亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

三年級數學上冊知識點總結

時間:2024-12-14 14:50:02 金怡 知識點總結 我要投稿

三年級數學上冊知識點總結大全

  在學習中,大家最熟悉的就是知識點吧?知識點也可以理解為考試時會涉及到的知識,也就是大綱的分支。哪些才是我們真正需要的知識點呢?下面是小編為大家整理的三年級數學上冊知識點總結,歡迎大家分享。

三年級數學上冊知識點總結大全

  三年級數學上冊知識點總結 1

  一、時分秒

  1、鐘面上有3根針,它們是時針、分針、秒針,其中走得最快的是秒針,走得最慢的是時針。時針最短,秒針最長

  2、鐘面上有12個數字,12個大格,60個小格;每兩個數間是1個大格,也就是5個小格。

  3、時針走1大格是1小時;分針走1大格是5分鐘,走1小格是1分鐘;秒針走1大格是5秒鐘,走1小格是1秒鐘。

  4、分針走1小格,秒針正好走1圈,秒針走1圈是60秒,也就是1分鐘。

  5、時針從一個數走到下一個數是1小時。分針從一個數走到下一個數是5分鐘。秒針從一個數走到下一個數是5秒鐘。

  6、公式。(每兩個相鄰的時間單位之間的進率是60)

  1時=60分;1分=60秒;60分=1時;

  7、常用的時間單位:時、分、秒、年、月、日、世紀等。

  1世紀=100年,1年=12個月

  二、分數的初步認識

  1、幾分之一:把一個物體或一個圖形平均分成幾份,每一份就是它的幾分之一。幾分之幾:把一個物體或一個圖形平均分成幾份,取其中的幾份,就是這個物體或圖形的幾分之幾。

  2、把一個整體平均分得的份數越多,它的每一份所表示的數就越小。

  3、比較大小的方法:

  ①分子相同,分母小的分數反而大,分母大的分數反而小。②分母相同,分子大的分數就大,分子小的分數就小。

  4、分數加減法:①同分母的分數加、減法的計算方法:同分母分數相加減,分母不變,和分子相加、減。②1減幾分之幾的計算方法:計算1減幾分之幾時,先把1寫成與減數分母相同的分數,在計算。

  5、分數的意義:把一個整體平均分成若干份,表示幾份就是這個整體的幾分之幾,所分的份數作分母,所取的份數作分子。

  6、求一個數是另一個數的幾分之幾是多少的計算方法:先用這個數除以分母(求出1份的數量是多少),再用商乘分子(求出其中幾份是多少)

  三、測量

  1、在生活中,量比較短的物品,可以用(毫米、厘米、分米)做單位;量比較長的物體,常用(米)做單位;測量比較長的路程一般用(千米)做單位,千米也叫(公里)。

  2、1枚1分的硬幣、尺子、磁卡、小紐扣、鑰匙的厚度大約是1毫米。

  3、在計算長度時,只有相同的長度單位才能相加減。

  4、長度單位的關系式有:(每兩個相鄰的長度單位之間的進率是10)

 、龠M率是10:1米=10分米,1分米=10厘米,1厘米=10毫米,10分米=1米,10厘米=1分米,10毫米=1厘米,

 、谶M率是100:1米=100厘米,1分米=100毫米,100厘米=1米,100毫米=1分米

 、圻M率是1000:1千米=1000米,1公里==1000米,1000米=1千米,1000米=1公里

  5、當我們表示物體有多重時,通常要用到(質量單位)。在生活中,稱比較輕的物品的質量,可以用(克)做單位;稱一般物品的質量,常用(千克)做單位;計量較重的或大宗物品的質量,通常用(噸)做單位。

  6、相鄰兩個質量單位進率是1000。

  1噸=1000千克1千克=1000克1000千克=1噸1000克=1千克

  四、萬以內的加法和減法

  1、讀數和寫數(讀數時寫漢字寫數時寫阿拉伯數字)

  ①一個數的末尾不管有一個0或幾個0,這個0都不讀。

 、谝粋數的'中間有一個0或連續的兩個0,都只讀一個0。

  2、數的大小比較:

 、傥粩挡煌臄当容^大小,位數多的數大。

  ②位數相同的數比較大小,先比較這兩個數的位上的數,如果位上的數相同,就比較下一位,以此類推。

  4、求一個數的近似數:看最位的后面一位,如果是0—4則用四舍法,如果是5—9就用五入法。

  5、被減數是三位數的連續退位減法的運算步驟:

 、倭胸Q式時相同數位一定要對齊;

  ②減法時,哪一位上的數不夠減,從前一位退1,在本位上加上10再減;如果前一位是0,則再從前一位退1。

  五、倍的認識

  1、倍的意義:要知道兩個數的關系,先確定誰是1倍數,然后把另一個數和它作比較,另一個數里有幾個1倍數就是它的幾倍。

  2、求一個數是另一個數的幾倍的計算方法:一個數÷另一個數=倍數3、求一個數的幾倍是多少的計算方法這個數×倍數=這個數的幾倍

  六、長方形和正方形

  1、有4條直的邊和4個角封閉圖形我們叫它四邊形。

  2、四邊形的特點:有四條直的邊,有四個角。

  3、長方形的特點:長方形有兩條長,兩條寬,四個角都是直角,對邊相等。

  4、正方形的特點:有4個直角,4條邊相等。

  5、長方形和正方形是特殊的平行四邊形。

  6、平行四邊形的特點:①對邊相等、對角相等。②平行四邊形容易變形。(三角形不容易變形)7、封閉圖形一周的長度,就是它的周長。

  8、公式:長方形的周長=(長+寬)×2或長×2+寬×2長方形的長=周長÷2—寬長方形的寬=周長÷2—長正方形的周長=邊長×4正方形的邊長=周長÷4

  七、多位數乘一位數

  1、估算。(先求出多位數的近似數,再進行計算。如497×7≈3500)

  2、

  ①0和任何數相乘都得0;

 、1和任何不是0的數相乘還得原來的數。

  3、三位數乘一位數:積有可能是三位數,也有可能是四位數。

  4、多位數乘一位數(進位)的筆算方法:

  相同數位對齊,從個位乘起,用一位數分別去乘多位數每一位上的數,哪一位上乘得的數積滿幾十,就向前一位進幾,與哪一位相乘,積就寫在哪一位下面。

  5、一個因數中間有0的乘法:

  ②因數中間有0,用一位數去乘多位數每一位數上的數,與中間的0相乘時,如果后面沒有進上來的數,這一位上要用0來占位,如果有進上來的數必須加上。

  6、一個因數末尾有0的乘法的簡便計算:筆算時,可以把一位數與多位數0前面那個數字對齊,再看多位數的末尾有幾個0,就在積的末尾添上幾個0。

  7、(關于“大約)應用題:問題中出現“大約”、“約”、“估一估”、“估算”、“估計一下”,條件中無論有沒有大約都是求近似數,用估算!ā郑

  8、減法的驗算方法:

 、儆帽粶p數減去差,看結果是不是等于減數

  ②用差加減數,看結果是不是等于被減數。

  9、加法的驗算方法:

  ①交換兩個加數的位置再算一遍。

  ②用和減一個加數,看結果是不是等于另一個加數。

  三年級數學上冊知識點總結 2

  1、有4條直的邊和4個角的封閉圖形我們叫它四邊形。

  2、四邊形的特點:有四條直的邊,有四個角。

  3、長方形的特點:長方形有兩條長,兩條寬,四個角都是直角,對邊相等。

  4、正方形的特點:有4個直角,4條邊相等。

  5、長方形和正方形是特殊的平行四邊形。

  6、平行四邊形的特點:①對邊相等、對角相等。

 、谄叫兴倪呅稳菀鬃冃。(三角形不容易變形)

  7、封閉圖形一周的長度,就是它的周長。

  8、公式:

  長方形的周長=(長+寬)×2

  變式:①長方形的長=周長÷2—寬

 、陂L方形的寬=周長÷2—長

  正方形的周長=邊長×4

  變式:正方形的邊長=周長÷4

  數學圓的周長知識點

  環繞有限面積的區域邊緣的長度積分,叫做周長,也就是圖形一周的長度。多邊形的周長的長度也相等于圖形所有邊的和,圓的周長=πd=2πr(d為直徑,r為半徑,π),扇形的周長=2R+nπR÷180?(n=圓心角角度)=2R+kR(k=弧度)。

  推導圓周長最簡潔的辦法是用積分。在平面直角坐標下圓的.方程是這可以寫成參數方程:于是圓周長就是結果自然就是(注:三角函數一般的定義是依賴于圓的周長或面積的,為了避免邏輯上的循環論證,可以把三角函數按收斂的冪級數或積分來定義而不依賴于幾何,此時圓周率就不是由圓定義的常數,而是由三角函數周期性得到的常數)。如果不需要更多的理論討論,上面的做法就足夠了。

