<0

 、踑>b>0,0;④0

  (2)若a>b>0,m>0,則

 、僬娣?jǐn)?shù)的性質(zhì):<;>(b-m>0);

  高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6

  1、三類角的求法:

  ①找出或作出有關(guān)的角。

 、谧C明其符合定義,并指出所求作的角。

  ③計(jì)算大。ń庵苯侨切,或用余弦定理)。

  2、正棱柱——底面為正多邊形的直棱柱

  正棱錐——底面是正多邊形,頂點(diǎn)在底面的射影是底面的中心。

  正棱錐的計(jì)算集中在四個(gè)直角三角形中:

  3、怎樣判斷直線l與圓C的位置關(guān)系?

  圓心到直線的距離與圓的半徑比較。

  直線與圓相交時(shí),注意利用圓的“垂徑定理”。

  4、對(duì)線性規(guī)劃問(wèn)題:

  作出可行域,作出以目標(biāo)函數(shù)為截距的直線,在可行域內(nèi)平移直線,求出目標(biāo)函數(shù)的最值。

  培養(yǎng)興趣是關(guān)鍵。學(xué)生對(duì)數(shù)學(xué)產(chǎn)生了興趣,自然有動(dòng)力去鉆研。如何培養(yǎng)興趣呢?

 。1)欣賞數(shù)學(xué)的美感

  比如幾何圖形中的對(duì)稱、變換前后的不變量、概念的嚴(yán)謹(jǐn)、邏輯的嚴(yán)密……

  通過(guò)對(duì)旋轉(zhuǎn)變換及其不變量的討論,我們可以證明反比例函數(shù)、“對(duì)勾函數(shù)”的圖象都是雙曲線——平面上到兩個(gè)定點(diǎn)的距離之差的.絕對(duì)值為定值(小于兩個(gè)定點(diǎn)之間的距離)的點(diǎn)的集合。

 。2)注意到數(shù)學(xué)在實(shí)際生活中的應(yīng)用。

  例如和日常生活息息相關(guān)的等額本金、等額本息兩種不同的還款方式,用數(shù)列的知識(shí)就可以理解、學(xué)好數(shù)學(xué),是現(xiàn)代公民的基本素養(yǎng)之一啊

 。3)采用靈活的教學(xué)手段,與時(shí)俱進(jìn)。

  利用多種技術(shù)手段,聲、光、電多管齊下,老師可以借此把一些知識(shí)講得更具體形象,學(xué)生也更容易接受,理解更深。

 。4)適當(dāng)看一些科普類的書籍和文章。

  比如:學(xué)圓錐曲線的時(shí)候,可以看看一些建筑物的外形,它們被平面所截出的曲線往往就是各種圓錐曲線,很多文章對(duì)此都有介紹;還有圓錐曲線光學(xué)性質(zhì)的應(yīng)用,這方面的文章也不少。

  高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7

  1.數(shù)列的定義

  按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個(gè)數(shù)都叫做數(shù)列的項(xiàng).

  (1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列.

  (2)在數(shù)列的定義中并沒(méi)有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個(gè)相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構(gòu)成數(shù)列:-1,1,-1,1,….

  (4)數(shù)列的項(xiàng)與它的項(xiàng)數(shù)是不同的,數(shù)列的項(xiàng)是指這個(gè)數(shù)列中的某一個(gè)確定的數(shù),是一個(gè)函數(shù)值,也就是相當(dāng)于f(n),而項(xiàng)數(shù)是指這個(gè)數(shù)在數(shù)列中的位置序號(hào),它是自變量的值,相當(dāng)于f(n)中的n.

  (5)次序?qū)τ跀?shù)列來(lái)講是十分重要的,有幾個(gè)相同的數(shù),由于它們的排列次序不同,構(gòu)成的數(shù)列就不是一個(gè)相同的數(shù)列,顯然數(shù)列與數(shù)集有本質(zhì)的區(qū)別.如:2,3,4,5,6這5個(gè)數(shù)按不同的次序排列時(shí),就會(huì)得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個(gè)集合.

  2.數(shù)列的分類

  (1)根據(jù)數(shù)列的項(xiàng)數(shù)多少可以對(duì)數(shù)列進(jìn)行分類,分為有窮數(shù)列和無(wú)窮數(shù)列.在寫數(shù)列時(shí),對(duì)于有窮數(shù)列,要把末項(xiàng)寫出,例如數(shù)列1,3,5,7,9,…,2n-1表示有窮數(shù)列,如果把數(shù)列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無(wú)窮數(shù)列.

  (2)按照項(xiàng)與項(xiàng)之間的大小關(guān)系或數(shù)列的增減性可以分為以下幾類:遞增數(shù)列、遞減數(shù)列、擺動(dòng)數(shù)列、常數(shù)列.

  3.數(shù)列的通項(xiàng)公式

  數(shù)列是按一定次序排列的一列數(shù),其內(nèi)涵的本質(zhì)屬性是確定這一列數(shù)的規(guī)律,這個(gè)規(guī)律通常是用式子f(n)來(lái)表示的,

  這兩個(gè)通項(xiàng)公式形式上雖然不同,但表示同一個(gè)數(shù)列,正像每個(gè)函數(shù)關(guān)系不都能用解析式表達(dá)出來(lái)一樣,也不是每個(gè)數(shù)列都能寫出它的通項(xiàng)公式;有的數(shù)列雖然有通項(xiàng)公式,但在形式上,又不一定是的,僅僅知道一個(gè)數(shù)列前面的有限項(xiàng),無(wú)其他說(shuō)明,數(shù)列是不能確定的,通項(xiàng)公式更非.如:數(shù)列1,2,3,4,…,

  由公式寫出的后續(xù)項(xiàng)就不一樣了,因此,通項(xiàng)公式的歸納不僅要看它的前幾項(xiàng),更要依據(jù)數(shù)列的構(gòu)成規(guī)律,多觀察分析,真正找到數(shù)列的內(nèi)在規(guī)律,由數(shù)列前幾項(xiàng)寫出其通項(xiàng)公式,沒(méi)有通用的方法可循.

  再?gòu)?qiáng)調(diào)對(duì)于數(shù)列通項(xiàng)公式的理解注意以下幾點(diǎn):

  (1)數(shù)列的通項(xiàng)公式實(shí)際上是一個(gè)以正整數(shù)集N_或它的有限子集{1,2,…,n}為定義域的函數(shù)的表達(dá)式.

  (2)如果知道了數(shù)列的通項(xiàng)公式,那么依次用1,2,3,…去替代公式中的n就可以求出這個(gè)數(shù)列的.各項(xiàng);同時(shí),用數(shù)列的通項(xiàng)公式也可判斷某數(shù)是否是某數(shù)列中的一項(xiàng),如果是的話,是第幾項(xiàng).

  (3)如所有的函數(shù)關(guān)系不一定都有解析式一樣,并不是所有的數(shù)列都有通項(xiàng)公式.

  如2的不足近似值,精確到1,0.1,0.01,0.001,0.0001,…所構(gòu)成的數(shù)列1,1.4,1.41,1.414,1.4142,…就沒(méi)有通項(xiàng)公式.

