亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

小學數學知識點總結

時間:2022-11-10 10:59:52 知識點總結 我要投稿
  • 相關推薦

小學數學知識點總結(15篇)

  總結是指社會團體、企業單位和個人對某一階段的學習、工作或其完成情況加以回顧和分析,得出教訓和一些規律性認識的一種書面材料,它可以給我們下一階段的學習和工作生活做指導,因此我們需要回頭歸納,寫一份總結了。你所見過的總結應該是什么樣的?下面是小編幫大家整理的小學數學知識點總結,歡迎閱讀,希望大家能夠喜歡。

小學數學知識點總結(15篇)

小學數學知識點總結1

  角:

 。1)角的靜態定義:具有公共端點的兩條不重合的射線組成的圖形叫做角。

  這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。

  (2)角的動態定義:一條射線繞著它的端點從一個位置旋轉到另一個位置所形成的圖形叫做角。

  所旋轉射線的端點叫做角的頂點,開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊

  角的符號:∠

  角的種類:角的大小與邊的長短沒有關系;角的大小決定于角的兩條邊張開的程度,張開的越大,角就越大,相反,張開的越小,角則越小。

  在動態定義中,取決于旋轉的方向與角度。

  角可以分為銳角、直角、鈍角、平角、周角、負角、正角、優角、劣角、0角這10種。

  以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。

  (1)銳角:大于0°,小于90°的角叫做銳角。

 。2)直角:等于90°的角叫做直角。

  (3)鈍角:大于90°而小于180°的角叫做鈍角。

  乘法:

  乘法是指一個數或量,增加了多少倍。例如4乘5,就是4增加了5倍率,也可以說成5個4連加。

  乘法算式中各數的名稱:

  “×”是乘號,乘號前面和后面的數叫做因數,“=”是等于號,等于號后面的數叫做積。

  例:10(因數)×(乘號)200(因數)=(等于號)20xx(積)

  平行:

  在平面上兩條直線、空間的兩個平面或空間的一條直線與一平面之間沒有任何公共點時,稱它們平行。如圖直線AB平行于直線CD,記作AB∥CD。平行線永不相交。

  垂直:

  兩條直線、兩個平面相交,或一條直線與一個平面相交,如果交角成直角,叫做互相垂直。

  平行四邊形:

  在同一平面內有兩組對邊分別平行的四邊形叫做平行四邊形。

  梯形:

  梯形是指一組對邊平行而另一組對邊不平行的四邊形。

  平行的兩邊叫做梯形的底邊,其中長邊叫下底,短邊叫上底;也可以單純的認為上面的一條叫上底,下面一條叫下底。不平行的兩邊叫腰;夾在兩底之間的垂線段叫梯形的高。

  除法:

  除法法則:除數是幾位,先看被除數的前幾位,前幾位不夠除,多看一位,除到哪位,商就寫在哪位上面,不夠商一,0占位。余數要比除數小,如果商是小數,商的小數點要和被除數的小數點對齊;如果除數是小數,要化成除數是整數的除法再計算。

小學數學知識點總結2

  1、上、下

 。1)在具體場景中理解上、下的含義及其相對性。

 。2)能比較準確地確定物體上下的方位,會用上、下描述物體的相對位置。

 。3)培養學生初步的空間觀念。

  2、前、后

 。1)在具體場景中理解前、后、最×的含義,以及前后的相對性。

 。2)能比較準確地確定物體前后的方位,會用前、后、最前、最后描述物體的相對位置。

 。3)培養學生初步的空間觀念。

  加減法

 。ㄒ唬┍締卧R網絡:

  (二)各課知識點:

  有幾枝鉛筆(加法的認識)

  知識點:

  1、初步了解加法的含義,會讀、寫加法算式,感悟把兩個數合并在一起求一共是多少,用加法計算;

  2、初步嘗試選擇恰當的方法進行5以內的加法口算。

  3、第一次出現了圖形應用題,要讓學生學會看圖形應用型題目,理解題目的意思。

  有幾輛車(初步認識加法的交換律)

  3、左、右(1)在具體場景中理解左、右的含義及其相對性。

 。2)能比較準確地確定物體左右的方位,會用左、右描述物體的位置。

  (3)培養學生初步的空間觀念。

  4、位置

 。1)明確“橫為行、豎為列”,并知道“第幾行第幾個”、“第幾組第幾個”的含義。

 。2)在具體情境中,會用2個數據(2個維度)描述人或物體的具體位置。

  (3)在具體情境中,能依據2個維度的數據找到人或物體的具體位置。

小學數學知識點總結3

  通過欣賞和設計圖案的活動,進一步認識正方形、長方形、三角形和圓。

  小小運動會

  1、應用100以內的進位加法與退位減法的計算方法進行正確的計算。

  2、經歷與他人交流各自算法的過程,體會算法多樣化。

  3、體會長方形、正方形、三角形和圓在生活中的普遍存在。

  4、能利用圖形設計美麗的圖案。

小學數學知識點總結4

  購物

  【知識框架】

  購物

  1、買文具---(小面額的人民幣)

  2、買衣服---(大面額的人民幣)

  3、小小商店---(進行有關錢款的簡單計算)

  【知識點】

  買文具(小面額的人民幣)

  1、認識各種小面額的人民幣。

  2、體會小面額人民幣之間的換算關系。

  3、從實際問題中理解“付出的錢、應付的錢、應找回的錢”三者之間的關系。

  4、在購物情景中進行有關錢款的簡單計算。

  買衣服(大面額的人民幣)

  1、讓學生在活動中認識大面額的人民幣,能從相同點和不同點上辨認。

  2、會計算大面額人民幣之間的換算。

  3、在購物活動中體會大面額人民幣的作用,運用人民幣的兌換知識,初步掌握付錢的方法。

  小小商店(進行有關錢款的簡單計算)

  1.在購物情景中會進行有關錢款的簡單計算。

  2.通過購物中的活動,了解付費的方式是多樣化的。

  3.通過購物的活動,鞏固復習100以內的加減法計算。

  4.購物中能解決一些簡單的實際問題。

小學數學知識點總結5

  第一單元 數據整理與收集

  1.學會用“正”字記錄數據。

  2.會數“正”,知道一個“正”字代表數量5。

  3.根據統計表,會解決問題。

  4.數據收集---整理---分析表格。

  第二單元 表內除法(一)

  1.平均分的含義:把一些物品分成幾份,每份分得同樣的多,叫做平均分。

  除法就是用來解決平均分問題的。

  2.平均分里有兩種情況:

  (1)把一些東西平均分成幾份,求每份是多少;用除法計算,

  總數÷份數=每份數

  例:24本練習本,平均分給6人,每人分多少本?

  列式:24÷6=4

  (2)包含除(求一個數里面有幾個幾)把一個數量按每份是多少分成一份,求能平均分成幾份;用除法計算,總數÷每份數=份數

  例:24本練習本,每人4本,能分給多少人?

  列式:24÷4=6

  3、除法算式的含義:只要是平均分的過程,就可以用除法算式表示。

  除法算式的讀法:從左到右的順序讀,“÷”讀作除以,“=”讀作等于,其他數字不變。

  例如:12÷4=3讀作(12除以4等于3)

  例:42÷7=6 42是(被除數),7是(除數),6是(商;這個算式讀作(42除以7等于6 )。

  4、除法算式各部分名稱:在除法算式中,除號前面的數就被除數,除號后面的數叫除數,所得的數叫商。

  被除數÷除數=商。變式:被除數÷商=除數(如何求被除數,想:除數×商=被除數。)

  5.用2~6的乘法口訣求商

  1、求商的方法:

  (1)用平均分的方法求商。

  (2)用乘法算式求商。

  (3)用乘法口訣求商。

  2、用乘法口訣求商時,想除數和幾相乘的被除數。

  一句口訣可以寫四個算式。(乘數相同的除外)。

  例:用“三八二十四”這句口訣

  A、24÷3=8 B、3×8=24

  C、24÷3=8 D、24÷8=3

  計算方法:12÷4=( )時,想:( )四十二,所以商是( ).