  小學數學簡便計算知識點

  1、連加的簡便計算:

 、偈褂眉臃ńY合律(把和是整十、整百、整千的數結合在一起)

 、趥位:1與9,2與8,3與7,4與6,5與5,結合。

 、凼唬0與9,1與8,2與7,3與6,4與5,結合。

  2、連減的簡便計算:

 、龠B續減去幾個數就等于減去這幾個數的和。如:106—26—74=106—(26+74)

  ②減去幾個數的和就等于連續減去這幾個數。如:106—(26+74)=106—26—74

  3、加減混合的簡便計算:

  第一個數的位置不變,其余的加數、減數可以交換位置(可以先加,也可以先減)例如:123+38—23=123—23+38 146—78+54=146+54—78

  4、連乘的簡便計算:

  使用乘法結合律:把常見的數結合在一起25與4;125與8;125與80等看見25就去找4,看見125就去找8;

  5、連除的簡便計算:

 、龠B續除以幾個數就等于除以這幾個數的積。

 、诔詭讉數的積就等于連續除以這幾個數。

  6、乘、除混合的簡便計算:

  第一個數的位置不變,其余的因數、除數可以交換位置。(可以先乘,也可以先除)例如:27×13÷9=27÷9×13 7。乘法分配律的應用:

 、兕愋鸵唬海╝+b)×c(a—b)×c= a×c+b×c = a×c—b×c

 、陬愋投篴×c+b×c a×c—b×c=(a+b)×c =(a—b)×c

  ③類型三:a×99+a a×b—a= a×(99+1)= a×(b—1)

 、茴愋退模篴×99 a×102= a×(100—1)= a×(100+2)= a×100—a×1 = a×100+a×2

  三年級數學上冊知識點總結 3

  1、多位數乘一位數(進位)的筆算方法:相同數位對齊,從個位乘起,用一位數分別去乘多位數每一位上的數,哪一位上乘得的數積滿幾十,就向前一位進幾,與哪一位相乘,積就寫在哪一位下面。

  2、一個因數中間有0的乘法:

 、 0和任何數相乘都得0;

  ②因數中間有0,用一位數去乘多位數每一位數上的數,與中間的0相乘時,如果后面沒有進上來的數,這一位上要用0來占位,如果有進上來的數必須加上。

 、垡粋因數末尾有0的乘法的簡便計算:筆算時,可以把一位數與多位數0前面那個數字對齊,再看多位數的末尾有幾個0,就在積的末尾添上幾個0。

  3、① 0和任何數相乘都得0;② 1和任何不是0的數相乘還得原來的.數。

  4、三位數乘一位數:積有可能是三位數,也有可能是四位數。

  公式:速度×時間=路程每節車廂的人數×車廂的數量=全車的人數

  路程÷時間=速度

  路程÷速度=時間

  5、(關于“大約)應用題:

  問題中出現“大約”、“約”、“估一估”、 “估算”、 “估計一下”,條件中無論有沒有大約都是求近似數,用估算。(估算時要用≈)

  例:387×5≈

  把387看作390(個位是7,四舍五入,7大于5所以進1,看作390)再算390×5=1950。

  所以:387×5≈1950

  小學數學運算定律

  1、加法交換律:交換加數的位置和不變。[a+b=b+a](如:23+34=57與34+23=57)

  2、加法結合律:(a+b)+c=a+(b+c)先把前兩個數相加,或者先把后兩個數相加,和不變。

  3、乘法交換律:a×b=b×a交換因數的位置積不變。

  4、乘法結合律:(a×b)×c=a×(b×c)先把前兩個數相乘,或者先把后兩個數相乘,積不變。

  5、乘法分配律:(a+b)×c=a×c+b×c兩個數的和與一個數相乘,可以把他們與這個數相乘,再相加。

  數學三角形體積知識點

  三角形是二維圖形,二維圖形沒有體積公式。一維空間物件(如線)及二維空間物件(如正方形)在三維空間中都是零體積的。

  體積,幾何學專業術語,是物件占有多少空間的量。體積的國際單位制是立方米。一件固體物件的體積是一個數值用以形容該物件在三維空間所占有的空間。一維空間物件(如線)及二維空間物件(如正方形)在三維空間中都是零體積的。

  三年級數學上冊知識點總結 4

  一、知識框架

  一級知識點數與代數二級知識點數的運算三級知識點

  1、列豎式計算除法。

  2、兩位數除以一位數;

  除法的驗算

  3、一步計算的問題

  4、兩步計算的問題

  1、質量單位千克、克數與代數常見的量

  2、千克、克之間的換算,簡單的實際問題

  3、24時計時法空間與圖形空間與圖形統計與概率圖形的認識

  從三個方向觀察用小正方體搭成的立體圖形形狀

  1.周長的認識

  2.長方形、正方形的周長計算描述事件發生的可能性。

  二、期末知識點

  第一單元除法(除法是乘法的逆運算)

  兩位數除以一位數(商是兩位數)的除法。是在二年級(上冊)表內除法和二年級(下冊)有余數除法的基礎上安排的。

  1.計算:列豎式計算除法。

  2.口算:被除數十位和個位上的數分別除以除數都沒有余數的除法,包括整十數除以一位數商是整十數。

  3.筆算:兩位數除以一位數;除法的驗算(用乘法驗算)。

  4.估算:估計兩位數除以一位數的商是幾十多。

  5.一步計算的問題:在解決的實際問題中體會數量關系?們r÷單價=數量總價÷數量=單價

  6.兩步計算的問題:先求總和或剩余是多少,再平均分的實際問題。

  練習:

 。1)用豎式計算,并驗算:62÷266÷672÷347÷7

 。2)口算:36÷360÷268÷290÷3

  (3)列豎式計算:39÷389÷467÷274÷3

  (4)你能估算下面各題的商各是幾十多嗎?64÷584÷395÷481÷3

 。5)王老師用72元買筆記本,如果每本單價是2元,那么能買多少本?李老師用60元買了20本筆記本,那么每本筆記本多少錢?

 。6)一副乒乓球拍26元,一個乒乓球2元,用50元買一副乒乓球拍,剩下的錢能夠買幾個乒乓球?第二單元認數1.認數、讀數、寫數。

  整千數:數位與順序,認、讀、寫數,口算整千數的加、減法,解決實際問題。非整千數:認、讀、寫數,口算整千數加整百數及相應的減法,按順序整理數。

  練習:

 。1)口算:201+4000800030006000201000+100

 。2)寫一寫:兩個千加兩個百加一個十是多少?

  (3)三千零二是由幾個千和幾個一組成?

  (4)9670是()位數,它的最高位是()位,7在()位上,個位上是()。

  2.大小比較

  比較大小時的數學思考,比較大小的實際應用,非整千數最接近幾千。

  練習:

  比較大小:3650和2520,7890和8790第三單元千克和克

  千克和克都是質量單位,物體含有物質的多少是它的質量。我國人民在生活中習慣以“物體有多重”代替“質量是多少”,因此沒有使用“質量”這個詞,仍然講“有多重”。

  1.稱一個物體有多重,一般用千克為單位。

  2.凈含量是指包裝袋內物品實際有多重。

  3.千克可以用KG表示,又叫公斤。

  4.從秤上讀出物品的重量。

  5.稱比較輕的物品,一般用克為單位。

  6.認識天平。

  7.千克和克之間的關系。1千克=1000克。

  練習

  (1)一袋鹽重500克,兩袋鹽重()克?

 。2)2千克=()克

  (3)9000克=()千克第四單元加和減

  1.口算兩位數加、減。解決與“倍”或“差”有關的兩步計算實際問題。

  練習

  口算:44+2532+5714+6876642.畫線段圖解決問題。

  練習

  手套的價格是12元,帽子的價格是手套的3倍,你能用線段畫出來并算出帽子是多少錢嗎?第五單元24時記時法。

  1.24時記時法及它與普通記時法(12時記時法)的聯系

  2.聯系實際問題求經過時間的基本思路與方法。包括:求整時到整時的經過時間,求非整點時刻間的'經過時間。(利用線段圖)。

  求經過時間:

  記憶:結束時刻開始時刻=經過時間到達的時刻出發的時刻=經過時間3.兩種計時方式的轉化。

  普通記時法與24時記時法的互相轉化普通記時法24時記時法凌晨1時1時

  早晨5時5時上午8時8時中午12時12時下午1時13時下午2時14時晚上6時18時晚上7時19時晚上8時20時晚上9時21時

  深夜12時24時(也是第二天的0時)

  記憶:中午12時以后的時刻,用24時記時法表示,就用鐘面上的時刻加上12時。中午12時以后的時刻,用普通記時法表示,就用時刻減去12時。

  練習

  (1)圖書館的的公告牌上面寫著:借書時間:12:0013:30,15:4017:00。圖書館每天的借書時間是多長?