  (4)有的數(shù)列的通項(xiàng)公式,形式上不一定是的,正如舉例中的:

  (5)有些數(shù)列,只給出它的前幾項(xiàng),并沒(méi)有給出它的構(gòu)成規(guī)律,那么僅由前面幾項(xiàng)歸納出的數(shù)列通項(xiàng)公式并不.

  4.數(shù)列的圖象

  對(duì)于數(shù)列4,5,6,7,8,9,10每一項(xiàng)的序號(hào)與這一項(xiàng)有下面的對(duì)應(yīng)關(guān)系:

  序號(hào):1234567

  項(xiàng):45678910

  這就是說(shuō),上面可以看成是一個(gè)序號(hào)集合到另一個(gè)數(shù)的集合的映射.因此,從映射、函數(shù)的觀點(diǎn)看,數(shù)列可以看作是一個(gè)定義域?yàn)檎疦(或它的有限子集{1,2,3,…,n})的函數(shù),當(dāng)自變量從小到大依次取值時(shí),對(duì)應(yīng)的一列函數(shù)值.這里的函數(shù)是一種特殊的函數(shù),它的自變量只能取正整數(shù).

  由于數(shù)列的項(xiàng)是函數(shù)值,序號(hào)是自變量,數(shù)列的通項(xiàng)公式也就是相應(yīng)函數(shù)和解析式.

  數(shù)列是一種特殊的函數(shù),數(shù)列是可以用圖象直觀地表示的

  數(shù)列用圖象來(lái)表示,可以以序號(hào)為橫坐標(biāo),相應(yīng)的項(xiàng)為縱坐標(biāo),描點(diǎn)畫圖來(lái)表示一個(gè)數(shù)列,在畫圖時(shí),為方便起見(jiàn),在平面直角坐標(biāo)系兩條坐標(biāo)軸上取的單位長(zhǎng)度可以不同,從數(shù)列的圖象表示可以直觀地看出數(shù)列的變化情況,但不精確.

  把數(shù)列與函數(shù)比較,數(shù)列是特殊的函數(shù),特殊在定義域是正整數(shù)集或由以1為首的有限連續(xù)正整數(shù)組成的集合,其圖象是無(wú)限個(gè)或有限個(gè)孤立的點(diǎn).

  5.遞推數(shù)列

  一堆鋼管,共堆放了七層,自上而下各層的鋼管數(shù)構(gòu)成一個(gè)數(shù)列:4,5,6,7,8,9,10.①

  數(shù)列①還可以用如下方法給出:自上而下第一層的鋼管數(shù)是4,以下每一層的鋼管數(shù)都比上層的鋼管數(shù)多1。

  高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8

  1.等差數(shù)列的定義

  如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d表示.

  2.等差數(shù)列的通項(xiàng)公式

  若等差數(shù)列{an}的.首項(xiàng)是a1,公差是d,則其通項(xiàng)公式為an=a1+(n-1)d.

  3.等差中項(xiàng)

  如果A=(a+b)/2,那么A叫做a與b的等差中項(xiàng).

  4.等差數(shù)列的常用性質(zhì)

  (1)通項(xiàng)公式的推廣:an=am+(n-m)d(n,m∈N_).

  (2)若{an}為等差數(shù)列,且m+n=p+q,

  則am+an=ap+aq(m,n,p,q∈N_).

  (3)若{an}是等差數(shù)列,公差為d,則ak,ak+m,ak+2m,…(k,m∈N_)是公差為md的等差數(shù)列.

  (4)數(shù)列Sm,S2m-Sm,S3m-S2m,…也是等差數(shù)列.

  (5)S2n-1=(2n-1)an.

  (6)若n為偶數(shù),則S偶-S奇=nd/2;

  若n為奇數(shù),則S奇-S偶=a中(中間項(xiàng)).

  注意:

  一個(gè)推導(dǎo)

  利用倒序相加法推導(dǎo)等差數(shù)列的前n項(xiàng)和公式:

  Sn=a1+a2+a3+…+an,①

  Sn=an+an-1+…+a1,②

  ①+②得:Sn=n(a1+an)/2

  兩個(gè)技巧

  已知三個(gè)或四個(gè)數(shù)組成等差數(shù)列的一類問(wèn)題,要善于設(shè)元.

  (1)若奇數(shù)個(gè)數(shù)成等差數(shù)列且和為定值時(shí),可設(shè)為…,a-2d,a-d,a,a+d,a+2d,….

  (2)若偶數(shù)個(gè)數(shù)成等差數(shù)列且和為定值時(shí),可設(shè)為…,a-3d,a-d,a+d,a+3d,…,其余各項(xiàng)再依據(jù)等差數(shù)列的定義進(jìn)行對(duì)稱設(shè)元.

  四種方法

  等差數(shù)列的判斷方法

  (1)定義法:對(duì)于n≥2的任意自然數(shù),驗(yàn)證an-an-1為同一常數(shù);

  (2)等差中項(xiàng)法:驗(yàn)證2an-1=an+an-2(n≥3,n∈N_)都成立;

  (3)通項(xiàng)公式法:驗(yàn)證an=pn+q;

  (4)前n項(xiàng)和公式法:驗(yàn)證Sn=An2+Bn.

  注:后兩種方法只能用來(lái)判斷是否為等差數(shù)列,而不能用來(lái)證明等差數(shù)列.

  高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9

  不等式的解集:

 、倌苁共坏仁匠闪⒌奈粗獢(shù)的值,叫做不等式的解。

  ②一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的`解集。

 、矍蟛坏仁浇饧倪^(guò)程叫做解不等式。

  不等式的判定:

 、俪R(jiàn)的不等號(hào)有“>”“<”“≤”“≥”及“≠”。分別讀作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;

 、谠诓坏仁健癮>b”或“a

  ③不等號(hào)的開(kāi)口所對(duì)的數(shù)較大,不等號(hào)的尖頭所對(duì)的數(shù)較小;

 、茉诹胁坏仁綍r(shí),一定要注意不等式關(guān)系的關(guān)鍵字,如:正數(shù)、非負(fù)數(shù)、不大于、小于等等。

  任一x?A,x?B,記做AB

  AB,BAA=B

  AB={x|x?A,且x?B}

  AB={x|x?A,或x?B}

  Card(AB)=card(A)+card(B)-card(AB)

  (1)命題

  原命題若p則q

  逆命題若q則p

  否命題若p則q

  逆否命題若q,則p

  (2)AB,A是B成立的充分條件

  BA,A是B成立的必要條件

  AB,A是B成立的充要條件

  1.集合元素具有①確定性;②互異性;③無(wú)序性

  2.集合表示方法①列舉法;②描述法;③韋恩圖;④數(shù)軸法

  (3)集合的運(yùn)算

 、貯∩(B∪C)=(A∩B)∪(A∩C)

 、贑u(A∩B)=CuA∪CuB

  Cu(A∪B)=CuA∩CuB

  (4)集合的性質(zhì)

  n元集合的字集數(shù):2n

  真子集數(shù):2n-1;

  非空真子集數(shù):2n-2

  高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10

  復(fù)數(shù)的概念:

  形如a+bi(a,b∈R)的數(shù)叫復(fù)數(shù),其中i叫做虛數(shù)單位。全體復(fù)數(shù)所成的集合叫做復(fù)數(shù)集,用字母C表示。

  復(fù)數(shù)的表示:

  復(fù)數(shù)通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復(fù)數(shù)的代數(shù)形式,其中a叫復(fù)數(shù)的實(shí)部,b叫復(fù)數(shù)的虛部。

  復(fù)數(shù)的幾何意義:

  (1)復(fù)平面、實(shí)軸、虛軸:

  點(diǎn)Z的橫坐標(biāo)是a,縱坐標(biāo)是b,復(fù)數(shù)z=a+bi(a、b∈R)可用點(diǎn)Z(a,b)表示,這個(gè)建立了直角坐標(biāo)系來(lái)表示復(fù)數(shù)的平面叫做復(fù)平面,x軸叫做實(shí)軸,y軸叫做虛軸。顯然,實(shí)軸上的點(diǎn)都表示實(shí)數(shù),除原點(diǎn)外,虛軸上的點(diǎn)都表示純虛數(shù)

  (2)復(fù)數(shù)的幾何意義:復(fù)數(shù)集C和復(fù)平面內(nèi)所有的點(diǎn)所成的集合是一一對(duì)應(yīng)關(guān)系,即

  這是因?yàn),每一個(gè)復(fù)數(shù)有復(fù)平面內(nèi)惟一的一個(gè)點(diǎn)和它對(duì)應(yīng);反過(guò)來(lái),復(fù)平面內(nèi)的每一個(gè)點(diǎn),有惟一的一個(gè)復(fù)數(shù)和它對(duì)應(yīng)。

  這就是復(fù)數(shù)的`一種幾何意義,也就是復(fù)數(shù)的另一種表示方法,即幾何表示方法。

  復(fù)數(shù)的模:

  復(fù)數(shù)z=a+bi(a、b∈R)在復(fù)平面上對(duì)應(yīng)的點(diǎn)Z(a,b)到原點(diǎn)的距離叫復(fù)數(shù)的模,記為|Z|,即|Z|=

  虛數(shù)單位i:

  (1)它的平方等于-1,即i2=-1;

  (2)實(shí)數(shù)可以與它進(jìn)行四則運(yùn)算,進(jìn)行四則運(yùn)算時(shí),原有加、乘運(yùn)算律仍然成立

  (3)i與-1的關(guān)系:i就是-1的一個(gè)平方根,即方程x2=-1的一個(gè)根,方程x2=-1的另一個(gè)根是-i。

  (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。

  復(fù)數(shù)模的性質(zhì):

  復(fù)數(shù)與實(shí)數(shù)、虛數(shù)、純虛數(shù)及0的關(guān)系:

  對(duì)于復(fù)數(shù)a+bi(a、b∈R),當(dāng)且僅當(dāng)b=0時(shí),復(fù)數(shù)a+bi(a、b∈R)是實(shí)數(shù)a;當(dāng)b≠0時(shí),復(fù)數(shù)z=a+bi叫做虛數(shù);當(dāng)a=0且b≠0時(shí),z=bi叫做純虛數(shù);當(dāng)且僅當(dāng)a=b=0時(shí),z就是實(shí)數(shù)0。

  高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11

  高考數(shù)學(xué)必考知識(shí)點(diǎn)歸納必修一:

  1、集合與函數(shù)的概念(這部分知識(shí)抽象,較難理解)2、基本的初等函數(shù)(指數(shù)函數(shù)、對(duì)數(shù)函數(shù))3、函數(shù)的性質(zhì)及應(yīng)用(比較抽象,較難理解)

  高考數(shù)學(xué)必考知識(shí)點(diǎn)歸納必修二:

  1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問(wèn)題,包括線面角和面面角。

  這部分知識(shí)是高一學(xué)生的.難點(diǎn),比如:一個(gè)角實(shí)際上是一個(gè)銳角,但是在圖中顯示的鈍角等等一些問(wèn)題,需要學(xué)生的立體意識(shí)較強(qiáng)。這部分知識(shí)高考占22---27分

  2、直線方程:高考時(shí)不單獨(dú)命題,易和圓錐曲線結(jié)合命題

  3、圓方程

  高考數(shù)學(xué)必考知識(shí)點(diǎn)歸納必修三:

  1、算法初步:高考必考內(nèi)容,5分(選擇或填空)2、統(tǒng)計(jì):3、概率:高考必考內(nèi)容,09年理科占到15分,文科數(shù)學(xué)占到5分。

  高考數(shù)學(xué)必考知識(shí)點(diǎn)歸納必修四:

  1、三角函數(shù):(圖像、性質(zhì)、高中重難點(diǎn),)必考大題:15---20分,并且經(jīng)常和其他函數(shù)混合起來(lái)考查。

  2、平面向量:高考不單獨(dú)命題,易和三角函數(shù)、圓錐曲線結(jié)合命題。09年理科占到5分,文科占到13分。

  高考數(shù)學(xué)必考知識(shí)點(diǎn)歸納必修五:

  1、解三角形:(正、余弦定理、三角恒等變換)高考中理科占到22分左右,文科數(shù)學(xué)占到13分左右2、數(shù)列:高考必考,17---22分3、不等式:(線性規(guī)劃,聽(tīng)課時(shí)易理解,但做題較復(fù)雜,應(yīng)掌握技巧。高考必考5分)不等式不單獨(dú)命題,一般和函數(shù)結(jié)合求最值、解集。

  高考數(shù)學(xué)必考知識(shí)點(diǎn)歸納文科選修:

  選修1--1:重點(diǎn):高考占30分

  1、邏輯用語(yǔ):一般不考,若考也是和集合放一塊考2、圓錐曲線:3、導(dǎo)數(shù)、導(dǎo)數(shù)的應(yīng)用(高考必考)

  選修1--2:

  1、統(tǒng)計(jì):2、推理證明:一般不考,若考會(huì)是填空題3、復(fù)數(shù):(新課標(biāo)比老課本難的多,高考必考內(nèi)容)。

  高考數(shù)學(xué)必考知識(shí)點(diǎn)歸納理科選修:

  選修2--1:1、邏輯用語(yǔ)2、圓錐曲線3、空間向量:(利用空間向量可以把立體幾何做題簡(jiǎn)便化)選修2--2:1、導(dǎo)數(shù)與微積分2、推理證明:一般不考3、復(fù)數(shù)

  選修2--3:1、計(jì)數(shù)原理:(排列組合、二項(xiàng)式定理)掌握這部分知識(shí)點(diǎn)需要大量做題找規(guī)律,無(wú)技巧。高考必考,10分2、隨機(jī)變量及其分布:不單獨(dú)命題3、統(tǒng)計(jì):

  高考的知識(shí)板塊

  集合與簡(jiǎn)單邏輯:5分或不考

  函數(shù):高考60分:①、指數(shù)函數(shù)②對(duì)數(shù)函數(shù)③二次函數(shù)④三次函數(shù)⑤三角函數(shù)⑥抽象函數(shù)(無(wú)函數(shù)表達(dá)式,不易理解,難點(diǎn))

  平面向量與解三角形

  立體幾何:22分左右

  不等式:(線性規(guī)則)5分必考

  數(shù)列:17分(一道大題+一道選擇或填空)易和函數(shù)結(jié)合命題

  平面解析幾何:(30分左右)

  計(jì)算原理:10分左右

  概率統(tǒng)計(jì):12分----17分

  復(fù)數(shù):5分

  高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12

  Card(AB)=card(A)+card(B)-card(AB)