  6.解決問題

  1、解決有關平均分問題的方法:

  總數÷每份數=份數、總數÷份數=每份數、

  因數×因數=積、一個因數=積÷另一個因數

  2、用乘法和除法兩步計算解決實際問題的方法:

  (1)所求問題要求求出總數,用乘法計算;

  (2)所求問題要求求出份數或每份數,用除法計算。

  (3)8個果凍,每2個一份,能分成幾份?求8里有幾個2,用除法計算。

  (4)24里面有( )個4,,20里面有( )個5。(用除法計算。)

  (5)最小公倍數問題:一堆水果,3個人正好分完,4個人也正好分完,問這堆水果最少有幾個?

  第三單元 圖形的運動

  1、軸對稱圖形:沿一條直線對折,兩邊完全重合。對折后能夠完全重合的圖形是軸對稱圖形,折痕所在的直線叫對稱軸。

  成軸對稱圖形的漢字:

  一,二,三,四,六,八,十,大,干,豐,土,士,中,田,由,甲,申,口,日,曰,木,目,森,谷,林,畫,傘,王,人,非,菲,天,典,奠,旱,春,畝,目,山,單,殺,美,春,品,工,天,網,回,喜,莫,罪,夫,黑,里,亞。

  2、平移:當物體水平方向或豎直方向運動,并且物體的方向不發生改變,這種運動是平移。只有形狀、大小、方向完全相同的圖形通過平移才能互相重合。

  (記。浩揭浦荒苌舷乱苿踊蜃笥乙苿)

  3、旋轉:體繞著某一點或軸進行圓周運動的現象就是旋轉。(例如:旋轉木馬、轉動的風扇、轉動的車輪等)

  (一)填空

  1、汽車在筆直的公路上行駛,車身的運動是( )現象

  2、教室門的打開和關閉,門的運動是( )現象。

  A.平移 B旋轉 C平移和旋轉

  3、下面( )的運動是平移。

  A、旋轉的呼啦圈 B、電風扇扇葉 C、撥算珠

  第四單元 表內除法(二)

  這單元主要是考口算題。有以下幾種形式:

  1、用7、8、9的乘法口訣求商

  求商方法:想“除數×( )=被除數”,再根據乘法口訣計算得商。

  例.直接口算:28÷4 8÷8

  2、解決問題

  求一個數里有幾個幾,和把一個數平均分成幾份,求每份是多少,都用除法計算。

  例.填空:45÷9=5表示把( )平均分成( )份,每份是( );還表示( )里有( )個( );

  第五單元 混合運算

  一、混合計算

  混合運算,先乘除,后加減,有括號的要先算括號里面的。

  只有加、減法或只有乘、除法,都要從左到右按順序計算。

  二、解決兩步計算的實際問題

  1、想好先解決什么問題,再解決什么問題。

  2、可以畫圖幫助分析。

  3、可以分布計算,也可以列綜合算式。

  請畫出先算哪一步,再算哪一步(并標上1和2)

  1、同級運算的類型:

  例: 23+6+18 32+11-8 53-24+38 2× 8÷4 72÷ 8×4

  2、不同級運算的類型:

  例:5× 6 +14 3× 7-16 3 + 5 ×9 45- 9×3 45÷9+14 64÷ 8-8

  3、帶小括號運算的類型:方法:算式里有括號的,要先算括號里面的。

  例: 6×(7 + 2) (24-18)×9 ( 14+35 )÷7 (82-18 )÷8

  4.把兩個算式合并成一個綜合算式。(重點)。

  弄清楚哪個數是前一步算式的結果,就用前一步算式替換掉那個數,其他的照寫。當需要替換的是第二個數,必要時還需要加上小括號。

  例:15+9=24 24÷3=8 (強調括號不能忘)_____________________________

  5.解決需要兩步計算解決的問題。(要想好先算出什么,在解答什么)

  例:媽媽買回3捆鉛筆,每捆8支,送給妹妹12支后,還剩多少支?

  先算____________________再算____________________

  例:學校買來80本科技書,分給六年級35本,剩下的分給其它5個年級,平均每個年級分到多少本?

  6.練習十三 第4題 (重點)

  1.我們一共要烤90個面包,每次能烤9個,已經烤了36個,剩下的還要烤幾次?

  2.我們家原來有25只兔子,又買了15只,一共有8個籠子,平均每個籠子放幾只?

  3.小明有4套明信卡,每套8張,他把其中的5張送給了好朋友,還剩下幾張?

  4.工人叔叔要挖總長60米的水溝,已經挖好了15米,剩下的要用5天挖完,平均每天挖多少米?

  第六單元 有余數的除法

  有余數的除法

  1、有余數的除法的意義:在平均分一些物體時,有時會有剩余。

  2、余數與除數的關系:在有余數的除法中,余數必須比除數小。

  最大的余數小于除數1,最小的余數是1。

  3、筆算除法的計算方法:

  (1)先寫除號“廠”

  (2)被除數寫在除號里,除數寫在除號的左側。

  (3)試商,商寫在被除數上面,并要對著被除數的個位。

  (4)把商與除數的乘積寫在被除數的下面,相同數位要對齊。

  (5)用被除數減去商與除數的乘積,如果沒有剩余,就表示能除盡。

  4、有余數的除法的計算方法可以分四步進行:一商,二乘,三減,四比。

  (1)商:即試商,想除數和幾相乘最接近被除數且小于被除數,那么商就是幾,寫在被除數的個位的上面。

  (2)乘:把除數和商相乘,將得數寫在被除數下面。

  (3)減:用被除數減去商與除數的乘積,所得的差寫在橫線的下面。

  (4)比:將余數與除數比一比,余數必須必除數小。

  5、解決問題

  根據除法的意義,解決簡單的有余數的除法的問題,要根據實際情況,靈活處理余數。

  (1)余數比除數小。

  例:43÷7=()…( )余數可能是( )或者余數最大是( )

  (2)至少問題(進一法):商+1

  例:有27箱菠蘿,王叔叔每次最多能運8箱。至少要運多少次才能運完這些菠蘿。

  (3)最多問題(去尾法)

  例:小麗有10元錢,買3元一個的面包,最多能買幾個?

  課例:

  1. 22個學生去劃船,每條船最多坐4人,他們至少要租多少條船?