 。2)用二十四小時計時法表示,:下午2:00,晚上9:00第六單元長方形和正方形

  1.認識長方形和正方形。掌握長方形、正方形的邊與角有什么特點。(長方形對邊相等,四個角都是直角。正方形每條邊都相等,四個角都是直角。通常把長方形的長邊叫做長,短邊叫做寬。把正方形的每一條邊都叫做邊長。)

  2.探索、理解周長的含義及計算方法。計算長方形和正方形的周長。(物體某個面上一周邊線的長度就是該物體某個面的周長)。

  練習

  (1)籃球場長26米,寬14米,求籃球場的周長。

  (2)操場長150米,寬70米,小強繞操場跑一周,小強一共跑了多少米?

  第七單元乘法

  1.三位數乘一位數的基本方法。(在二年級下冊已經學習了兩位數乘一位數)

  2.三位數的中間或末尾是0時的乘法計算。3.連乘計算。練習:

  (1)200×3152×4261×3224×5(2)124×3×2115×2×4

 。3)一頭牛一天吃20千克草,兩頭牛兩天吃多少千克草?

  第八單元觀察物體

  安排過一次“觀察物體”,從物體(玩具、茶壺、汽車等)的前面、后面、左面、右面觀察,并選擇適宜的圖形表示看到的物體的形狀。本單元學習“觀察物體”,從物體的正面、側面和上面觀察,并用視圖表示看到的形狀。

  1.在知道物體的前面、后面、左面、右面的基礎上,認識物體的正面、側面和上面。

  2.在不同的位置觀察,看到的物體的面的個數往往是不相同的。

  3.進行簡單幾何體與其三視圖之間的轉化。

  第九單元統計與可能性

  學習簡單的統計知識。

  練習

 。1)在一個口袋里放3個紅球,一個黃球,從袋子里任意摸一個球,摸到紅球的可能性大還是摸到黃球的可能性大?

  第十單元認識分數

  理解分數的意義,認、讀、寫簡單的分數,同分母分數(分母小于10)的加減計算。

  1.分數的表示:分子、分母、分數線。

  2.同分母分數比較大小。

  3.同分母分數的加減。

  三年級數學上冊知識點總結 5

  《四邊形》

  1、知識點:認識四邊形的特征,掌握長方形、正方形的特征

 、倌苷_辨認四邊形。

  ②掌握長方形、正方形的特征。

  注:應注重引導學生在長、正方形的對比中找出圖形邊和角的特征。

  2、知識點:在方格紙上畫出長方形和正方形

  能在方格紙上畫出長方形和正方形。

  3、知識點:初步認識平行四邊形

 、倌苷_辨認平行四邊形。

  ②能感悟到平行四邊形易變形的特性。

 、勰茉诜礁窦埳险_畫出平行四邊形。

  注:學生尋找平行四邊形時,要注意與長方形、正方形的區別,逐步讓學生在對比中感悟平行四邊形的特征。

  4、知識點:周長的.含義

  結合具體情境理解周長的含義。

  5、知識點:計算長方形和正方形的周長

  ①能正確計算長方形、正方形等平面圖形的周長。

 、谀苓\用周長的知識解決實際問題。

  6、知識點:長度和周長的估計

  在估量物體長度的過程中,逐步建立空間觀念,養成估計的意識和習慣。

  注:應注重引導學生說出估計相應長度的依據,逐步建立長度單位的表象。

  《測量》

  1、知識點:長度單位毫米、分米、千米及1毫米、1分米、1千米

 、僬J識長度單位毫米、分米、千米,建立1毫米、1分米、1千米的長度觀念。

 、诟鶕唧w情境選擇恰當的長度單位。

  2、知識點:單位間的進率

 、僦1厘米=10毫米,1分米=10厘米,1米=10分米,1千米(公里)=1000米。

 、跁M行簡單的單位換算。

  3、知識點:估計、測量物體的長度

  能估計一些物體的長度,會選擇不同的方式準確測量給定物體的長度。

  4、知識點:質量單位噸及1噸

 、僬J識質量單位“噸”,建立1噸的質量觀念。

  ②能根據具體情境選擇恰當的質量單位。

  5、知識點:1噸=1000千克

  知道1噸=1000千克,并會進行噸與千克的單位換算。

  三年級數學上冊知識點總結 6

  第一單元 混合計算

  6、0除以任何非0的數,還得0;字母表示:0÷a(a≠0)=0

  7、0÷0得不到固定的商;5÷0得不到商.

  第二單元 觀察物體

  計算連加式題時,要按從左往右的順序依次計算

  連減

  786-284-249=253

  計算連減式題時,可以按從左往右的順序依次計算,也可以先把兩個減數加起來,再從被減數里減去兩個減數的和。

  786-(284+249)=253

  加減混合

  259+148-342=65

  不帶小括號的加減混合式題的運算順序,:按從左往右的順序依次計算。帶小括號的加減混合式題的運算順序:先算小括號里面的,再算小括號外面的。

  里程表中的問題

  求兩地間的路程,要找準起點,用較遠的路程減去較近的.路程就得到兩地間的路程

  里程數=終點數-起點數

  第四單元 乘與除

  2.月:

  小月:4、6、9、11月

  平月(二月):平年28天

  閏年29天

  3.日歷:學會看日歷,知道某年某月是星期幾

  4.鐘表:24時記時法 12時記時法

  4.公式:

  1時=

  60分 1分= 60秒 半時= 30 分

  60分=1時

  60秒=1分 30 分=半時

  第八單元 可能性

  1.‘不可能和一定’,都表示確定的現象。‘可能’,表示不確定的現象。

  2.請用“一定、可能、不可能”來說一說。

  一定:太陽一定從東邊升起;月亮一定繞著地球轉;地球一定每天都在轉動;每天一定都有人出生;人一定要喝水……

  可能:三天后可能下雨;花可能是香的;明天可能有風;下周可能會考試。……

  不可能:太陽不可能從西邊升起;地球不可能繞著月亮轉;我不可能從出生到現在沒吃過一點東西;鯉魚不可能在陸地上生活;空中不可能蓋樓房;我不可能比姐姐大……

  三年級數學上冊知識點總結 7

  1、認識整千數(記憶:10個一千是一萬)

  2、讀數和寫數(讀數時寫漢字寫數時寫阿拉伯數字)

  ①一個數的末尾不管有一個0或幾個0,這個0都不讀。

  ②一個數的中間有一個0或連續的兩個0,都只讀一個0。

  3、數的大小比較:

 、傥粩挡煌臄当容^大小,位數多的數大。

 、谖粩迪嗤臄当容^大小,先比較這兩個數的高位上的數,如果高位上的數相同,就比較下一位,以此類推。

  4、求一個數的近似數:

  記憶:看位的后面一位,如果是0-4則用四舍法,如果是5-9就用五入法。

  較大的三位數是位999,小的三位數是100,較大的四位數是9999,小的四位數是1000。較大的三位數比小的四位數小1。

  5、被減數是三位數的連續退位減法的運算步驟:

 、倭胸Q式時相同數位一定要對齊;

 、跍p法時,哪一位上的數不夠減,從前一位退1;如果前一位是0,則再從前一位退1。

  6、在做題時,我們要注意中間的0,因為是連續退位的,所以從百位退1到十位當10后,還要從十位退1當10,借給個位,那么十位只剩下9,而不是10。(兩個三位數相加的和:可能是三位數,也有可能是四位數。)

  7、公式

  和=加數+另一個加數

  加數=和-另一個加數

  減數=被減數-差

  被減數=減數+差

  差=被減數-減數

  小學數學?级x

  1、什么是圖形的周長?

  圍成一個圖形所有邊長的總和就是這個圖形的周長。

  2、什么是面積?