  (1)命題

  原命題若p則q

  逆命題若q則p

  否命題若p則q

  逆否命題若q,則p

  (2)AB,A是B成立的充分條件

  BA,A是B成立的必要條件

  AB,A是B成立的充要條件

  1.集合元素具有①確定性;②互異性;③無(wú)序性

  2.集合表示方法①列舉法;②描述法;③韋恩圖;④數(shù)軸法

  (3)集合的運(yùn)算

 、貯∩(B∪C)=(A∩B)∪(A∩C)

 、贑u(A∩B)=CuA∪CuB

  Cu(A∪B)=CuA∩CuB

  (4)集合的性質(zhì)

  n元集合的字集數(shù):2n

  真子集數(shù):2n-1;

  非空真子集數(shù):2n-2

  高三數(shù)學(xué)知識(shí)點(diǎn)2

  兩個(gè)復(fù)數(shù)相等的定義:

  如果兩個(gè)復(fù)數(shù)的實(shí)部和虛部分別相等,那么我們就說(shuō)這兩個(gè)復(fù)數(shù)相等,即:如果a,b,c,d∈R,那么a+bi=c+di

  a=c,b=d。特殊地,a,b∈R時(shí),a+bi=0

  a=0,b=0.

  復(fù)數(shù)相等的充要條件,提供了將復(fù)數(shù)問(wèn)題化歸為實(shí)數(shù)問(wèn)題解決的途徑。

  復(fù)數(shù)相等特別提醒:

  一般地,兩個(gè)復(fù)數(shù)只能說(shuō)相等或不相等,而不能比較大小。如果兩個(gè)復(fù)數(shù)都是實(shí)數(shù),就可以比較大小,也只有當(dāng)兩個(gè)復(fù)數(shù)全是實(shí)數(shù)時(shí)才能比較大小。

  解復(fù)數(shù)相等問(wèn)題的'方法步驟:

  (1)把給的復(fù)數(shù)化成復(fù)數(shù)的標(biāo)準(zhǔn)形式;

  (2)根據(jù)復(fù)數(shù)相等的充要條件解之。

  高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13

  1、課前預(yù)習(xí):首先上課前要做預(yù)習(xí),課前預(yù)習(xí)能提前了解將要學(xué)習(xí)的知識(shí)。

  2、記筆記:指的`是課堂筆記,每節(jié)課時(shí)間有限,老師一般講的都是精華部分。

  3、課后復(fù)習(xí):通預(yù)習(xí)一樣,也是行之有效的方法。

  4、涉獵課外習(xí)題:多涉獵一些課外習(xí)題,學(xué)習(xí)它們的解題思路和方法。

  5、學(xué)會(huì)歸類總結(jié):學(xué)習(xí)數(shù)學(xué)記得東西很多,如果單純的記憶每個(gè)公式,不但增加記憶量而且容易忘。

  6、建立糾錯(cuò)本:把經(jīng)常出錯(cuò)的題目集中在一起。

  7、寫考試總結(jié):考試總結(jié)可以幫助找出學(xué)習(xí)之中不足之處,以及知識(shí)的薄弱環(huán)節(jié)。

  8、培養(yǎng)學(xué)習(xí)興趣:興趣是最好的老師,只有有了興趣才會(huì)自主自發(fā)的進(jìn)行學(xué)習(xí),學(xué)習(xí)效率才會(huì)提高。

  高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14

  高三數(shù)學(xué)每輪復(fù)習(xí)要領(lǐng)

  一、高三數(shù)學(xué)復(fù)習(xí),大體可分四個(gè)階段,每一個(gè)階段的復(fù)習(xí)方法與側(cè)重點(diǎn)都各不相同,要求也層層加深,因此,同學(xué)們?cè)诿恳粋(gè)階段都應(yīng)該有不同的復(fù)習(xí)方案,采用不同的方法和策略。

  1.第一階段,即第一輪復(fù)習(xí),也稱“知識(shí)篇”,大致就是高三第一學(xué)期。在這一階段,老師將帶領(lǐng)同學(xué)們重溫高一、高二所學(xué)課程,但這絕不只是以前所學(xué)知識(shí)的簡(jiǎn)單重復(fù),而是站在更高的角度,對(duì)舊知識(shí)產(chǎn)生全新認(rèn)識(shí)的重要過(guò)程。因?yàn)樵诟咭弧⒏叨䲡r(shí),老師是以知識(shí)點(diǎn)為主線索,依次傳授講解的,由于后面的相關(guān)知識(shí)還沒(méi)有學(xué)到,不能進(jìn)行縱向聯(lián)系,所以,你學(xué)的往往時(shí)零碎的、散亂的知識(shí)點(diǎn),而在第一輪復(fù)習(xí)時(shí),老師的主線索是知識(shí)的縱向聯(lián)系與橫向聯(lián)系,以章節(jié)為單位,將那些零碎的、散亂的知識(shí)點(diǎn)串聯(lián)起來(lái),并將他們系統(tǒng)化、綜合化,側(cè)重點(diǎn)在于各個(gè)知識(shí)點(diǎn)之間的融會(huì)貫通。所以大家在復(fù)習(xí)過(guò)程中應(yīng)做到: ①立足課本,迅速激活已學(xué)過(guò)的各個(gè)知識(shí)點(diǎn)。(建議大家在高三前的一個(gè)暑假里通讀高一、高二教材) ②注意所做題目使用知識(shí)點(diǎn)覆蓋范圍的變化,有意識(shí)地思考、研究這些知識(shí)點(diǎn)在課本中所處的地位和相互之間的聯(lián)系。注意到老師選題的綜合性在不斷地加強(qiáng)。 ③明了課本從前到后的知識(shí)結(jié)構(gòu),將整個(gè)知識(shí)體系框架化、網(wǎng)絡(luò)化。能提煉解題所用知識(shí)點(diǎn),并說(shuō)出其出處。 ④經(jīng)常將使用最多的知識(shí)點(diǎn)總結(jié)起來(lái),研究重點(diǎn)知識(shí)所在章節(jié),并了解各章節(jié)在課本中的地位和作用。

  2.第二輪復(fù)習(xí),通常稱為“方法篇”。大約從第二學(xué)期開(kāi)學(xué)到四月中旬結(jié)束。在這一階段,老師將以方法、技巧為主線,主要研究數(shù)學(xué)思想方法。老師的復(fù)習(xí),不再重視知識(shí)結(jié)構(gòu)的先后次序,而是以提高同學(xué)們解決問(wèn)題、分析問(wèn)題的能力為目的,提出、分析、解決問(wèn)題的思路用“配方法、待定系數(shù)法、換元法、數(shù)形結(jié)合、分類討論”等方法解決一類問(wèn)題、一系列問(wèn)題。同學(xué)們應(yīng)做到: ①主動(dòng)將有關(guān)知識(shí)進(jìn)行必要的拆分、加工重組。找出某個(gè)知識(shí)點(diǎn)會(huì)在一系列題目中出現(xiàn),某種方法可以解決一類問(wèn)題。 ②分析題目時(shí),由原來(lái)的注重知識(shí)點(diǎn),漸漸地向探尋解題的思路、方法轉(zhuǎn)變。 ③從現(xiàn)在開(kāi)始,解題一定要非常規(guī)范,俗語(yǔ)說(shuō):“不怕難題不得分,就怕每題都扣分”,所以大家務(wù)必將解題過(guò)程寫得層次分明,結(jié)構(gòu)完整。 ④適當(dāng)選做各地模擬試卷和以往高考題,逐漸弄清高考考查的范圍和重點(diǎn)。