  22÷4=5(條)……2(人)

  答:他們至少要租6條船。

  第七單元 萬以內數的認識

  一、1000以內數的認識

  1、10個一百就是一千。

  2、讀數時,要從高位讀起。百位上是幾就幾百,十位上幾就幾十,個位上是幾就讀幾中間有一個0,就讀“零”,末尾不管有幾個0,都不讀!纠纾20xx讀作二千零三,2300讀作二千三百】

  3、寫數時,要從高位寫起,幾個百就在百位寫幾,幾個十就在十位寫幾,幾個一就在個位寫幾,哪一位上一個數也沒有就寫0占位。 【例如:三千五百寫作3500,三千零六十九寫作3069】

  4、數的組成:看每個數位上是幾,就由幾個這樣的計數單位組成。例:2369由( )個千、( )個百、( )個十和( )個一組成的。

  二、10000以內數的認識

  1、10個一千是一萬。

  2、萬以內數的讀法和寫法與1000以內的數讀法和寫法相同。

  3、最小兩位數是10,最大的兩位數是99;最小三位數是100,最大的三位數是999;最小四位數是1000,最大的四位數是9999;最小的五位數是10000,最大的五位數是99999。

  三、整百、整千數加減法

  1、整百、整千加減法的計算方法。

  (1)把整百、整千數看成幾個百,幾個千,然后相加減。

  (2)先把0前面的數相加減,再在得數末尾添上與整百、整千數相同個數的0。

  2、估算

  把數看做它的近似數再計算。

  四、10000以內數的大小比較的方法:

  (1)位數多的數就大,例如453 < 1000

  (2)如果位數相同,就比較最高位上的數字,數字大的這個數就大,反之就小;例如 357 < 978

  (3)如果最高位上的數字相同,就比較下一位上的數,依次類推。246 > 219

  補充:

  1、相鄰兩個計數單位之間的進率是10。記:一個一個地數,10個一是( )。一十一十地數,10個十是( )。一百一百地數,10個一百是( )。一千一千地數,10個一千是( )。

  2.在數位順序表中,從右邊起,第一位是(個位),第二位是(十位),第三位是(百位),第四位是(千位),第五位是(萬位)。

  3、數的組成:就是看每個數位上是幾,就有幾個這樣的計數單位組成。

  例:2647=( )+( )+( )+( )

  4、用估算策略解決問題。

  96頁 例13(估大)

  練習19 第8題(估小)

  第八單元 克、千克

  1.(千克)和(克)都是國際上通用的質量單位。計量比較重的物品,常用“千克”(kg)作單位。

  2、稱較輕的物品的質量時,用“克”作單位;稱較重的物品的質量時,用“千克”作單位。

  3、一個兩分的硬幣約是1克。兩袋500克的鹽約是1千克。

  4、1千克=1000克 1kg=1000g.進率是1000.( 1千克=1公斤、1公斤=2斤、1斤=500克、

  1斤=10兩、1兩=50克)

  5、計算或者比較大小時,如果單位不同,就需要把單位統一。一般統一成單位“克”。

  估計物品有多重,要結合物品的大小、質地等因素。

小學數學知識點總結6

  一、百分數的意義:

  表示一個數是另一個數的百分之幾的數叫做百分數。百分數又叫百分比或百分率,百分數不能帶單位。

  注意:百分數是專門用來表示一種特殊的倍比關系的,表示兩個數的比。

  1、百分數和分數的區別和聯系:

  (1)聯系:都可以用來表示兩個量的倍比關系。

  (2)區別:意義不同:百分數只表示倍比關系,不表示具體數量,所以不能帶單位。分數不僅表示倍比關系,還能帶單位表示具體數量。百分數的分子可以是小數,分數的分子只可以是整數。

  注意:百分數在生活中應用廣泛,所涉及問題基本和分數問題相同,分母是100的分數并不是百分數,必須把分母寫成“%”才是百分數,所以“分母是100的分數就是百分數”這句話是錯誤的!%”的兩個0要小寫,不要與百分數前面的數混淆。一般來講,出勤率、成活率、合格率、正確率能達到100%,出米率、出油率達不到100%,完成率、增長了百分之幾等可以超過100%。一般出粉率在70%、80%,出油率在30%、40%。

  2、小數、分數、百分數之間的互化

  (1)百分數化小數:小數點向左移動兩位,去掉“%”。

  (2)小數化百分數:小數點向右移動兩位,添上“%”。

  (3)百分數化分數:先把百分數寫成分母是100的分數,然后再化簡成最簡分數。

  (4)分數化百分數:分子除以分母得到小數,(除不盡的保留三位小數)然后化成百分數。

  (5)小數化分數:把小數成分母是10、100、1000等的分數再化簡。

  (6)分數化小數:分子除以分母。

  二、百分數應用題

  1、求常見的百分率,如:達標率、及格率、成活率、發芽率、出勤率等求百分率就是求一個數是另一個數的百分之幾。

  2、求一個數比另一個數多(或少)百分之幾,實際生活中,人們常用增加了百分之幾、減少了百分之幾、節約了百分之幾等來表示增加、或減少的幅度。

  求甲比乙多百分之幾:(甲-乙)÷乙

  求乙比甲少百分之幾:(甲-乙)÷甲

  3、求一個數的百分之幾是多少。一個數(單位“1”)×百分率

  4、已知一個數的百分之幾是多少,求這個數。

  部分量÷百分率=一個數(單位“1”)

  5、折扣、打折的意義:幾折就是十分之幾也就是百分之幾十

  折扣、成數=幾分之幾、百分之幾、小數

  八折=八成=十分之八=百分之八十=0.8

  八五折=八成五=十分之八點五=百分之八十五=0.85

  五折=五成=十分之五=百分之五十=0.5=半價

  6、利率

  (1)存入銀行的錢叫做本金。

  (2)取款時銀行多支付的錢叫做利息。

  (3)利息與本金的比值叫做利率。

  利息=本金×利率×時間

  稅后利息=利息-利息的應納稅額=利息-利息×5%

  注:國債和教育儲蓄的利息不納稅

  7、百分數應用題型分類

  (1)求甲是乙的百分之幾——(甲÷乙)×100%=百分之幾

  (2)求甲比乙多百分之幾——(甲-乙)÷乙×100%

  (3)求甲比乙少百分之幾——(乙-甲)÷乙×100%

小學數學知識點總結7

  1、對長方形、正方形、三角形和圓的認識,能分辨出四種基本的圖形。

  2、學會觀察,能在生活中找出基本的形狀,會舉例。

  3、能區分出面和體的關系,體會“面在體上”。

  4、能找出一組圖形的規律。

  5、能在復雜的圖案中找出基本的圖形。

小學數學知識點總結8

  人教版小學數學知識點大全 基本概念

  第一章 數和數的運算 一、概念 (一)整數

  1、整數的意義

  自然數和0都是整數。

  2、自然數

  我們在數物體的時候,用來表示物體個數的1,2,3??叫做自然數。

  一個物體也沒有,用0表示。0也是自然數。

  3、計數單位

  一(個)、十、百、千、萬、十萬、百萬、千萬、億??都是計數單位。其中“一”是計數的基本單位。

  10個1是10,10個10是100??每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。

  4、數位

  計數單位按照一定的順序排列起來,它們所占的位置叫做數位。

  5、整數的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在后面加一個“億”或“萬”字。每一級末尾的0都不讀出來,其它數位連續有幾個0都只讀一個零。

  6、整數的寫法:從高位到低位,一級一級地寫,哪一個數位上一個單位也沒有,就在那個數位上寫0。

  7、一個較大的多位數,為了讀寫方便,常常把它改寫成用“萬”或“億”作單位的數。有時還可以根據需要,省略這個數某一位后面的數,寫成近似數。

  ? 準確數:在實際生活中,為了計數的簡便,可以把一個較大的數改寫成以萬或億為單位的數。改寫后的數是原數的準確數。 例如把 1254300000 改寫成以萬做單位的數是 125430 萬;改寫成 以億做單位 的數 12.543 億。

  ? 近似數:根據實際需要,我們還可以把一個較大的數,省略某一位后面的尾數,用一個近似數來表示。 例如: 1302490015 省略億后面的尾數是 13 億。? 四舍五入法:求近似數,看尾數最高位上的數是幾,比5小就舍去,是5或大于5舍去尾數向前一位進1。這種求近似數的方法就叫做四舍五入法。

  8、整數大小的比較:位數多的那個數就大,如果位數相同,就看最高位,最高位上的數大,那個數就大;最高位上的數相同,就看下一位,哪一位上的數大那個數就大。以此類推。 (二)小數

  1、小數的意義

  把整數1平均分成10份、100份、1000份?? 得到的十分之幾、百分之幾、千分之幾?? 可以用小數表示。如1/10記作0.1,7/100記作0.07。

  一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾??