  物體的表面或圍成的平面圖形的大小叫做他們的面積。

  3、加法各部分的關系:

  一個加數=和-另一個加數

  4、減法各部分的關系:

  減數=被減數-差被減數=減數+差

  5、乘法各部分之間的`關系:

  一個因數=積÷另一個因數

  6、除法各部分之間的關系:

  除數=被除數÷商被除數=商×除數

  小學數學最小的數是什么

  要回答這個問題,我們首先看一下“幾位數”的概念:在一個數中數字的個數是幾(其最左端的數字不為0),這個數就是幾位數。關于幾位數的定義中,最左端的數字不為0是關鍵條件。就像我們分數定義中,明確規定分母不為0一樣,否則沒意義。

  在整數中,最小的計數單位是1(個),當0單獨存在時,它不占有數位。當0出現在一個幾位數的末尾或中間時,它起到的只是“占位”的作用,表示該位上沒有計數單位。

  假設0也算一位數的話,那么最小的兩位數是“10”還是“00”呢?00是沒有兩位數的意義的。

  所以,一位數是由一個不是0這個數字寫出的數,只要幾位數的意義不變,最小的一位數仍然是1。

  三年級數學上冊知識點總結 8

  (一)口算除法

  1、整千、整百、整十數除以一位數的口算方法。

  (1)用表內除法計算:先用被除數0前面的數除以一位數,算出結果后,再看被除數的末尾有幾個0,就在算出的結果后添幾個0。

  (2)用乘法來算除法:看一位數乘多少等于被除數,乘的數就是所求的商。

  2、三位數除以一位數的估算方法。

  (1)除數不變,把三位數看成幾百幾十或整百的數,再用口算除法的基本方法計算。

  (2)想口訣估算:想一位數乘幾最接近或等于被除數的位或前兩位,那么幾百或幾十就是所要估算的商。

  (二)筆算除法

  1、牢固掌握兩位數除以一位數、三位數除以一位數的筆算方法、步驟與格式,尤其是商中間、末尾有0的筆算算式的寫法。

  (除數是一位數的計算法則,除數是一位數,從被除數的高位除起,先除被除數的前一位,如果不夠除,再除被除數的前兩位,除到被除數的哪一位,商就寫到被除數那一位的上面。除到被除數的哪一位不夠商1,用“0”占位。每一次除得的余數必須比除數小。)

  2、會判斷商是幾位數。

  比較除數與被除數位的大小,如果被除數位上的數比除數小,那么商一定比被除數少一位;如果被除數位上的數比除數大或相等,那么商和被除數的位數相等。

  3、除法的.驗算方法:

  (1)沒有余數的除法:商×除數=被除數;

  (2)有余數的除法:商×除數+余數=被除數;

  4、關于0的一些規定:

  (1)0不能作除數。

  (2)相同的兩個數相除商是1。(既然能相除這個數就不是0)

  (3)0除以任何不是0的數都得0;0乘任何數都得0。

  5、乘除法的估算:4舍5入法。

  如乘法估算:81×68≈5600,就是把81估成80,68估成70,80乘70得5600。

  除法估算:493÷8≈60,就是把493估成480(480是8的倍數,也最接進492),然后再口算480÷8得60。

  三年級數學上冊知識點總結 9

  有余數的除法

  1、余數:在整數的除法中,只有能整除與不能整除兩種情況。當不能整除時,就產生余數,取余數運算:指整數除法中被除數未被除盡部分。例如27除以6,商數為4,余數為3。

  2、余數的性質:余數有如下一些重要性質(a,b,c均為自然數)

 。1)余數小于除數。

 。2)被除數=除數×商+余數

  除數=(被除數—余數)÷商

  商=(被除數—余數)÷除數

  余數=被除數—除數×商。

  3、有余數除法的含義:通過平均分一些物體,有時有剩余,就出現了余數。

  如:一共有23盆花,每組擺5盆,最多可以擺幾組,還多幾盆?

  23÷5=4(組)……3(盆)

  其中,被除數23,除數5,商4,余數3

  4、余數與除數的關系:

  在有余數的除法中,每一次除得的.余數必須比除數小。(余數<除數)

  如:23÷5=4……3,其中(余數3<除數4)

  5、除法各部分之間的關系:

  被除數=商×除數+余數

  或被除數=商×除數

  可能性

  1、不可能和一定’,都表示確定的現象。‘可能’,表示不確定的現象。

  2、請用“一定、可能、不可能”來說一說。

 、僖欢ǎ禾栆欢◤臇|邊升起,月亮一定繞著地球轉,地球一定每天都在轉動,每天一定都有人出生,人一定要喝水……

 、诳赡埽喝旌罂赡芟掠辏ǹ赡苁窍愕模魈炜赡苡酗L,下周可能會考試。

 、鄄豢赡埽禾柌豢赡軓奈鬟吷穑厍虿豢赡芾@著月亮轉,鯉魚不可能在陸地上生活。

  三年級數學上冊知識點總結 10

  四邊形知識點

  【正方形】

  概念:四條邊都相等、四個角都是直角的四邊形是正方形。

  特點:有4個直角,4條邊相等。(正方形既是長方形,也是菱形)

  周長:正方形的周長=邊長×4

  【長方形】

  概念:有一個角是直角的平行四邊形叫做長方形。

  特點:長方形有兩條長,兩條寬,四個直角,對邊相等。

  周長:長方形的周長=(長+寬)×2

  【平行四邊形】

  概念:兩組對邊互相平行的四邊形,它的對邊平行且相等,對角相等。(正方形、長方形數屬于特殊的平行四邊形)

  特點:①對邊相等、對角相等。②平行四邊形容易變形。

  周長:平行四邊形的周長=兩條邊的邊長相加×2

  【梯形】

  概念:有一組對邊平行,另一組對邊不平行的四邊形。

  特點:只有一組對邊平行。

  周長:上底+下底+兩腰長度

  【等腰梯形】

  概念:兩條腰相等的梯形,它的兩個底角相等,是軸對稱圖形,有一條對稱軸。

  特點:有一組對邊平行且兩腰等長。

  周長:上底+下底+兩腰長度

  【菱形】

  概念:一組鄰邊相等的平行四邊行是菱形。

  特點:①四條邊都相等②對角線互相垂直平分③一條對角線分別平分一組對角

  周長:兩條不同的邊長相加×2

  【每個四邊形都有哪些聯系】

  1、正方形既是長方形,也是菱形。

  2、正方形、長方形數屬于特殊的.平行四邊形。

  3、正方形還是特殊的長方形。

  角的認識知識點

  1、角的組成:角是由一個頂點、兩條邊組成的。

  2、角的大小與角的兩條邊的長短沒有關系,跟角的開口大小有關系:角的開口越大,角就越大;開口越小,角就越小。

  3、角的分類,按照角的大小可以分成:銳角、直角、鈍角(平角、周角本學期不需要掌握,孩子知道即可,課上講過)

  4、銳角:比直角小的角叫銳角,也就是:銳角<90°(角的度數不要求掌握,了解即可)

  直角:度數是90°的角叫直角,也就是:直角=90°。

  鈍角:比直角大比平角小的角叫鈍角,也就是:90°<鈍角<180°

  5、做題時,如果讓畫出一個什么角,畫完后一定要有一個表示角的小標志,即直角是一個直的小折線,鈍角銳角都是小弧線是否標出頂點和邊要看題目具體要求。

  6、做題時,如果具體到某個角上,一定要用∠1∠2∠3等表示,不能只填序號。

  7、在方格紙上畫角時,選定方格紙的一個橫豎線交叉點為角的頂點,另一邊就沿著橫線或豎線畫,這樣畫清楚干凈,而且直角更好畫,不易丟分。

  三年級數學上冊知識點總結 11

  一、位置與方向

  1、東與西相對,南與北相對,

  東南與西北相對,西南與東北相對。位置是相對的,不是絕對的。判斷位置時現要弄清楚是以誰為標準。

  2、地圖通常是按上北、下南、左西、右東來繪制的。

  二、除數是一位數的除法

  1、一位數除整十、整百、整千數的口算

  (1)利用“表內除法計算”

  (2)想乘算除

  2、一位數除幾百幾十幾數或幾千幾百數的口算

  (被除數前兩位能被一位數整除時)用被除數的前兩位除以一位數,在得數的末尾添上與被除數末尾同樣多的0。

  3、口算時的注意事項

  (1)0除以任何數(0除外)都等于0;

  (2)0乘以任何數都得0;

  (3)0加任何數都得任何數本身;

  (4)任何數減0都得任何數本身。

  4、筆算除法的順序:確定商的位數,試商,檢查,驗算

  5、一位數除兩、三位數的筆算方法

  先從被除數的最高位除起,如果最高位不夠商1,就看前兩位,而除到被除數的哪一位,就要把商寫在那一位上,假如不夠商1,就在這一位商0;每次除得的余數都要比除數小,再把被除數上的數落下來和余數合起來,再繼續除。

  6、除法的驗算方法

  沒有余數的除法的驗算方法:商×除數=被除數

  有余數的除法的驗算方法:商×除數+余數=被除

  7、三位數除以一位數的估算方法

  除數不變,把三位數看成幾百幾十數或整百數,再用口算除法的基本方法進行計算。

  三、年、月、日

  1、經過的天數的計算

  結束時間—開始時間+ 1

  2、計算經過時間,就是用結束時刻減開始時刻

  結束時刻-開始時刻=時間段(經過時間)