  3.第三輪復(fù)習(xí),大約一個(gè)月的時(shí)間,也稱為“策略篇”。老師主要講述“選擇題的解發(fā)、填空題的解法、應(yīng)用題的解法、探究性命題的解法、綜合題的解法、創(chuàng)新性題的`解法”,教給同學(xué)們一些解題的特殊方法,特殊技巧,以提高同學(xué)們的解題速度和應(yīng)對(duì)策略為目的。同學(xué)們應(yīng)做到: ①解題時(shí),會(huì)從多種方法中選擇最省時(shí)、最省事的方法,力求多方位,多角度的思考問(wèn)題,逐漸適應(yīng)高考對(duì)“減縮思維”的要求。 ②注意自己的解題速度,審題要慢,思維要全,下筆要準(zhǔn),答題要快。 ③養(yǎng)成在解題過(guò)程中分析命題者的意圖的習(xí)慣,思考命題者是怎樣將考查的知識(shí)點(diǎn)有機(jī)的結(jié)合起來(lái)的,有那些思想方法被復(fù)合在其中,對(duì)命題者想要考我什么,我應(yīng)該會(huì)什么,做到心知肚明。

  4.最后,就是沖刺階段,也稱為“備考篇”。在這一階段,老師會(huì)將復(fù)習(xí)的主動(dòng)權(quán)交給你自己。以前,學(xué)習(xí)的重點(diǎn)、難點(diǎn)、方法、思路都是以老師的意志為主線,但是,現(xiàn)在你要直接、主動(dòng)的研讀《考試說(shuō)明》,研究近年來(lái)的高考試題,掌握高考信息、命題動(dòng)向,并做到: ①檢索自己的知識(shí)系統(tǒng),緊抓薄弱點(diǎn),并針對(duì)性地做專門的訓(xùn)練和突擊措施(可請(qǐng)老師專門為你拎一拎);鎖定重中之重,掌握最重要的知識(shí)到爐火純青的地步。 ②抓思維易錯(cuò)點(diǎn),注重典型題型。 ③瀏覽自己以前做過(guò)的習(xí)題、試卷,回憶自己學(xué)習(xí)相關(guān)知識(shí)的歷程,做好“再”糾錯(cuò)工作。 ④博覽群書,博聞強(qiáng)記,使自己見(jiàn)多識(shí)廣,注意那些背景新、方法新,知識(shí)具有代表性的問(wèn)題。 ⑤不做難題、偏題、怪題,保持情緒穩(wěn)定,充滿信心,準(zhǔn)備應(yīng)考。

  二、高三數(shù)學(xué)復(fù)習(xí)中的幾個(gè)注意點(diǎn)

  1.復(fù)習(xí)資料要精,不可超過(guò)兩套,使用過(guò)程中,始終注重其系統(tǒng)性。千萬(wàn)不要貪多,資料多了,不但使自己身陷題海,不能自拔,而且會(huì)因?yàn)槟愕念櫞耸П,而使知識(shí)體系得不到延續(xù)。

  2.有的同學(xué)漠視自己作業(yè)和考試中出現(xiàn)的錯(cuò)誤,將他們簡(jiǎn)單的歸結(jié)為粗心大意。這是很嚴(yán)重的錯(cuò)誤想法,我們的錯(cuò)誤都有其必然性,一定要究根問(wèn)底,找出真正的原因,及時(shí)改正,并記住這樣的教訓(xùn)。

  3.千萬(wàn)不要以為“高考以能力立意”,就是要去鉆難題、偏題、怪題。這里的能力是指:思維能力,對(duì)現(xiàn)實(shí)生活的觀察分析力,創(chuàng)造性的想象能力,探究性實(shí)驗(yàn)動(dòng)手能力,理解運(yùn)用實(shí)際問(wèn)題的能力,分析和解決問(wèn)題的探究創(chuàng)新能力,處理、運(yùn)用信息的能力,新材料、新情景、新問(wèn)題應(yīng)變理解能力,其重點(diǎn)是概念觀點(diǎn)形成和規(guī)律的認(rèn)識(shí)過(guò)程,它往往蘊(yùn)藏在最簡(jiǎn)單、最基礎(chǔ)的題目活事實(shí)之中。不是鉆牛角尖能鉆出來(lái)的能力。

  4.合理看待來(lái)自老師和社會(huì)各界的猜題、壓題信息,不可迷信。因?yàn)椋麄円膊皇巧,我們上了考?chǎng)只能憑自己的實(shí)力,憑自己的智慧去打拼,所以,我們應(yīng)該踏踏實(shí)實(shí)、認(rèn)認(rèn)真真做好復(fù)習(xí)應(yīng)考工作。

  高中數(shù)學(xué)學(xué)習(xí)方法

  1一本書

  就是教科書,這是基礎(chǔ)的基礎(chǔ),但是被中等生最忽視的。筆者高中時(shí),先看教科書再做題,所以往往同學(xué)做到第5題,我才剛開(kāi)始,但當(dāng)我做了20題時(shí),反過(guò)來(lái)發(fā)現(xiàn)同學(xué)做到第17題,這就是磨刀不誤砍柴工。最后不僅省時(shí),而且比同學(xué)多鞏固了書本知識(shí),然后從書本原理到題目及從題目到原理走了一個(gè)來(lái)回,培養(yǎng)了以理論解決實(shí)際問(wèn)題的能力,提高了以不變應(yīng)萬(wàn)變的能力。一句話,省時(shí)又高效。為擺脫題海打下了基礎(chǔ)。

  2兩方法

  1)找到已知與求解的“橋梁”。主要針對(duì)中等題及難題,利用已知,推一步或幾步,完成轉(zhuǎn)化,從求解往后推幾步,看看還缺什么,再去回憶腦袋里的知識(shí)點(diǎn)及解過(guò)的經(jīng)典題,把已知與求解的差距補(bǔ)上,這個(gè)就是“橋梁”原理。

  2)有些題按上述方法還遇到困難,可能需要另辟蹊徑,如從定義出發(fā)或需要再審視已知條件,可能還未用盡已知條件或有些暗含的已知條件未挖掘出來(lái)。

  3三部曲:

  1)先看教科書,真正搞懂課本例題,并做課后練習(xí)(雖然看上去很簡(jiǎn)單,但是實(shí)質(zhì)上就是要你檢查自己是否真的掌握這些基本知識(shí)點(diǎn).),

  2)利用歷年高考真題, 這些題很有價(jià)值,先掩著答案,根據(jù)你之前課本學(xué)的基礎(chǔ)內(nèi)容,嘗試自己親自動(dòng)手做一下,再對(duì)答案,明白其原理.,真正弄懂它,看看能否舉一反三,可問(wèn)老師及同學(xué),也可請(qǐng)家教,最后達(dá)到觸類旁通。

  3)同步練習(xí),必須緊跟課程,不能賴下來(lái)的,一步一個(gè)腳印去做.