  一個小數由整數部分、小數部分和小數點部分組成。數中的圓點叫做小數點,小數點左邊的數叫做整數部分,小數點左邊的數叫做整數部分,小數點右邊的數叫做小數部分。

  小數點右邊第一位叫十分位,計數單位是十分之一(0.1);第二位叫百分位,計數單位是百分之一(0.01)??小數部分最大的計數單位是十分之一,沒有最小的計數單位。小數部分有幾個數位,就叫做幾位小數。如0.36是兩位小數,3.066是三位小數

  在小數里,每相鄰兩個計數單位之間的進率都是10。小數部分的最高分數單位“十分之一”和整數部分的最低單位“一”之間的進率也是10。

  2、小數的讀法:讀小數的時候,整數部分按照整數的讀法讀,小數點讀作“點”,小數部分從左向右順次讀出每一位數位上的數字。

  3、小數的寫法:寫小數的時候,整數部分按照整數的寫法來寫,小數點寫在個位右下角,小數部分順次寫出每一個數位上的數字。

  4、比較小數的大小:先看它們的整數部分,,整數部分大的那個數就大;整數部分相同的,十分位上的數大的那個數就大;十分位上的數也相同的,百分位上的數大的那個數就大??

  5、小數的分類

  ? 純小數:整數部分是零的小數,叫做純小數。例如: 0.25 、 0.368 都是純小數。

  ? 帶小數:整數部分不是零的小數,叫做帶小數。 例如: 3.25 、 5.26 都是帶小數。

  ? 有限小數:小數部分的數位是有限的小數,叫做有限小數。 例如: 41.7 、 25.3 、 0.23 都是有限小數。

  ? 無限小數:小數部分的數位是無限的小數,叫做無限小數。 例如: 4.33 ?? 3.1415926 ??

  ? 無限不循環小數:一個數的小數部分,數字排列無規律且位數無限,這樣的小數叫做無限不循環小數。 例如:∏

  ? 循環小數:一個數的小數部分,有一個數字或者幾個數字依次不斷重復出現,這個數叫做循環小數。 例如: 3.555 ?? 0.0333 ?? 12.109109 ??

  一個循環小數的小數部分,依次不斷重復出現的數字叫做這個循環小數的循環節。 例如: 3.99 ??的循環節是“ 9 ” , 0.5454 ??的循環節是“ 54 ” 。

  ? 純循環小數:循環節從小數部分第一位開始的,叫做純循環小數。 例如: 3.111 ?? 0.5656 ??

  ? 混循環小數:循環節不是從小數部分第一位開始的,叫做混循環小數。 3.1222 ?? 0.03333 ??

  寫循環小數的時候,為了簡便,小數的循環部分只需寫出一個循環節,并在這個循環節的首、末位數字上各點一個圓點。如果循環 節只有一個數字,就只在它的上面點一個點。 (三)分數

  1、分數的意義

  把單位“1”平均分成若干份,表示這樣的一份或者幾份的數叫做分數。

  在分數里,中間的橫線叫做分數線;分數線下面的數,叫做分母,表示把單位“1”平均分成多少份;分數線下面的數叫做分子,表示有這樣的多少份。

  把單位“1”平均分成若干份,表示其中的一份的數,叫做分數單位。

  2、分數的讀法:讀分數時,先讀分母再讀“分之”然后讀分子,分子和分母按照整數的讀法來讀。

  3、分數的寫法:先寫分數線,再寫分母,最后寫分子,按照整數的寫法來寫。

  4、比較分數的大小:

  ? 分母相同的分數,分子大的那個分數就大。

  ? 分子相同的分數,分母小的那個分數就大。

  ? 分母和分子都不同的分數,通常是先通分,轉化成通分母的分數,再比較大小。

  ? 如果被比較的分數是帶分數,先要比較它們的整數部分,整數部分大的那個帶分數就大;如果整數部分相同,再比較它們的分數部分,分數部分大的那個帶分數就大。

  5、分數的分類

  按照分子、分母和整數部分的不同情況,可以分成:真分數、假分數、帶分數

  ? 真分數:分子比分母小的分數叫做真分數。真分數小于1。

  ? 假分數:分子比分母大或者分子和分母相等的分數,叫做假分數。假分數大于或等于1。

  ? 帶分數:假分數可以寫成整數與真分數合成的數,通常叫做帶分數。

  6、分數和除法的關系及分數的基本性質

  ? 除法是一種運算,有運算符號;分數是一種數。因此,一般應敘述為被除數相當于分子,而不能說成被除數就是分子。? 由于分數和除法有密切的關系,根據除法中“商不變”的性質可得出分數的基本性質。

  ? 分數的分子和分母都乘以或者除以相同的數(0除外),分數的大小不變,這叫做分數的基本性質,它是約分和通分的依據。

  7、約分和通分

  ? 分子、分母是互質數的分數,叫做最簡分數。

  ? 把一個分數化成同它相等但分子、分母都比較小的分數,叫做約分。

  ? 約分的方法:用分子和分母的公約數(1除外)去除分子、分母;通常要除到得出最簡分數為止。

  ? 把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。

  ? 通分的方法:先求出原來幾個分母的最小公倍數,然后把各分數化成用這個最小公倍數作分母的分數。

  8、倒 數

  ? 乘積是1的兩個數互為倒數。

  ? 求一個數(0除外)的倒數,只要把這個數的分子、分母調換位置。

  ? 1的倒數是1,0沒有倒數 (四)百分數

  1、百分數的意義

  表示一個數是另一個數的百分之幾的數 叫做百分數,也叫做百分率或百分比。百分數通常用"%"來表示。百分號是表示百分數的符號。

  2、百分數的讀法:讀百分數時,先讀百分之,再讀百分號前面的數,讀數時按照整數的讀法來讀。

  3、百分數的寫法:百分數通常不寫成分數形式,而在原來的分子后面加上百分號“%”來表示。

  4、百分數與折數、成數的互化:

  例如:三折就是30%,七五折就是75%,成數就是十分之幾,如一成就是牐 闖砂俜質 褪?0%,則六成五就是65%。

  5、納稅和利息:

  稅率:應納稅額與各種收入的比率。

  利率:利息與本金的百分率。由銀行規定按年或按月計算。

  利息的計算公式:利息=本金×利率×時間

  6、百分數與分數的區別主要有以下三點:

  ? 意義不同。百分數是“表示一個數是另一個數的百分之幾的數!彼荒鼙硎緝蓴抵g的倍數關系,不能表示某一具體數量。如:可以說 1米 是 5米 的 20%,不可以說“一段繩子長為20%米!币虼,百分數后面不能帶單位名稱。分數是“把單位‘1’平均分成若干份,表示這樣一份或幾份的數”。分數不僅 可以表示兩數之間的倍數關系,如:甲數是3,乙數是4,甲數是乙數的?;還可以表示一定的數量,如:犌Э恕 米等。

  ? 應用范圍不同。百分數在生產、工作和生活中,常用于調查、統計、分析與比較。而分數常常是在測量、計算中,得不到整數結果時使用。

  ? 書寫形式不同。百分數通常不寫成分數形式,而采用百分號“%”來表示。如:百分之四十五,寫作:45%;百分數的分母固定為100,因此,不論百分數 的分子、分母之間有多少個公約數,都不約分;百分數的分子可以是自然數,也可以是小數。而分數的分子只能是自然數,它的表示形式有:真分數、假分數、帶分 數,計算結果不是最簡分數的一般要通過約分化成最簡分數,是假分數的要化成帶分數。