  3、時間與時刻的區別

  時間是一段,時刻是一個點

  四、兩位數乘兩位數

  1、口算乘法

  (1)兩位數乘一位數的口算

  把兩位數分成整十數和一位數,用整十數和一位數分別與一位數相乘,最后把兩次乘得的積相加。

  (2)整百整十數乘一位數的口算

  先用整百數乘一位數,再用整十數乘一位數,最后把兩次乘得的積相加。

  先用整百整十數的前兩位與一位數相乘,再在乘積的末尾添上一個0。

  (3)兩位數乘整十數的口算

  先用這個兩位數與整十數十位上的數相乘,然后在積的末尾添上一個0。

  2、筆算乘法

  先把第一個因數同第二個因數個位上的數相乘,再與第二個因數十位上的數相乘(積與十位對齊),最后把兩個積加起來。

  五、小數的初步認識

  1、小數的意義

  像3.45,0.85,2.60,36.6,1.2和1.5這樣的數叫做小數。小數是分數的另一種表現形式。

  2、小數的認、讀、寫

  限于小數部分不超過兩位的小數。整數部分按整數的讀法(幾百幾十幾)。小數部分,按順序依次讀出每一位上的數字,有幾個0就讀幾個零。

  3、比較兩個小數的大小

  先比較小數的整數部分,整數部分大的數就大,如果整數部分相同就比較小數的小數部分,小數部分要從小數點后最高位比起。

  4、計算小數加、減法

  小數點對齊,也就是相同數位對齊,再按照整數加、減法的計算方法進行計算,最后在得數里點上小數點,使它與橫線上的小數點對齊。

  練習題

  1、看圖填一填。

  (1)兒童公園在城市廣場的(東北)面,商場在城市廣場的(西北)面。

  (2)朝陽小區在城市廣場的(北)面,在工商銀行的(東北)面。

  (3)實驗小學在城市廣場的(南)面,在電影院的(西南)面,在工商銀行的(東南)面。

  【分析:在用方位詞描述一個物體的具體位置時,要弄清楚主語是誰,誰作為“標準”存在。在理解題目時,對于像2、3小題這種由兩句話組成的問題,在填寫后半句時,更要確認好主語是誰。在做題時可以邊讀題,邊標示出標準是誰,并畫出方向箭頭,再根據箭頭得出方向。】

  2、黃昏,當你面對太陽時,你的`后面是(東)面,左面是(南)面,右面是(北)面。

  【分析:在確定方位時,如果遇到和熟悉的“上北下南左西右東”不同的情況時,可以通過畫圖的方法幫助理解。在本題中要明白“黃昏,當你面對太陽時”,面朝的方向是西面,以此信息為起點,畫出其它的方向!

  3、有84朵花,每4朵花扎1束,可以扎多少束?平均每人送2束,這些鮮花大約可以送給多少人?

  84÷4=21(束)

  21÷2=10(人)……1(束)

  答:每4朵花扎1束,可以扎21束。平均每人送2束,這些鮮花大約可以送給10人。

  【分析:要仔細閱讀題目,理解“大約”的含義,可以采用劃一劃、圈一圈等方式弄清題意。要注意到“每4朵扎一束”,“平均每人送2束”,這兩種方法的不同!

  4、參觀科技館的成人人數是兒童的2倍,如果一共有456人參觀,兒童有多少人?

  456÷(1+2)=152(人)

  答:兒童有152人。

  【分析:應用題最關鍵是理解數量之間的關系,而理解倍數關系句又是解答倍數應用題的關鍵。畫線段圖可以幫助理清數量關系。】

  5、制作每只蝴蝶標本需10分鐘。李老師:“我6天制作了12盒蝴蝶標本!币阎亢泻麡吮居5只。

  (1)李老師平均每天制作蝴蝶標本多少只?

  12×5÷6=10(只)

  答:李老師平均每天制作蝴蝶標本10只。

  (2)李老師在這6天中制作標本花了多少時間?

  12×5×10=600(分)

  答:李老師在這6天中制作標本花了600分鐘。

  【分析:一般出現的“多余信息”和“隱藏信息”都比較明顯,比較容易辨別。但在這一練習中的信息都是相關的,只是在解決不同的問題時成了“多余信息”,因此會對學生產生比較大的干擾。首先要弄清楚每一小問中的數量關系,再選擇需要的信息來進行解題!

  6、一場排球賽,從19時30分開始,進行了155分鐘。比賽什么時候結束?

  155÷60=2(時)…35(分)

  19時30分+2時35分=22時5分

  答:比賽22時5分結束。

  【分析:在解答此類關于時間的問題時,要能熟練地運用時、分、秒之間的關系進行換算。1小時=60分,1分=60秒。在得到結果后要注意檢查是否符合實際情況,避免出現21時65分這樣的錯誤。】

  7、陽陽晚上9時睡覺,第二天早上6時起床,他一共睡了幾個小時?

  晚上9時=21:00

  早上6時=6:00

  24:00-21:00=3(時)

  6:00-0:00=6(時)

  3+6=9(時)

  答:他一共睡了9個小時。

  【分析:解決此類與時間相關的問題時要聯系實際,明白晚上12:00是兩天的分界線。在解題時可以利用鐘面,化抽象為具體,掌握最基礎的計算方法。利用手中的鐘面模型,自己動手撥一撥,找準開始和結束的時刻,再數一數中間相隔幾大格就是經過幾小時。也可以采用畫線段圖的方法進行分段計算。畫線段圖如下:】

  8、

  56×14=784(元)

  答:一共賣了784元。

  【分析:要弄清楚數量關系。要解決“一共賣了多少錢”需要知道賣了多少套和每套的價格,這樣就不會被多余信息誤導。在計算時,要多想一想自己寫的每一步算式在計算什么,有什么含義,這樣也可以幫助我們避免出錯!

  9、一根鋼絲長72.6米,比另一根短0.8米,另一根鋼絲長多少米?

  72.6+0.8=73.4(米)

  答:另一根鋼絲長73.4米。

  【分析:已知一個數比另一個數少多少,求另一個數,用減法計算。在列豎式計算時要注意,小數點要對齊!

  三年級數學上冊知識點總結 12

  1、一年有12個月:一、三、五、七、八、十、十二月是大月,有31天;四、六、九、十一月是小月,有30天;二月平年有28天,閏年有29天。

  2、全年天數:平年有365天,閏年有366天。

  3、判斷平年、閏年:

  (A)年份能被4除盡而沒有余數的是閏年,有余數的。為平年;

  (B)整百整千的年份要能被400除盡才是閏年。

  4、比年大的時間單位是世紀,1世紀=100年。

  5、用24時計時法表示:

  (A)上午時間直接讀出鐘面上時間即可;

  (B)下午的`時間在鐘面上所指時間的基礎上加上12小時。

  6、時間單位的換算關系:1小時=60分,1分=60秒,1刻=15分,一晝夜=24小時,1周=7天。

  7、經過的天數的計算分為三種情況:

  (A)頭尾都算:結束時間-開始時間+1

  (B)頭尾都不算:結束時間-開始時間-1

  (C)頭尾算其一:結束時間-開始時間。

  三年級數學上冊知識點總結 13

  1、多位數乘一位數(進位)的筆算方法:相同數位對齊,從個位乘起,用一位數分別去乘多位數每一位上的數,哪一位上乘得的數積滿幾十,就向前一位進幾,與哪一位相乘,積就寫在哪一位下面。

  2、一個因數中間有0的乘法:

  ① 0和任何數相乘都得0;

 、谝驍抵虚g有0,用一位數去乘多位數每一位數上的數,與中間的0相乘時,如果后面沒有進上來的數,這一位上要用0來占位,如果有進上來的.數必須加上。

 、垡粋因數末尾有0的乘法的簡便計算:筆算時,可以把一位數與多位數0前面那個數字對齊,再看多位數的末尾有幾個0,就在積的末尾添上幾個0。

  3、① 0和任何數相乘都得0;② 1和任何不是0的數相乘還得原來的數。

  4、三位數乘一位數:積有可能是三位數,也有可能是四位數。

  公式:速度×時間=路程每節車廂的人數×車廂的數量=全車的人數

  路程÷時間=速度

  路程÷速度=時間

  5、(關于“大約)應用題:

  問題中出現“大約”、“約”、“估一估”、 “估算”、 “估計一下”,條件中無論有沒有大約都是求近似數,用估算。(估算時要用≈)

  例:387×5≈

  把387看作390(個位是7,四舍五入,7大于5所以進1,看作390)再算390×5=1950。

  所以:387×5≈1950

  小學數學運算定律

  1、加法交換律:交換加數的位置和不變。[a+b=b+a](如:23+34=57與34+23=57)

  2、加法結合律:(a+b)+c=a+(b+c)先把前兩個數相加,或者先把后兩個數相加,和不變。

  3、乘法交換律:a×b=b×a交換因數的位置積不變。

  4、乘法結合律:(a×b)×c=a×(b×c)先把前兩個數相乘,或者先把后兩個數相乘,積不變。

  5、乘法分配律:(a+b)×c=a×c+b×c兩個數的和與一個數相乘,可以把他們與這個數相乘,再相加。

  數學三角形體積知識點

  三角形是二維圖形,二維圖形沒有體積公式。一維空間物件(如線)及二維空間物件(如正方形)在三維空間中都是零體積的。

  體積,幾何學專業術語,是物件占有多少空間的量。體積的國際單位制是立方米。一件固體物件的體積是一個數值用以形容該物件在三維空間所占有的空間。一維空間物件(如線)及二維空間物件(如正方形)在三維空間中都是零體積的。

  三年級數學上冊知識點總結 14

  第二、四單元萬以內的加法和減法

  1、最大的幾位數和最小的幾位數:

  最大的一位數是9. 最小的一位數是0.