  數(shù)學(xué)知識(shí)點(diǎn)較多,容易忘記,但以上的步驟你都能做到的話,那么就不那么容易遺忘,即使忘記,你也可以翻閱以前的內(nèi)容重新鞏固一遍.

  4四層次

  1)

  基本知識(shí)點(diǎn)。含概念、定義、定理、公式等,這是基礎(chǔ),這個(gè)不過(guò)關(guān),其他免談。筆者平時(shí)先看教科書,就是這個(gè)道理。--這部分,雖然重要,但筆者輔導(dǎo)不作重點(diǎn),只是檢查與提醒,因?yàn)榭勺詫W(xué)及問(wèn)自己老師同學(xué)。會(huì)這個(gè)的人太容易找到了。

  2)

  數(shù)學(xué)思想與數(shù)學(xué)技能。數(shù)學(xué)思想如方程函數(shù)思想、數(shù)形結(jié)合思想、對(duì)稱思想、分類討論思想,化歸思想;數(shù)學(xué)技能如配方、待定系數(shù)法等。筆者由于這方面強(qiáng),故多年不做題或見(jiàn)到陌生題均不慌,因?yàn)檫@些思想能力是深入骨髓的。

  3)

  數(shù)學(xué)模型與中間結(jié)論。數(shù)學(xué)模型就是具體題目的解題套路,中間結(jié)論可使學(xué)生減少解題步驟,加快解題速度,減少出錯(cuò)機(jī)會(huì)。這些有了2數(shù)學(xué)思想與數(shù)學(xué)技能,就能自己推導(dǎo)出來(lái),但要注意總結(jié)與積累。

  4)

  特殊解題技巧。這個(gè)要求以上3方面都較強(qiáng),聰明加靈感,平時(shí)善于總結(jié)與歸納,看透事物本源,熟能生巧,觸類旁通。故對(duì)中等生不作過(guò)高要求,所謂可遇而不可求。筆者對(duì)高考實(shí)考試卷的選擇與填空,特別是選擇,有相當(dāng)部分,有的試卷甚至一半以上可在題讀完后,幾秒得出正確答案。憑的就是這個(gè)本事。

  高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15

  1.課程內(nèi)容:

  必修課程由5個(gè)模塊組成:

  必修1:集合、函數(shù)概念與基本初等函數(shù)(指、對(duì)、冪函數(shù))

  必修2:立體幾何初步、平面解析幾何初步。

  必修3:算法初步、統(tǒng)計(jì)、概率。

  必修4:基本初等函數(shù)(三角函數(shù))、平面向量、三角恒等變換。

  必修5:解三角形、數(shù)列、不等式。

  以上是每一個(gè)高中學(xué)生所必須學(xué)習(xí)的。

  上述內(nèi)容覆蓋了高中階段傳統(tǒng)的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能的主要部分,其中包括集合、函數(shù)、數(shù)列、不等式、解三角形、立體幾何初步、平面解析幾何初步等。不同的是在保證打好基礎(chǔ)的同時(shí),進(jìn)一步強(qiáng)調(diào)了這些知識(shí)的發(fā)生、發(fā)展過(guò)程和實(shí)際應(yīng)用,而不在技巧與難度上做過(guò)高的要求。

  此外,基礎(chǔ)內(nèi)容還增加了向量、算法、概率、統(tǒng)計(jì)等內(nèi)容。

  2.重難點(diǎn)及考點(diǎn):

  重點(diǎn):函數(shù),數(shù)列,三角函數(shù),平面向量,圓錐曲線,立體幾何,導(dǎo)數(shù)

  難點(diǎn):函數(shù)、圓錐曲線

  高考相關(guān)考點(diǎn):

  ⑴集合與簡(jiǎn)易邏輯:集合的概念與運(yùn)算、簡(jiǎn)易邏輯、充要條件

  ⑵函數(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)與指數(shù)函數(shù)、對(duì)數(shù)與對(duì)數(shù)函數(shù)、函數(shù)的應(yīng)用

 、菙(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求和、數(shù)列的應(yīng)用

  ⑷三角函數(shù):有關(guān)概念、同角關(guān)系與誘導(dǎo)公式、和、差、倍、半公式、求值、化簡(jiǎn)、證明、三角函數(shù)的圖象與性質(zhì)、三角函數(shù)的應(yīng)用

  ⑸平面向量:有關(guān)概念與初等運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及其應(yīng)用

 、什坏仁剑焊拍钆c性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對(duì)值不等式、不等式的應(yīng)用

  ⑺直線和圓的方程:直線的方程、兩直線的位置關(guān)系、線性規(guī)劃、圓、直線與圓的位置關(guān)系

  ⑻圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關(guān)系、軌跡問(wèn)題、圓錐曲線的應(yīng)用

 、椭本、平面、簡(jiǎn)單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量

  ⑽排列、組合和概率:排列、組合應(yīng)用題、二項(xiàng)式定理及其應(yīng)用

 、细怕逝c統(tǒng)計(jì):概率、分布列、期望、方差、抽樣、正態(tài)分布

 、袑(dǎo)數(shù):導(dǎo)數(shù)的概念、求導(dǎo)、導(dǎo)數(shù)的應(yīng)用

  ⒀復(fù)數(shù):復(fù)數(shù)的概念與運(yùn)算

 、僬忮F各側(cè)棱相等,各側(cè)面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高).

 、谡忮F的高、斜高和斜高在底面內(nèi)的射影組成一個(gè)直角三角形,正棱錐的高、側(cè)棱、側(cè)棱在底面內(nèi)的射影也組成一個(gè)直角三角形.

  ⑶特殊棱錐的頂點(diǎn)在底面的射影位置:

 、倮忮F的側(cè)棱長(zhǎng)均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心.

 、诶忮F的側(cè)棱與底面所成的角均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心.

  ③棱錐的各側(cè)面與底面所成角均相等,則頂點(diǎn)在底面上的射影為底面多邊形內(nèi)心.

 、芾忮F的頂點(diǎn)到底面各邊距離相等,則頂點(diǎn)在底面上的射影為底面多邊形內(nèi)心.

 、萑忮F有兩組對(duì)棱垂直,則頂點(diǎn)在底面的射影為三角形垂心.

  ⑥三棱錐的三條側(cè)棱兩兩垂直,則頂點(diǎn)在底面上的射影為三角形的垂心.

 、呙總(gè)四面體都有外接球,球心0是各條棱的中垂面的交點(diǎn),此點(diǎn)到各頂點(diǎn)的距離等于球半徑;

 、嗝總(gè)四面體都有內(nèi)切球,球心

  是四面體各個(gè)二面角的平分面的交點(diǎn),到各面的距離等于半徑.

  [注]:i.各個(gè)側(cè)面都是等腰三角形,且底面是正方形的棱錐是正四棱錐.(×)(各個(gè)側(cè)面的等腰三角形不知是否全等)

  ii.若一個(gè)三角錐,兩條對(duì)角線互相垂直,則第三對(duì)角線必然垂直.

  簡(jiǎn)證:AB⊥CD,AC⊥BD

  BC⊥AD.令得,已知?jiǎng)t.

  iii.空間四邊形OABC且四邊長(zhǎng)相等,則順次連結(jié)各邊的中點(diǎn)的四邊形一定是矩形.

  iv.若是四邊長(zhǎng)與對(duì)角線分別相等,則順次連結(jié)各邊的中點(diǎn)的四邊是一定是正方形.