  7、數的互化

  ? 小數化成分數:原來有幾位小數,就在1的后面寫幾個零作分母,把原來的小數去掉小數點作分子,能約分的要約分。

  ? 分數化成小數:用分母去除分子。能除盡的就化成有限小數,有的不能除盡,不能化成有限小數的,一般保留三位小數。

  ? 一個最簡分數,如果分母中除了2和5以外,不含有其他的質因數,這個分數就能化成有限小數;如果分母中含有2和5 以外的質因數,這個分數就不能化成有限小數。

  ? 小數化成百分數:只要把小數點向右移動兩位,同時在后面添上百分號。

  ? 百分數化成小數:把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。

  ? 分數化成百分數:通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。

  ? 百分數化成小數:先把百分數改寫成分數,能約分的要約成最簡分數。 (五)數的整除

  1、整除的意義

  整數a除以整數b(b ≠ 0),除得的商是整數而沒有余數,我們就說a能被b整除,或者說b能整除a 。

  除盡的意義 甲數除以乙數,所得的商是整數或有限小數而余數也為0時,我們就說甲數能被乙數除盡,(或者說乙數能除盡甲數)這里的甲數、乙數可以是自然數,也可以是小數(乙數不能為0)。

  2、約數和倍數

  ? 如果數a能被數b(b ≠ 0)整除,a就叫做b的倍數,b就(來自:WWw.SmhaiDa.com :小學數學總結)叫做a的約數(或a的因數)。倍數和約數是相互依存的。

  ? 一個數的約數的個數是有限的,其中最小的約數是1,最大的約數是它本身。

  ? 一個數的倍數的個數是無限的,其中最小的倍數是它本身,沒有最大的倍數。

  3、奇數和偶數

  ? 自然數按能否被2 整除的特征可分為奇數和偶數。

 、 能被2整除的數叫做偶數。0也是偶數。

 、 不能被2整除的數叫做奇數。

  ? 奇數和偶數的運算性質:

 、 相鄰兩個自然數之和是奇數,之積是偶數。

  ② 奇數+奇數=偶數,奇數+偶數=奇數,偶數+偶數=偶數;奇數-奇數=偶數,

  奇數-偶數=奇數,偶數-奇數=奇數,偶數-偶數=偶數;奇數×奇數=奇數,奇數×偶數=偶數,偶數×偶數=偶數。

  4、整除的特征

  ? 個位上是0、2、4、6、8的數,都能被2整除。

  ? 個位上是0或5的數,都能被5整除。

  ? 一個數的各位上的數的和能被3整除,這個數就能被3整除。

  ? 一個數各位數上的和能被9整除,這個數就能被9整除。

  ? 能被3整除的數不一定能被9整除,但是能被9整除的數一定能被3整除。

  ? 一個數的末兩位數能被4(或25)整除,這個數就能被4(或25)整除。

  ? 一個數的末三位數能被8(或125)整除,這個數就能被8(或125)整除。

  5、質數和合數

  ? 一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數),100以內的質數有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

  ? 一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數,例如 4、6、8、9、12都是合數。

  ? 1不是質數也不是合數,自然數除了1外,不是質數就是合數。如果把自然數按其約數的個數的不同分類,可分為質數、合數和1。

  6、分解質因數

  ? 質因數

  每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數,例如15=3×5,3和5 叫做15的質因數。

  ? 分解質因數

  把一個合數用質因數相乘的形式表示出來,叫做分解質因數。通常用短除法來分解質因數。先用能整除這個合數的質數去除,一直除到商是質數為止,再把除數和商寫成連乘的形式。

  ? 公因(約)數

  幾個數公有的因數叫做這幾個數的公因數。其中最大的一個叫這幾個數的最大公因數。

  公因數只有1的兩個數,叫做互質數。成互質關系的兩個數,有下列幾種情況:①和任何自然數互質;

  ②相鄰的兩個自然數互質;

  ③當合數不是質數的倍數時,這個合數和這個質數互質;

 、軆蓚合數的公約數只有1時,這兩個合數互質,如果幾個數中任意兩個都互質,就說這幾個數兩兩互質。

  如果較小數是較大數的約數,那么較小數就是這兩個數的最大公約數。

  如果兩個數是互質數,它們的最大公約數就是1。

  ? 公倍數

 、 幾個數公有的倍數叫做這幾個數的公倍數。其中最大的一個叫這幾個數的最大公倍數。

  求幾個數的最大公約數的方法是:先用這幾個數的公約數連續去除,一直除到所得的商只有公約數1為止,然后把所有的除數連乘求積,這個積就是這幾個數的的最大公約數。

 、 幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個,叫做這幾個數的最小公倍數。

  求幾個數的最小公倍數的方法是:先用這幾個數(或其中的部分數)的公約數去除,一直除到互質(或兩兩互質)為止,然后把所有的除數和商連乘求積,這個積就是這幾個數的最小公倍數。

  如果較大數是較小數的倍數,那么較大數就是這兩個數的最小公倍數。

  如果兩個數是互質數,那么這兩個數的積就是它們的最小公倍數。

  幾個數的公約數的個數是有限的,而幾個數的公倍數的個數是無限的。 二、性質和規律 (一)商不變的規律

  商不變的規律:在除法里,被除數和除數同時擴大或者同時縮小相同的倍,商不變。 (二)小數的性質

  小數的性質:在小數的末尾添上零或者去掉零小數的大小不變。 (三)小數點位置的移動引起小數大小的變化

  1、小數點向右移動一位,原來的數就擴大10倍;小數點向右移動兩位,原來的數就擴大100倍;小數點向右移動三位,原來的數就擴大1000倍??

  2、小數點向左移動一位,原來的數就縮小10倍;小數點向左移動兩位,原來的數就縮小100倍;小數點向左移動三位,原來的數就縮小1000倍??

  3、小數點向左移或者向右移位數不夠時,要用“0"補足位。 (四)分數的基本性質

  分數的基本性質:分數的分子和分母都乘以或者除以相同的數(零除外),分數的大小不變。 (五)分數與除法的關系

  1、被除數÷除數= 被除數/除數

  2、因為零不能作除數,所以分數的分母不能為零。

  3、被除數 相當于分子,除數相當于分母。 三、運算法則 (一)整數四則運算的法則

  1、整數加法:

  把兩個數合并成一個數的運算叫做加法。

  在加法里,相加的數叫做加數,加得的數叫做和。加數是部分數,和是總數。

  加數+加數=和一個加數=和-另一個加數

  2、整數減法:

  已知兩個加數的和與其中的一個加數,求另一個加數的運算叫做減法。

  在減法里,已知的和叫做被減數,已知的加數叫做減數,未知的加數叫做差。被減數是總數,減數和差分別是部分數。

  加法和減法互為逆運算。

  3、整數乘法:

  求幾個相同加數的和的簡便運算叫做乘法。

  在乘法里,相同的加數和相同加數的個數都叫做因數。相同加數的和叫做積。

  在乘法里,0和任何數相乘都得0.1和任何數相乘都的任何數。

  一個因數× 一個因數 =積一個因數=積÷另一個因數

  4、整數除法:

  已知兩個因數的積與其中一個因數,求另一個因數的運算叫做除法。

  在除法里,已知的積叫做被除數,已知的一個因數叫做除數,所求的因數叫做商。

  乘法和除法互為逆運算。

  在除法里,0不能做除數。因為0和任何數相乘都得0,所以任何一個數除以0,均得不到一個確定的商。

  被除數÷除數=商 除數=被除數÷商 被除數=商×除數

  5、乘方:

  求幾個相同因數的積的運算叫做乘方。例如 3 × 3 =32 (二)小數四則運算

  1、小數加法:

  小數加法的意義與整數加法的意義相同。是把兩個數合并成一個數的運算。

小學數學知識點總結9

  準備課

  1、數一數

  數數:數數時,按一定的順序數,從1開始,數到最后一個物體所對應的那個數,即最后數到幾,就是這種物體的總個數。

  2、比多少

  同樣多:當兩種物體一一對應后,都沒有剩余時,就說這兩種物體的數量同樣多。

  比多少:當兩種物體一一對應后,其中一種物體有剩余,有剩余的那種物體多,沒有剩余的那種物體少。

  比較兩種物體的多或少時,可以用一一對應的方法。

  位置

  1、認識上、下

  體會上、下的含義:從兩個物體的位置理解:上是指在高處的物體,下是指在低處的物體。

  2、認識前、后

  體會前、后的含義:一般指面對的方向就是前,背對的方向就是后。

  同一物體,相對于不同的參照物,前后位置關系也會發生變化。

  從而得出:確定兩個以上物體的前后位置關系時,要找準參照物,選擇的參照物不同,相對的前后位置關系也會發生變化。

  3、認識左、右

  以自己的左手、右手所在的位置為標準,確定左邊和右邊。右手所在的一邊為右邊,左手所在的一邊為左邊。

  要點提示:在確定左右時,除特殊要求,一般以觀察者的左右為準。

  學好數學的方法和技巧總結

  主動預習

  預習的目的是主動獲取新知識的過程,有助于調動學習積極主動性,新知識在未講解之前,認真閱讀教材,養成主動預習的習慣,是獲得數學知識的重要手段。

  因此,要注意培養自學能力,學會看書。如自學例題時,要弄清例題講的什么內容,告訴了哪些條件,求什么,書上怎么解答的,為什么要這樣解答,還有沒有新的解法,解題步驟是怎樣的。抓住這些重要問題,動腦思考,步步深入,學會運用已有的知識去獨立探究新的知識。

  讓數學課學與練結合

  在數學課上,光聽是沒用的。自己也要在草稿紙上練。當遇到不懂的難題時,一定要提出來,不能不懂裝懂,否則考試遇到類似的題目就可能不會做。聽老師講課時一定要全神貫注,要注意細節問題。應抓住聽課中的主要矛盾和問題,在聽講時盡可能與老師的講解同步思考,必要時做好筆記。每堂課結束以后應深思一下進行歸納,做到一課一得。

  單項式書寫格式

  1、數字寫在字母的前面,應省略乘。[5a]、[16xy]等。

  2、π是常數,因此也可以作為系數。它不是未知數。

  3、若系數是帶分數,要化成假分數。

  4、當一個單項式的系數是1或—1時,“1”通常省略不寫,如[(—1)ab]寫成[—ab]等。

  5、在單項式中字母不可以做分母,分子可以。

  6、單獨的數“0”的系數是零,次數也是零。

  7、常數的系數是它本身,次數為零。

  8、如果是分數的多項式,那么他的系數就是他的分數常數,次數為最高次冪。

小學數學知識點總結10

  (一)分數乘法意義:

  1、分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。

  “分數乘整數”指的是第二個因數必須是整數,不能是分數。

  2、一個數乘分數的意義就是求一個數的幾分之幾是多少。

  “一個數乘分數”指的是第二個因數必須是分數,不能是整數。(第一個因數是什么都可以)

  (二)分數乘法計算法則:

  1、分數乘整數的計算方法:用分子乘整數的積作分子,分母不變。能約分的可以先約分,再計算。

  (1)為了計算簡便能約分的可先約分再計算。(整數和分母約分)

  (2)約分是用整數和下面的分母約掉公因數。(整數千萬不能與分母相乘,計算結果必須是最簡分數)。

  2、分數乘分數的計算方法是:用分子相乘的積做分子,用分母相乘的積作分母。(分子乘分子,分母乘分母)

  (1)如果分數乘法算式中含有帶分數,要先把帶分數化成假分數再計算。

  (2)分數化簡的方法是:分子、分母同時除以它們的公因數。

  (3)在乘的過程中約分,是把分子、分母中,兩個可以約分的數先劃去,再分別在它們的上、下方寫出約分后的數。(約分后分子和分母必須不再含有公因數,這樣計算后的結果才是最簡單分數)。

  (4)分數的基本性質:分子、分母同時乘或者除以一個相同的數(0除外),分數的大小不變。

  (三)積與因數的關系:

  一個數(0除外)乘大于1的數,積大于這個數。a×b=c,當b>1時,c>a。

  一個數(0除外)乘小于1的數,積小于這個數。a×b=c,當b<1時,c

  一個數(0除外)乘等于1的數,積等于這個數。a×b=c,當b=1時,c=a。

  在進行因數與積的大小比較時,要注意因數為0時的特殊情況。

  (四)分數混合運算

  1、分數混合運算的運算順序與整數混合運算的運算順序相同,先算乘法,后算加減法,有括號的先算括號里面的,再算括號外面的。

  2、整數乘法運算定律對分數乘法同樣適用;運算定律可以使一些計算簡便。

  乘法交換律:a×b=b×a乘法結合律:(a×b)×c=a×(b×c)

  乘法分配律:a×(b±c)=a×b±a×c

  (五)分數乘法應用題——用分數乘法解決問題

  1、求一個數的幾分之幾是多少?(用乘法)

  已知單位“1”的量,求單位“1”的量的幾分之幾是多少,用單位“1”的量與分數相乘。

  2、巧找單位“1”的量:在含有分數(分率)的語句中,分率前面的量就是單位“1”對應的量,或者“占”“是”“比”字后面的量是單位“1”。

  3、求比一個數多(或少)幾分之幾的數是多少的解題方法

  (1)單位“1”的量+(-)單位“1”的量×這個數量比單位“1”的量多(或少)的幾分之幾=這個數量;

  (2)單位“1”的量×[1+這個數量比單位“1”的量多(或少)的幾分之幾]=這個數量。

小學數學知識點總結11

  1、乘法的含義

  乘法是求幾個相同加數連加的和的簡便算法。如:計算:2+2+2=6,用乘法算就是:2×3=6或3×2=6.

  2、乘法算式的寫法和讀法

 、胚B加算式改寫為乘法算式的方法。求幾個相同加數的和,可以用乘法計算。寫乘法算式時,可以用乘法計算。寫乘法算式時,可以先寫相同的加數,然后寫乘號,再寫相同加數的個數,最后寫等號與連加的和;也可以先寫相同加數的個數,然后寫乘號,再寫相同加數,最后寫等號與連加的和。

  如:4+4+4=12改寫成乘法算式是4×3=12或3×4=12

  4 × 3 = 12或3 × 4 = 12

  ⑵乘法算式的讀法。讀乘法算式時,要按照算式順序來讀。如:6×3=18讀作:“6乘3等于18”。

  3、乘法算式中各部分的名稱及實際表示的意義

  在乘法算式里,乘號前面的數和乘號后面的數都叫做“乘數”;等號后面的得數叫做“積”。

  4、乘法算式所表示的意義

  求幾個相同加數的和,用乘法計算比較簡單。一道乘法算式表示的就是幾個相同加數連加的和。如:4×5表示5個4相加或4個5相加。

  5、加法寫成乘法時,加法的和與乘法的積相同。

  6、乘法算式中,兩個乘數交換位置,積不變。

  7、算式各部分名稱及計算公式。

  乘法:乘數×乘數=積

  加法:加數+加數=和

  和—加數=加數

  減法:被減數—減數=差

  被減數=差+減數

  減數=被減數—差

  8、在9的'乘法口訣里,幾乘9或9乘幾,都可看作幾十減幾,其中“幾”是指相同的數。

  如:1×9=10—1 9×5=50—5

  9、看圖,寫乘加、乘減算式時:

  乘加:先把相同的部分用乘法表示,再加上不相同的部分。

  乘減:先把每一份都算成相同的,寫成乘法,然后再把多算進去的減去。

  計算時,先算乘,再算加減。

  如:加法:3+3+3+3+2=14乘加:3×4+2=14乘減:3×5-1=14

  10、“幾和幾相加”與“幾個幾相加”有區別

  求幾和幾相加,用幾加幾;如:求4和3相加是多少?用加法(4+3=7)

  求幾個幾相加,用幾乘幾。

  如:求4個3相加是多少?(3+3+3+3=12或3×4=12或4×3=12)

  補充:幾和幾相乘,求積?用幾×幾.如:2和4相乘用2×4=8

  2個乘數都是幾,求積?用幾×幾。如:2個8相乘用8×8=64

  11、一個乘法算式可以表示兩個意義,如“4×2”既可以表示“4個2相加”,也可以表示“2個4相加”。

  “5+5+5”寫成乘法算式是(3×5=15)或(5×3=15),

  都可以用口訣(三五十五)來計算,表示(3)個(5)相加

  3×5=15讀作:3乘5等于15. 5×3=15讀作:5乘3等于15

  第五單元觀察物體

  1、從不同的角度觀察同一物體,所看到的物體的形狀一般是不同的;

  2、觀察物體時,要抓住物體的特征來判斷。

  3、觀察長方體的某一面,看到的可能是長方形或正方形。觀察正方形的某一面,看到的都是正方形

  4、觀察圓柱體,看到的可能是長方形或圓形。觀察球體,看到的都是圓形

  第七單元認識時間

  1、認識時間

  (1)鐘面上有時針和分針,走得快的,較長的是分針;走得慢的,較短的是時針;

  (2)鐘面上有12個大格,60個小格,1個大格有5個小格。時針走1大格是1小時,分針走1大格是5分鐘。

  (3)時針走1大格分針要走一圈,所以1時=60分;

  (4)半小時=30分,一刻鐘=15分鐘

  (5)時間的讀與寫:如3:30,可以讀作3時30分,也可以讀作3點半;8時零5分應寫作8:05。

  2、運用知識解決問題

  (1)要按著時間的先后順序安排事件,時間上不能重復。

  (2)問過幾分鐘后是幾時,先要讀出現在是幾時,再推算過幾分鐘后是幾時幾分。

  (3)時針和分針能形成直角的時刻是3時和9時。

  第八單元數學廣角-搭配

  1、用兩個不同的數字(0除外)組合時可以交換兩個數字的位置;用三個不同的數字組合成兩位數時,可以讓每個數字(0除外)作十位數字,其余的兩個數字依次和它組合。

  2、借用連線或者符號解答問題比較簡單。

  3、排列與順序有關,組合與順序無關。

小學數學知識點總結12

  1.認識人民幣的單位元、角、分和它們的十進關系,認識各種面值的人民幣,能看懂物品的單價,會進行簡單的計算。

  2.結合自己的生活經驗和已經掌握的100以內數的知識,學習、認識人民幣,一方面初步知道人民幣的基本知識和懂得如何使用人民幣,提高社會實踐能力;另一方面加深對100以內數的概念的理解。

  3.體會數概念與現實生活的密切聯系。

  4.認識各種面值的人民幣,并會進行簡單的計算。

  5.使學生認識人民幣的單位元、角、分,知道1元=10角,1角=10分。

  6.通過購物活動,使學生初步體會人民幣在社會生活、商品交換中的功能和作用并知道愛護人民幣。

小學數學知識點總結13

  小學數學知識點全總結之一:運算定律

  加法交換律 a+b=b+a

  結合律 (a+b)+c=a+(b+c)

  減法性質 a-b-c=a-(b+c)

  a-(b-c)=a-b+c

  乘法交換律 a×b=b×a

  結合律 (a×b)×c=a×(b×c)

  分配律 (a+b)×c=a×c+b×c

  除法性質 a÷(b×c)=a÷b÷c

  a÷(b÷c)=a÷b×c

  (a+b)÷c=a÷c+b÷c

  (a-b)÷c=a÷c-b÷c

  商不變性質m≠0 a÷b=(a×m)÷(b×m) =(a÷m)÷(b÷m)

  ■積的變化規律:在乘法中,一個因數不變,另一個因數擴大(或縮小)若干倍,積也擴大(或縮小)相同的倍數.

  推廣:一個因數擴大A倍,另一個因數擴大B倍,積擴大AB倍.

  一個因數縮小A倍,另一個因數縮小B倍,積縮小AB倍.

  ■商不變規律:在除法中,被除數和除數同時擴大(或縮小)相同的倍數,商不變.

  推廣:被除數擴大(或縮小)A倍,除數不變,商也擴大(或縮小)A倍.

  被除數不變,除數擴大(或縮小)A倍,商反而縮小(或擴大)A倍.

  ■利用積的變化規律和商不變規律性質可以使一些計算簡便.但在有余數的除法中要注意余數.

  如:8500÷200= 可以把被除數、除數同時縮小100倍來除,即85÷2= ,商不變,但此時的余數1是被縮小100被后的,所以還原成原來的余數應該是100.

  小學數學知識點全總結之二:簡易方程

  ■用字母表示數

  用字母表示數是代數的基本特點.既簡單明了,又能表達數量關系的一般規律.

  ■用字母表示數的注意事項

  1、數字與字母、字母和字母相乘時,乘號可以簡寫成““或省略不寫.數與數相乘,乘號不能省略.

  2、當1和任何字母相乘時,“ 1” 省略不寫.

  3、數字和字母相乘時,將數字寫在字母前面.

  ■含有字母的式子及求值

  求含有字母的式子的值或利用公式求值,應注意書寫格式

  ■等式與方程

  表示相等關系的式子叫等式.

  含有未知數的等式叫方程.

  判斷一個式子是不是方程應具備兩個條件:一是含有未知數;二是等式.所以,方程一定是等式,但等式不一定是方程.

  ■方程的解和解方程

  使方程左右兩邊相等的未知數的值,叫方程的解.

  求方程的解的過程叫解方程.

  ■在列方程解文字題時,如果題中要求的未知數已經用字母表示,解答時就不需要寫設,否則首先演將所求的未知數設為x.

  ■解方程的方法

  1、直接運用四則運算中各部分之間的關系去解.如x-8=12

  加數+加數=和 一個加數=和-另一個加數

  被減數-減數=差 減數=被減數-差 被減數=差+減數

  被乘數×乘數=積 一個因數=積÷另一個因數

  被除數÷除數=商 除數=被除數÷商 被除數=除數×商

  2、先把含有未知數x的項看作一個數,然后再解.如3x+20=41

  先把3x看作一個數,然后再解.

  3、按四則運算順序先計算,使方程變形,然后再解.如2.5×4-x=4.2,

  要先求出2.5×4的積,使方程變形為10-x=4.2,然后再解.

  4、利用運算定律或性質,使方程變形,然后再解.如:2.2x+7.8x=20

  先利用運算定律或性質使方程變形為(2.2+7.8)x=20,然后計算括號里面使方程變形為10x=20,最后再解.

  小學數學知識點全總結之三:比和比例

  ■比和比例應用題

  在工業生產和日常生活中,常常要把一個數量按照一定的比例來進行分配,這種分配方法通常叫“按比例分配”.

  ■解題策略

  按比例分配的有關習題,在解答時,要善于找準分配的總量和分配的比,然后把分配的比轉化成分數或份數來進行解答

  ■正、反比例應用題的解題策略

  1、審題,找出題中相關聯的兩個量

  2、分析,判斷題中相關聯的兩個量是成正比例關系還是成反比例關系.