  最大的二位數是99. 最小的二位數是10

  最大的三位數是999. 最小的三位數是100

  最大的.四位數是9999. 最小的四位數是1000

  最大的五位數是99999. 最小的五位數是10000

  最大的三位數比最小的四位數小1.

  2、筆算加減法時:相同數位要對齊;從個位算起。哪一位上的數相加滿10.就向前一位進1;哪一位上的數不夠減,就從前一位退1當作10.加本位再減;如果前一位是0.則再從前一位退1.

  3、兩個三位數相加的和:可能是三位數,也有可能是四位數。

  4、加法公式:

  加數 + 加數 = 和

  和 - 另一個加數 = 加數

  5、減法公式:

  被減數 - 減數 = 差

  差 + 減數 = 被減數或 被減數 = 差 + 減數

  被減數 - 差 = 減數

  6、口算時:

  例:(1)35+48.先算35+40=75.再算75+8=83.

  (2)72-28.先算72-20=52.再算52-8=44

  或 先算72-30=42.再算42+2=44

  7、問題中出現“大約”、“約”、“估一估”、 “估算”、 “估計一下” “應準備”等詞語時,都是用估算。

  第五單元 倍的認識

  求一個數是另一個數的幾倍是多少? 用除法計算:一個數÷另一個數=倍數

  36是4的幾倍? 36÷4=9

  已知一個數的幾倍是A,求這個數。 用除法計算: A÷倍數=這個數

  已知一個數的5倍數是35.求這個數? 35÷5=7

  求一個數的幾倍是多少? 用乘法計算:一個數×倍數= 結果

  9的6倍是多少? 9×6=54

  第六單元 多位數乘一位數

  1、多位數乘一位數(進位)的筆算方法:

  相同數位對齊,從個位乘起,用一位數依次去乘多位數的每一位,哪一位上乘得的數數積滿幾十,就向前一位進幾。

  2、在乘法里,乘數也叫做因數。

  3、0和任何數相乘都得0;1和任何不是0的數相乘還得這個數。

  4、三位數乘一位數:積有可能是三位數,也有可能是四位數。

  第七單元 長方形和正方形

  1、用相同的小正方形拼長方形或正方形時,拼成的圖形長和寬越接近(或長、寬相等)時,周長最短。

  2、四邊形的特點:有4條直的邊,有4個角。

  3、長方形的特點:對邊相等,有4個直角。

  4、正方形的特點:4條邊都相等,有4個直角。

  5、封閉圖形一周的長度,是它的周長。

  6、長方形的周長=(長+寬)×2 正方形的周長=邊長×4

  7、在一個長方形中剪出一個最大的正方形,長方形的寬就是這個正方形的邊長。

  第八單元 分數的初步認識

  1、 分數的意義:把一個整體平均分成若干份,表示1份或幾份的數就是分數。

  表示:把一個整體平均分成5份,取其中的兩份

  表示:把一個整體平均分成4份,取其中的一份

  2、比較大小的方法:

  (1)分子相同,分母小的分數就大。

  (2)分母相同:分子大的分數就大。

  3、同分母分數相加減,分母不變,只把分子相加減。

  三年級數學上冊知識點總結 15

  1.毫米:毫米是長度單位和降雨量單位,英文縮寫mm。

  1毫米=0.1厘米=0.01分米=0.001米=0.000001千米

  2.厘米:是一個長度計量單位,等于一米的百分之一。長度單位,符號為cm.,1厘米=1/100米。

  1厘米=10毫米=0.1分米=0.01米=0.00001千米

  3.分米:是長度的公制單位之一,1分米相當于1米的十分之一。

  0.0001千米(km)=1分米

  0.1米(m)=1分米

  10厘米(cm)=1分米

  100毫米(mm)=1分米

  4.千米:千米又稱公里,是長度單位,通常用于衡量兩地之間的距離。是一個國際標準長度計量單位,符號km。

  1千米(公里)=1.000米(公尺)=100.000厘米(公分)=1.000.000毫米(公厘)

  5.噸:質量單位,公制一噸等于1000公斤。

  6.加法:基本的四則運算之一,它是指將兩個或者兩個以上的數、量合起來,變成一個數、量的計算。

  表達加法的符號為加號(+)。

  進行加法時以加號將各項連接起來,把和放在等號(=)之后,例:1、2和3之和是6.就寫成∶1+2+3=6.

  加法各部分名稱:“+”是加號,加號前面和后面的數是加數,“=”是等于號,等于號后面的數是和。

  例:100(加數)+(加號)300(加數)=(等于號)400(和)

  加法性質:(1)加法交換律:a+b=b+a

  (2)加法結合律:a+b+c=a+(b+c)

  7.減法:四則運算之一,將一個數或量從另一個數或量中減去的運算叫做減法。

  已知兩個加數的和與其中一個加數,求另一個加數的運算叫做減法。

  減法的性質:減去一個數,等于加這個數的相反數。

  8.驗算:算題算好以后,再通過逆運算(如減法算題用加法,除法算題用乘法)演算一遍,檢驗以前運算的結果是否正確。

  驗算的作用:驗算能夠有效地檢查出計算過程中出現的錯誤,但對解題思維上的錯誤無太大用處,通過驗算(用結果來推導條件)所得的數據與原數據比較來建議運算是否正確。

  9.四邊形:由不在同一直線上四條線段依次首尾相接圍成的封閉的立體圖形叫四邊形。由凸四邊形和凹四邊形組成。

  10.平行四邊形:兩組對邊分別平行的四邊形叫做平行四邊形。

  11.周長:環繞有限面積的區域邊緣的長度積分,叫做周長,圖形一周的長度,就是圖形的周長。周長的長度因此亦相等于圖形所有邊的和。

  12.估計:根據情況,對事物的性質、數量、變化等做大概的推斷。

  13.余數:在整數的除法中,只有能整除與不能整除兩種情況。當不能整除時,就產生余數,取余數運算:1.指整數除法中被除數未被除盡部分。

  例:27除以6.商數為4.余數為3.

  余數的性質:余數有如下一些重要性質(a,b,c均為自然數):

  (1)余數小于除數;

  (2)被除數=除數×商+余數。

  除數=(被除數-余數)÷商;

  商=(被除數-余數)÷除數;

  余數=被除數-除數×商。

  14.秒:時間單位時間單位秒(second)是國際單位制中時間的基本單位,符號是s。

  15.分:時間單位,等于1/60小時,或60秒。

  16.乘法:將相同的數加法起來的快捷方式。其運算結果稱為積。

  乘法算式中各數的.名稱:“×”是乘號,乘號前面和后面的數叫做因數,“=”是等于號,等于號后面的數叫做積。

  例:10(因數)×(乘號)200(因數)=(等于號)20__(積)

  18.分數:把單位“1”平均分成若干份,表示這樣的一份或幾份的數叫分數。表示這樣的一份的數叫分數單位。

  分子在上分母在下,也可以把它當做除法來看,用分子除以分母,相反乘法也可以改為用分數表示。

  19.分數線、分子、分母:分數中間的一條橫線叫做分數線,分數線上面的數叫做分子,分數線下面的數叫做分母。讀作幾分之幾。

  分數可以表述成一個除法算式:如二分之一等于1除以2.其中,1分子等于被除數,分數線等于除號,2分母等于除數,而0.5分數值則等于商。

  20.分數由來:分數在我們中國很早就有了,最初分數的表現形式跟現在不一樣。后來,印度出現了和我國相似的分數表示法。再往后,阿拉伯人發明了分數線,分數的表示法就成為現在這樣了。