  簡(jiǎn)證:取AC中點(diǎn),則平面90°易知EFGH為平行四邊形

  EFGH為長(zhǎng)方形.若對(duì)角線等,則為正方形.

  立體幾何初步

  (1)棱柱:

  定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

  表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線的端點(diǎn)字母,如五棱柱

  幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

  (2)棱錐

  定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

  表示:用各頂點(diǎn)字母,如五棱錐

  幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。

  (3)棱臺(tái):

  定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等

  表示:用各頂點(diǎn)字母,如五棱臺(tái)

  幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的.頂點(diǎn)

  (4)圓柱:

  定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體

  幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開(kāi)圖是一個(gè)矩形。

  (5)圓錐:

  定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體

  幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)扇形。

  (6)圓臺(tái):

  定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

  幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)弓形。

  (7)球體:

  定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

  幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

  (1)先看“充分條件和必要條件”

  當(dāng)命題“若p則q”為真時(shí),可表示為p=>q,則我們稱p為q的充分條件,q是p的必要條件。這里由p=>q,得出p為q的充分條件是容易理解的。

  但為什么說(shuō)q是p的必要條件呢?

  事實(shí)上,與“p=>q”等價(jià)的逆否命題是“非q=>非p”。它的意思是:若q不成立,則p一定不成立。這就是說(shuō),q對(duì)于p是必不可少的,因而是必要的。

  (2)再看“充要條件”

  若有p=>q,同時(shí)q=>p,則p既是q的充分條件,又是必要條件。簡(jiǎn)稱為p是q的充要條件。記作p<=>q

  (3)定義與充要條件

  數(shù)學(xué)中,只有A是B的充要條件時(shí),才用A去定義B,因此每個(gè)定義中都包含一個(gè)充要條件。如“兩組對(duì)邊分別平行的四邊形叫做平行四邊形”這一定義就是說(shuō),一個(gè)四邊形為平行四邊形的充要條件是它的兩組對(duì)邊分別平行。

  顯然,一個(gè)定理如果有逆定理,那么定理、逆定理合在一起,可以用一個(gè)含有充要條件的語(yǔ)句來(lái)表示。

  “充要條件”有時(shí)還可以改用“當(dāng)且僅當(dāng)”來(lái)表示,其中“當(dāng)”表示“充分”。“僅當(dāng)”表示“必要”。

  (4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質(zhì)定理中的“結(jié)論”都可作為必要條件。

  1.函數(shù)的奇偶性

  (1)若f(x)是偶函數(shù),那么f(x)=f(-x);

  (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

  (3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或(f(x)≠0);

  (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡(jiǎn),再判斷其奇偶性;

  (5)奇函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

  2.復(fù)合函數(shù)的有關(guān)問(wèn)題

  (1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數(shù)的問(wèn)題一定要注意定義域優(yōu)先的原則。

  (2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

  3.函數(shù)圖像(或方程曲線的對(duì)稱性)

  (1)證明函數(shù)圖像的對(duì)稱性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在圖像上;

  (2)證明圖像C1與C2的對(duì)稱性,即證明C1上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在C2上,反之亦然;

  (3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對(duì)稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

  (4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱曲線C2方程為:f(2a-x,2b-y)=0;

  (5)若函數(shù)y=f(x)對(duì)x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對(duì)稱;

  (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對(duì)稱;

  4.函數(shù)的周期性

  (1)y=f(x)對(duì)x∈R時(shí),f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

  (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為2︱a︱的周期函數(shù);

  (3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為4︱a︱的周期函數(shù);

  (4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱,則f(x)是周期為2的周期函數(shù);

  (5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對(duì)稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);

  (6)y=f(x)對(duì)x∈R時(shí),f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);

  5.方程k=f(x)有解k∈D(D為f(x)的值域);

  6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

  7.(1)(a>0,a≠1,b>0,n∈R+);

  (2)logaN=(a>0,a≠1,b>0,b≠1);

  (3)logab的符號(hào)由口訣“同正異負(fù)”記憶;

  (4)alogaN=N(a>0,a≠1,N>0);

  8.判斷對(duì)應(yīng)是否為映射時(shí),抓住兩點(diǎn):

  (1)A中元素必須都有象且;

  (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  9.能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

  10.對(duì)于反函數(shù),應(yīng)掌握以下一些結(jié)論:

  (1)定義域上的單調(diào)函數(shù)必有反函數(shù);

  (2)奇函數(shù)的反函數(shù)也是奇函數(shù);

  (3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);

  (4)周期函數(shù)不存在反函數(shù);

  (5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;

  (6)y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

  11.處理二次函數(shù)的問(wèn)題勿忘數(shù)形結(jié)合

  二次函數(shù)在閉區(qū)間上必有最值,求最值問(wèn)題用“兩看法”:一看開(kāi)口方向;二看對(duì)稱軸與所給區(qū)間的相對(duì)位置關(guān)系;

  12.依據(jù)單調(diào)性

  利用一次函數(shù)在區(qū)間上的保號(hào)性可解決求一類參數(shù)的范圍問(wèn)題;

  13.恒成立問(wèn)題的處理方法

  (1)分離參數(shù)法;

  (2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;

  高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)16

  付正軍:高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié),主要是考函數(shù)和導(dǎo)數(shù),這是我們整個(gè)高中階段里最核心的板塊,在這個(gè)板塊里,重點(diǎn)考察兩個(gè)方面:第一個(gè)函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點(diǎn)考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問(wèn)題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析就是二次方程的分布的問(wèn)題,這是第一個(gè)板塊。

  第二個(gè)是平面向量和三角函數(shù)。重點(diǎn)考察三個(gè)方面:一個(gè)是劃減與求值,第一,重點(diǎn)掌握公式,重點(diǎn)掌握五組基本公式。第二,是三角函數(shù)的.圖像和性質(zhì),這里重點(diǎn)掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來(lái)解三角形。難度比較小。

  第三,是數(shù)列,數(shù)列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項(xiàng);一個(gè)是求和。

  第四,空間向量和立體幾何。在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計(jì)算。

  第五,概率和統(tǒng)計(jì),這一板塊主要是屬于數(shù)學(xué)應(yīng)用問(wèn)題的范疇,當(dāng)然應(yīng)該掌握下面幾個(gè)方面,第一等可能的概率,第二事件,第三是獨(dú)立事件,還有獨(dú)立重復(fù)事件發(fā)生的概率。

  第六,解析幾何,這是我們比較頭疼的問(wèn)題,是整個(gè)試卷里難度比較大,計(jì)算量最高的題,當(dāng)然這一類題,我總結(jié)下面五類?嫉念}型,包括第一類所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容?忌鷳(yīng)該掌握它的通法,第二類我們所講的動(dòng)點(diǎn)問(wèn)題,第三類是弦長(zhǎng)問(wèn)題,第四類是對(duì)稱問(wèn)題,這也是20xx年高考已經(jīng)考過(guò)的一點(diǎn),第五類重點(diǎn)問(wèn)題,這類題時(shí)往往覺(jué)得有思路,但是沒(méi)有答案,當(dāng)然這里我相等的是,這道題盡管計(jì)算量很大,但是造成計(jì)算量大的原因,往往有這個(gè)原因,我們所選方法不是很恰當(dāng),因此,在這一章里我們要掌握比較好的算法,來(lái)提高我們做題的準(zhǔn)確度,這是我們所講的第六大板塊。