  3、設未知數,列比例式

  4、解比例式

  5、檢驗,寫答語

小學數學知識點總結14

  一、知識框架

  一級知識點數與代數二級知識點數的運算三級知識點

  1、列豎式計算除法。

  2、兩位數除以一位數;

  除法的驗算

  3、一步計算的問題

  4、兩步計算的問題

  1、質量單位千克、克數與代數常見的量

  2、千克、克之間的換算,簡單的實際問題

  3、24時計時法空間與圖形空間與圖形統計與概率圖形的認識

  從三個方向觀察用小正方體搭成的立體圖形形狀

  1.周長的認識

  2.長方形、正方形的周長計算描述事件發生的可能性。

  二、期末知識點

  第一單元除法(除法是乘法的逆運算)

  兩位數除以一位數(商是兩位數)的除法。是在二年級(上冊)表內除法和二年級(下冊)有余數除法的基礎上安排的。

  1.計算:列豎式計算除法。

  2.口算:被除數十位和個位上的數分別除以除數都沒有余數的除法,包括整十數除以一位數商是整十數。

  3.筆算:兩位數除以一位數;除法的驗算(用乘法驗算)。

  4.估算:估計兩位數除以一位數的商是幾十多。

  5.一步計算的問題:在解決的實際問題中體會數量關系?們r÷單價=數量總價÷數量=單價

  6.兩步計算的問題:先求總和或剩余是多少,再平均分的實際問題。

  練習:

 。1)用豎式計算,并驗算:62÷266÷672÷347÷7

  (2)口算:36÷360÷268÷290÷3

  (3)列豎式計算:39÷389÷467÷274÷3

 。4)你能估算下面各題的商各是幾十多嗎?64÷584÷395÷481÷3

 。5)王老師用72元買筆記本,如果每本單價是2元,那么能買多少本?李老師用60元買了20本筆記本,那么每本筆記本多少錢?

  (6)一副乒乓球拍26元,一個乒乓球2元,用50元買一副乒乓球拍,剩下的錢能夠買幾個乒乓球?第二單元認數1.認數、讀數、寫數。

  整千數:數位與順序,認、讀、寫數,口算整千數的加、減法,解決實際問題。非整千數:認、讀、寫數,口算整千數加整百數及相應的減法,按順序整理數。

  練習:

  (1)口算:201+4000800030006000201000+100

  (2)寫一寫:兩個千加兩個百加一個十是多少?

  (3)三千零二是由幾個千和幾個一組成?

 。4)9670是()位數,它的最高位是()位,7在()位上,個位上是()。

  2.大小比較

  比較大小時的數學思考,比較大小的實際應用,非整千數最接近幾千。

  練習:

  比較大。3650和2520,7890和8790第三單元千克和克

  千克和克都是質量單位,物體含有物質的多少是它的質量。我國人民在生活中習慣以“物體有多重”代替“質量是多少”,因此沒有使用“質量”這個詞,仍然講“有多重”。

  1.稱一個物體有多重,一般用千克為單位。

  2.凈含量是指包裝袋內物品實際有多重。

  3.千克可以用KG表示,又叫公斤。

  4.從秤上讀出物品的重量。

  5.稱比較輕的物品,一般用克為單位。

  6.認識天平。

  7.千克和克之間的關系。1千克=1000克。

  練習

 。1)一袋鹽重500克,兩袋鹽重()克?

 。2)2千克=()克

 。3)9000克=()千克第四單元加和減

  1.口算兩位數加、減。解決與“倍”或“差”有關的兩步計算實際問題。

  練習

  口算:44+2532+5714+6876642.畫線段圖解決問題。

  練習

  手套的價格是12元,帽子的價格是手套的3倍,你能用線段畫出來并算出帽子是多少錢嗎?第五單元24時記時法。

  1.24時記時法及它與普通記時法(12時記時法)的聯系

  2.聯系實際問題求經過時間的基本思路與方法。包括:求整時到整時的經過時間,求非整點時刻間的經過時間。(利用線段圖)。

  求經過時間:

  記憶:結束時刻開始時刻=經過時間到達的時刻出發的時刻=經過時間3.兩種計時方式的轉化。

  普通記時法與24時記時法的互相轉化普通記時法24時記時法凌晨1時1時

  早晨5時5時上午8時8時中午12時12時下午1時13時下午2時14時晚上6時18時晚上7時19時晚上8時20時晚上9時21時

  深夜12時24時(也是第二天的0時)

  記憶:中午12時以后的時刻,用24時記時法表示,就用鐘面上的時刻加上12時。中午12時以后的時刻,用普通記時法表示,就用時刻減去12時。

  練習

  (1)圖書館的的公告牌上面寫著:借書時間:12:0013:30,15:4017:00。圖書館每天的借書時間是多長?

  (2)用二十四小時計時法表示,:下午2:00,晚上9:00第六單元長方形和正方形

  1.認識長方形和正方形。掌握長方形、正方形的邊與角有什么特點。(長方形對邊相等,四個角都是直角。正方形每條邊都相等,四個角都是直角。通常把長方形的長邊叫做長,短邊叫做寬。把正方形的每一條邊都叫做邊長。)

  2.探索、理解周長的含義及計算方法。計算長方形和正方形的周長。(物體某個面上一周邊線的長度就是該物體某個面的周長)。

  練習

  (1)籃球場長26米,寬14米,求籃球場的周長。

 。2)操場長150米,寬70米,小強繞操場跑一周,小強一共跑了多少米?

  第七單元乘法

  1.三位數乘一位數的基本方法。(在二年級下冊已經學習了兩位數乘一位數)

  2.三位數的中間或末尾是0時的乘法計算。3.連乘計算。練習:

 。1)200×3152×4261×3224×5(2)124×3×2115×2×4

 。3)一頭牛一天吃20千克草,兩頭牛兩天吃多少千克草?

  第八單元觀察物體

  安排過一次“觀察物體”,從物體(玩具、茶壺、汽車等)的前面、后面、左面、右面觀察,并選擇適宜的圖形表示看到的物體的形狀。本單元學習“觀察物體”,從物體的正面、側面和上面觀察,并用視圖表示看到的形狀。

  1.在知道物體的前面、后面、左面、右面的基礎上,認識物體的正面、側面和上面。

  2.在不同的位置觀察,看到的物體的面的個數往往是不相同的。

  3.進行簡單幾何體與其三視圖之間的轉化。

  第九單元統計與可能性

  學習簡單的統計知識。

  練習

 。1)在一個口袋里放3個紅球,一個黃球,從袋子里任意摸一個球,摸到紅球的可能性大還是摸到黃球的可能性大?

  第十單元認識分數

  理解分數的意義,認、讀、寫簡單的分數,同分母分數(分母小于10)的加減計算。

  1.分數的表示:分子、分母、分數線。

  2.同分母分數比較大小。

  3.同分母分數的加減。

小學數學知識點總結15

  一生活中的數

  (一)本單元知識網絡:

  (二)各課知識點:

  可愛的校園(數數)

  知識點:

  1、按一定順序手口一致地數出每種物體的個數。

  2、能用1-10各數正確地表述物體的數量。

  快樂的家園(10以內數的認識)

  知識點:

  1、能形象理解數“1”既可以表示單個物體,也可以表示一個集合。

  2、在數數過程中認識1-10數的符號表示方法。

  3、理解1~10各數除了表示幾個,還可以表示第幾個,從而認識基數與序數的聯系與區別:基數表示數量的多少,序數表示數量的順序。

  玩具(1~5的認識與書寫)

  知識點:

  1、能正確數出5以內物體的個數。

  2、會正確書寫1-5的數字。

  小貓釣魚(0的認識)

  知識點:

  1、認識“0”的產生,理解“0”的含義,0即可以表示一個物體也沒有,也可以表示起點和分界點。

  2、學會讀、寫“0”。

  文具(6~10的認識與書寫)

  知識點:

  1、能正確數出數量是6-10的物體的個數。

  2、會讀寫6—10的數字。