  200多年前,瑞士數學家歐拉,在《通用算術》一書中說,要想把7米長的一根繩子分成三等份是不可能的,因為找不到一個合適的數來表示它。如果我們把它分成三等份,每份是7/3米,像7/3就是一種新的數,我們把它叫做分數。

  21.可能性:可能性是指事物發生的概率,是包含在事物之中并預示著事物發展趨勢的量化指標。

  三年級數學上冊知識點總結 16

  第一單元 測量

  1、在生活中,測量比較短的物品,可以用(毫米、厘米、分米 )做單位;測量比較長的物體,常用( 米 )做單位;測量比較長的路程一般用( 千米 )做單位,千米也叫( 公里 )。10個100米就是1千米,1千米(公里)=1000米。

  2、1厘米的長度里有( 10 )小格,每個小格的長度( 相等 ),都是( 1 )毫米。所以,毫米是比厘米小的長度單位。1厘米=10毫米。

  3、1枚1分的硬幣、尺子、磁卡、小紐扣、鑰匙的厚度大約是1毫米。

  4、10厘米的長度就是1分米,因此1分米=10厘米。1米=10分米。

  5、在計算長度時,只有相同的長度單位才能相加減。

  小技巧:換算長度單位時,把大單位換成小單位就在數字的末尾添加0(關系式中有幾個0,就添幾個0);把小單位換成大單位就在數字的末尾去掉0(關系式中有幾個0,就去掉幾個0)。

  6、長度單位的關系式有:

 、 進率是10

  1 米 = 10 分米 1 分米 = 10 厘米 1 厘米 = 10 毫米

  10 分米=1 米 10 厘米= 1 分米 10 毫米= 1 厘米

 、 進率是100

  1 米 = 100 厘米 1分米=100毫米 100 厘米=1 米 100毫米=1分米

 、 進率是1000

  1千米=1000米 1公里= 1000米 1000米=1千米 1000米 = 1公里

  7、當我們表示物體有多重時,通常要用到(質量單位 )。在生活中,稱比較輕的物品的質量,可以用( 克 )做單位;稱一般物品的質量,常用(千克 )做單位;計量較重的或大宗物品的質量,通常用( 噸 )做單位。

  小技巧:在“噸”與“千克”的換算中,把噸換算成千克,是在數字的末尾加上3個0;把千克換算成噸,是在數字的末尾去掉3個0。如:3噸=3000千克 5000千克=5噸

  7、(相鄰)質量單位進率是1000 。

  1 噸 = 1000千克 1千克=1000克

  1000千克 = 1 噸 1000克=1千克

  第二單元 萬以內的加法和減法(二)

  1、筆算加、減法要注意:

  (1)相同數位要對齊;

  (2)從個位算起;

  (3)哪一位上的數相加滿十,就向前一位進1;哪一位上的數不夠減,就從前一位退1作十再減。

  2、估算的方法:

  結合實際,把題目中的數分別看作與它接近的整百或整十的數,再通過口算確定它們的得數范圍。

  3、加、減法驗算的方法:

  (1)加法的驗算:

 、俳粨Q加數的位置再加一遍,看看兩次相加的和是不是相同;

 、谟谩昂汀睖p去“其中一個加數”,看看結果是不是等于“另一個加數”。

  (2)減法的驗算:

  ①用“被減數”減去“差”,看看結果是不是等于“減數”;

 、谟谩安睢奔印皽p數”,看看結果是不是等于“被減數”。

  第三單元 四邊形

  1、由4條直的邊和4個角組成的圖形叫做四邊形。

  2、四邊形的特點:有四條直的.邊;有四個角。

  3、長方形的特點:長方形有兩條長,兩條寬,四個直角,對邊相等。

  4、正方形的特點:有4個直角,4條邊相等。

  5、長方形和正方形都是特殊的平行四邊形。

  6、平行四邊形的特點:對邊相等、對角相等。平行四邊形容易變形。(三角形不容易變形)

  7、封閉圖形一周的長度,就是它的周長。

  8、要求長方形的周長必須知道長方形的(長)和(寬);要求正方形的周長必須知道正方形的(邊長)。

  9、公式。

  長方形的周長 = (長+寬)×2 長方形的長 = 周長÷2-寬 長方形的寬 = 周長÷2-長

  正方形的周長 = 邊長×4 正方形的邊長 = 周長÷4

  第四單元 有余數的除法

  1、余數和除數之間的關系:進行有余數的除法計算時,結果中的余數一定要比除數小。

  2、公式。

  被除數 =商×除數+余數 除數 = (被除數-余數)÷商 商 = (被除數-余數)÷除數

  第五單元 時分秒

  1、鐘面上有3根針,它們是(時針)、(分針)和(秒針),其中走得最快的是(秒針),走得最慢的是(時針)。

  2、鐘面上有( 12 )個數字,( 12 )個大格,( 60 )個小格;每兩個數間是( 1 )個大格,也就是( 5 )個小格。

  3、時針走1大格是( 1 )小時;分針走1大格是( 5 )分鐘,走1小格是( 1 )分鐘;秒針走1大格是( 5 )秒鐘,走1小格是( 1 )秒鐘。

  4、時針走1大格,分針正好走( 1 )圈,分針走1圈是( 60 )分,也就是( 1 )小時。

  5、分針走1小格,秒針正好走( 1 )圈,秒針走1圈是( 60 )秒,也就是( 1 )分鐘。

  6、時針從一個數走到下一個數是( 1小時 )。分針從一個數走到下一個數是( 5分鐘)。秒針從一個數走到下一個數是( 5秒 )。

  7、公式。

  1時= 60分 1分= 60秒 半時= 30 分 60分=1時 60秒=1分 30 分=半時

  8、時間單位間的簡單換算。

  例如:2時=( )分

  因為1時=60分,2時有2個60分,2×60=120,所以2時=(120)分。

  例如:180秒=( )分

  因為60秒=1分,180秒里面有3個60秒,所以180秒=(3)分。

  例如:1分35秒=( )秒

  因為1分=60秒,60+35=95,所以1分35秒=(95)秒。

  9、計算簡單的經過時間:經過的時間=結束的時刻-開始的時刻。

  例如:小明晚上7:30開始寫作業,8:40寫完作業,小明完成作業用了多長時間?

  8:40-7:30=1小時10分

  第六單元 多位數乘一位數

  1、口算。

  整十、整百、整千的數乘一位數,可以先把題目轉化成一位數乘一位數,直接用乘法口訣來算,算出積后,再看因數末尾共有幾個0,就在積的末尾添上幾個0。

  2、多位數乘一位數的計算方法:

  計算兩、三位數乘一位數,都是把這個多位數的每個數位上的數依次乘一位數。哪一位上的乘積滿幾十,就要向前一位進幾。

  3、0和任何數相乘都得0。

  4、多位數乘一位數的估算。

  把因數中的兩位數或三位數看成和它最接近的整十、整百的數來與一位數相乘。

  如:48×9≈ 可以這樣想:因為48接近50,50×9=450,所以48×9≈450

  第七單元 分數的初步認識

  1、分數的初步認識:

  (1)幾分之一:把一個物體或圖形平均分成幾份,每份就是它的幾分之一。

  (2)幾分之幾:有幾個幾分之一,就是幾分之幾。

  (3)分數的表示方法和各部分的名稱:

  2 ……分子(表示取了其中的幾份)

  ……分數線(表示平均分)

  5 ……分母(表示平均分成了幾份)

  第八單元 可能性

  1、確定現象與不確定現象。

  (1)確定現象:事件發生的結果是確定的。(如:太陽不可能從西方升起;太陽每天從東方升起。)

  (2)不確定現象:事件發生的結果無法確定。(如:下星期一會下雨。)

  2、事件發生與否有三種情況。

  (1)一定(如:正方體一定有6個面。)

  (2)可能(如:明天可能是晴天。)

  (3)不可能(如:地球不可能繞著月球轉。)

  3、事件發生的可能性是有大小的。

  例如:盒子里有10個紅球,3個白球,紅球與白球的數量不相等,那么摸到紅球的可能性與摸到白球的可能性是不一樣的。紅球多,摸到紅球的可能性較大;白球少,摸到白球的可能性就小。

  第九單元 數學廣角

  簡單的排列與組合:

  在解決問題時,要弄清楚實際問題與事物的順序有沒有關系,做到既不重復也不遺漏。

  1、與順序有關的是排列數。例如:用數字卡片組數、排隊、站不同位置照相、扮演不同的角色等問題。

  2、與順序無關的是組合數。例如:衣服和早餐的搭配、行走路線的選擇、兩兩通話、兩兩握手、安排比賽場次等問題。

  三年級數學上冊知識點總結 17

  第一單元時分秒

  1、鐘面上有3根針,它們是(時針)、(分針)、(秒針),其中走得最快的是(秒針),走得最慢的是(時針)。(時針最短,秒針最長)