  第七,押軸題,考生在備考復(fù)習(xí)時(shí),應(yīng)該重點(diǎn)不等式計(jì)算的方法,雖然說(shuō)難度比較大,我建議考生,采取分部得分整個(gè)試卷不要留空白。這是高考所考的七大板塊核心的考點(diǎn)。

  高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)17

  ①正棱錐各側(cè)棱相等,各側(cè)面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高)。

 、谡忮F的高、斜高和斜高在底面內(nèi)的射影組成一個(gè)直角三角形,正棱錐的高、側(cè)棱、側(cè)棱在底面內(nèi)的射影也組成一個(gè)直角三角形。

  ⑶特殊棱錐的頂點(diǎn)在底面的射影位置:

  ①棱錐的側(cè)棱長(zhǎng)均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心。

 、诶忮F的側(cè)棱與底面所成的角均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心。

 、劾忮F的各側(cè)面與底面所成角均相等,則頂點(diǎn)在底面上的射影為底面多邊形內(nèi)心。

 、芾忮F的`頂點(diǎn)到底面各邊距離相等,則頂點(diǎn)在底面上的射影為底面多邊形內(nèi)心。

 、萑忮F有兩組對(duì)棱垂直,則頂點(diǎn)在底面的射影為三角形垂心。

  ⑥三棱錐的三條側(cè)棱兩兩垂直,則頂點(diǎn)在底面上的射影為三角形的垂心。

 、呙總(gè)四面體都有外接球,球心0是各條棱的中垂面的交點(diǎn),此點(diǎn)到各頂點(diǎn)的距離等于球半徑;

 、嗝總(gè)四面體都有內(nèi)切球,球心是四面體各個(gè)二面角的平分面的交點(diǎn),到各面的距離等于半徑。

  [注]:

  i、各個(gè)側(cè)面都是等腰三角形,且底面是正方形的棱錐是正四棱錐。(×)(各個(gè)側(cè)面的等腰三角形不知是否全等)

  ii、若一個(gè)三角錐,兩條對(duì)角線互相垂直,則第三對(duì)角線必然垂直。

  簡(jiǎn)證:AB⊥CD,AC⊥BD

  BC⊥AD。令得,已知?jiǎng)t。

  iii、空間四邊形OABC且四邊長(zhǎng)相等,則順次連結(jié)各邊的中點(diǎn)的四邊形一定是矩形。

  iv、若是四邊長(zhǎng)與對(duì)角線分別相等,則順次連結(jié)各邊的中點(diǎn)的四邊是一定是正方形。

  簡(jiǎn)證:取AC中點(diǎn),則平面90°易知EFGH為平行四邊形

  EFGH為長(zhǎng)方形。若對(duì)角線等,則為正方形。

  高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)18

  不等式的解集:

 、倌苁共坏仁匠闪⒌奈粗獢(shù)的值,叫做不等式的.解。

  ②一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。

 、矍蟛坏仁浇饧倪^(guò)程叫做解不等式。

  不等式的判定:

 、俪R(jiàn)的不等號(hào)有“>”“<”“≤”“≥”及“≠”。分別讀作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;

 、谠诓坏仁健癮>b”或“a

 、鄄坏忍(hào)的開(kāi)口所對(duì)的數(shù)較大,不等號(hào)的尖頭所對(duì)的數(shù)較小;

  ④在列不等式時(shí),一定要注意不等式關(guān)系的關(guān)鍵字,如:正數(shù)、非負(fù)數(shù)、不大于、小于等等。

  高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)19

  任一x=A,x=B,記做AB

  AB,BAA=B

  AB={x|x=A,且x=B}

  AB={x|x=A,或x=B}

  Card(AB)=card(A)+card(B)—card(AB)

 。1)命題

  原命題若p則q

  逆命題若q則p

  否命題若p則q

  逆否命題若q,則p

  (2)AB,A是B成立的充分條件

  BA,A是B成立的必要條件

  AB,A是B成立的.充要條件

  1、集合元素具有

 、俅_定性;

 、诨ギ愋;

 、蹮o(wú)序性

  2、集合表示方法

  ①列舉法;

 、诿枋龇;

 、垌f恩圖;

  ④數(shù)軸法

 。3)集合的運(yùn)算

 、貯∩(B∪C)=(A∩B)∪(A∩C)

 、贑u(A∩B)=CuA∪CuB

  Cu(A∪B)=CuA∩CuB

  (4)集合的性質(zhì)

  n元集合的字集數(shù):2n

  真子集數(shù):2n—1;

  非空真子集數(shù):2n—2

  高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)20

  反三角函數(shù)主要是三個(gè):

  y=arcsin(x),定義域[-1,1],值域[-π/2,π/2]圖象用紅色線條;

  y=arccos(x),定義域[-1,1],值域[0,π],圖象用藍(lán)色線條;

  y=arctan(x),定義域(-∞,+∞),值域(-π/2,π/2),圖象用綠色線條;

  sin(arcsinx)=x,定義域[-1,1],值域[-1,1]arcsin(-x)=-arcsinx

  其他公式:

  三角函數(shù)其他公式

  arcsin(-x)=-arcsinx

  arccos(-x)=π-arccosx

  arctan(-x)=-arctanx

  arccot(-x)=π-arccotx

  arcsinx+arccosx=π/2=arctanx+arccotx

  sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)

  當(dāng)x∈[—π/2,π/2]時(shí),有arcsin(sinx)=x

  當(dāng)x∈[0,π],arccos(cosx)=x

  x∈(—π/2,π/2),arctan(tanx)=x

  x∈(0,π),arccot(cotx)=x

  x〉0,arctanx=π/2-arctan1/x,arccotx類似

  若(arctanx+arctany)∈(—π/2,π/2),則arctanx+arctany=arctan(x+y/1-xy)高三數(shù)學(xué)必背知識(shí)點(diǎn)歸納

  二項(xiàng)式定理:

  ①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

  特別地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

 、谥饕再|(zhì)和主要結(jié)論:對(duì)稱性Cnm=Cnn-m

  二項(xiàng)式系數(shù)在中間。(要注意n為奇數(shù)還是偶數(shù),答案是中間一項(xiàng)還是中間兩項(xiàng))

  所有二項(xiàng)式系數(shù)的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

  奇數(shù)項(xiàng)二項(xiàng)式系數(shù)的'和=偶數(shù)項(xiàng)而是系數(shù)的和

  Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

  ③通項(xiàng)為第r+1項(xiàng):Tr+1=Cnran-rbr作用:處理與指定項(xiàng)、特定項(xiàng)、常數(shù)項(xiàng)、有理項(xiàng)等有關(guān)問(wèn)題。

【高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)04-27

高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)總結(jié)06-08

高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)08-24

高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)03-08

高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)06-12

高三數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)08-13

高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)總結(jié)范文12-12

[優(yōu)秀]高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)06-12

高三數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)(精選13章)06-10

關(guān)于高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)06-08