  2、每兩個相鄰的時間單位之間的進率是60

  1時=60分60分=1時1分=60秒60秒=1分

  半時=30分30分=半時

  3、(1)計量很短的時間,常用比分更小的單位——秒。

  (2)計算一段時間,可以用結束的時刻減去開始的時刻。

  經過時間=結束時刻—開始時刻。

  4、時針走1大格,分針正好走(1)圈,分針走1圈是(60)分,也就是(1)小時。時針走1圈,分針要走(12)圈。

  5、分針走1小格,秒針正好走(1)圈,秒針走1圈是(60)秒,也就是(1)分鐘。

  6、時針從一個數走到下一個數是(1小時)。分針從一個數走到下一個數是(5分鐘)。秒針從一個數走到下一個數是(5秒鐘)。

  7、鐘面上時針和分針正好成直角的時間有:(3點整)、(9點整)。

  第二、四單元萬以內的加法和減法

  1、筆算加減法時:(1)相同數位要對齊;(2)從個位算起。(3)哪一位上的數相加滿10,就向前一位進1;哪一位上的數不夠減,就從前一位退1當作10;如果前一位是0,則再從前一位退1。

  2、兩個三位數相加的和:可能是三位數,也有可能是四位數。

  3、加法公式:加數+加數=和

  加法的驗算:①交換兩個加數的位置再算一遍。

  ②加數=和-另一個加數

  4、減法公式:被減數-減數=差

  減法的驗算:①被減數=差+減數②減數=被減數-差

  5、求一個數的近似數:

  看最位的后面一位,如果是0-4則用四舍法,如果是5-9就用五入法。

  最大的三位數是位999,最小的三位數是100,最大的四位數是9999,最小的四位數是1000。最大的三位數比最小的四位數小1。

  第三單元測量

  1、在生活中,量比較短的物品,可以用(毫米、厘米、分米)做單位;量比較長的物體,常用(米)做單位;測量比較長的路程一般用(千米)做單位,千米也叫(公里)。

  長度單位從大到。呵>米>分米>厘米>毫米

  2、1枚1分的硬幣、尺子、磁卡、小紐扣、鑰匙的厚度大約是1毫米。

  3、在計算長度時,只有相同的長度單位才能相加減。

  4、長度單位的'關系式有:(每兩個相鄰的長度單位之間的進率是10 )

 、龠M率是10:1米=10分米, 1分米=10厘米, 1厘米=10毫米,

  10分米=1米, 10厘米=1分米, 10毫米=1厘米,

  ②進率是100:1米=100厘米, 100厘米=1米,

  1分米=100毫米, 100毫米=1分米

 、圻M率是1000:1千米=1000米, 1公里=1000米,

  1000米=1千米, 1000米= 1公里

  5、當我們表示物體有多重時,通常要用到(質量單位)。在生活中,稱比較輕的物品的質量,可以用(克)做單位;稱一般物品的質量,常用(千克)做單位;計量較重的或大宗物品的質量,通常用(噸)做單位。

  6、相鄰兩個質量單位進率是1000。

  1噸=1000千克1000千克= 1噸

  1千克=1000克1000克=1千克

  7、單位換算:小到大除,大到小乘。

  第五單元倍的認識

  求一個數是另一個數的幾倍用除法:“是前”除以“是后”。

  求一個數的幾倍是多少用乘法。

  第六單元多位數乘一位數

  1、多位數乘一位數的筆算方法:(1)相同數位對齊,(2)從個位乘起.(用一位數分別去乘多位數每一位上的數,與哪一位相乘,積就寫在哪一位下面。)(3)哪一位上的數相乘滿幾十,就向前一位進幾,(4)搬答案。

  2、一個因數中間有0的乘法:

  0和任何數相乘都得0

  3、一個因數末尾有0的乘法的簡便計算:

  (1)先算0前面的數(2)添0

  1和任何不是0的數相乘還得原來的數。

  三位數乘一位數:積有可能是三位數,也有可能是四位數。

  公式:總價=單價×數量

  單價=總價÷數量數量=總價÷單價

  問題中出現“大約”、“約”、“估一估”、 “估算”、 “估計一下”,一般都是求近似數,用估算!(≈)

  第七單元長方形和正方形

  1、有4條直的邊和4個角封閉圖形我們叫它四邊形。

  2、四邊形的特點:有四條直的邊,有四個角。

  3、長方形的特點:長方形有兩條長,兩條寬,對邊相等,四個角都是直角。

  4、正方形的特點:有4個直角,4條邊相等。

  5、長方形和正方形是特殊的平行四邊形。

  6、平行四邊形的特點:對邊平行且相等、對角相等。

  7、封閉圖形一周的長度,就是它的周長。

  8、公式:長方形的周長=(長+寬)×2

 、匍L方形的長=周長÷2-寬②長方形的寬=周長÷2-長

  ①正方形的周長=邊長×4 ②正方形的邊長=周長÷4,

  第八單元分數的初步認識

  1、分數的意義:把一個整體平均分成若干份,表示幾份就是這個整體的幾分之幾,所分的份數作分母,所取的份數作分子。

  2、幾分之一:把一個物體或一個圖形平均分成幾份,每一份就是它的幾分之一。

  幾分之幾:把一個物體或一個圖形平均分成幾份,取其中的幾份,就是這個物體或圖形的幾分之幾。

  3、把一個整體平均分得的份數越多,它的每一份所表示的數就越小。

  4、比較大小的方法:

 、俜肿酉嗤捶帜,分母越大,分數反而越小,分母越小,分數反而越大。

  ②分母相同,看分子,分子越大,分數越大,分子越小,分數越小。

  5、同分母的分數加、減法的計算方法:分母不變,分子相加、減。

  1減幾分之幾的計算方法:計算1減幾分之幾時,先把1寫成與減數分母相同的分數,在計算。

  6、求一個數是另一個數的幾分之幾是多少的計算方法:

  先用這個數除以分母(求出1份的數量是多少),再用商乘分子(求出其中幾份是多少)

  第九單元數學廣角——集合

  會用集合思想解決實際問題。

  三年級數學上冊知識點總結 18

  第一單元 混合計算

  6、0除以任何非0的數,還得0;字母表示:0÷a(a≠0)=0

  7、0÷0得不到固定的商;5÷0得不到商.

  第二單元 觀察物體

  計算連加式題時,要按從左往右的順序依次計算

  連減

  786-284-249=253

  計算連減式題時,可以按從左往右的順序依次計算,也可以先把兩個減數加起來,再從被減數里減去兩個減數的和。

  786-(284+249)=253

  加減混合

  259+148-342=65

  不帶小括號的加減混合式題的運算順序,:按從左往右的順序依次計算。帶小括號的加減混合式題的.運算順序:先算小括號里面的,再算小括號外面的。

  里程表中的問題

  求兩地間的路程,要找準起點,用較遠的路程減去較近的路程就得到兩地間的路程

  里程數=終點數-起點數

  第四單元 乘與除

  2.月:

  小月:4、6、9、11月

  平月(二月):平年28天

  閏年29天

  3.日歷:學會看日歷,知道某年某月是星期幾

  4.鐘表:24時記時法 12時記時法

  4.公式:

  1時=

  60分 1分= 60秒 半時= 30 分

  60分=1時

  60秒=1分 30 分=半時

  第八單元 可能性

  1.‘不可能和一定’,都表示確定的現象。‘可能’,表示不確定的現象。

  2.請用“一定、可能、不可能”來說一說。

  一定:太陽一定從東邊升起;月亮一定繞著地球轉;地球一定每天都在轉動;每天一定都有人出生;人一定要喝水……

  可能:三天后可能下雨;花可能是香的;明天可能有風;下周可能會考試。……

  不可能:太陽不可能從西邊升起;地球不可能繞著月亮轉;我不可能從出生到現在沒吃過一點東西;鯉魚不可能在陸地上生活;空中不可能蓋樓房;我不可能比姐姐大……

【三年級數學上冊知識點總結】相關文章:

初二數學上冊知識點總結01-05

初三數學上冊的知識點總結12-20

初三數學上冊知識點總結06-19

初三數學上冊的知識點總結10-29

初三數學上冊知識點總結03-19

初三數學上冊知識點總結08-07

初二數學上冊知識點總結(經典)10-21

三年級上冊數學知識點總結11-06

三年級上冊數學知識點總結11-06

數學三年級上冊知識點總結(精選10篇)06-19