高考理科數學復習計劃與重點點撥
一、建構良好知識結構和認知結構體系良好的知識結構是高效應用知識的保證。
以課本為主,重新全面梳理知識、方法,注意知識結構的重組與概括,揭示其內在的聯系與規律,從中提煉出思想方法。在知識的深化過程中,切忌孤立對待知識、方法,而是自覺地將其前后聯系,縱橫比較、綜合,自覺地將新知識及時納入已有的知識系統中去,融匯代數、三角、立幾、解幾于一體,進而形成一個條理化、有序化、網絡化的高效的有機認知結構。如面對代數中的“四個二次”:二次三項式,一元二次方程,一元二次不等式,二次函數時,以二次方程為基礎、二次函數為主線,通過聯系解析幾何、三角函數、帶參數的不等式等典型重要問題,建構知識,發展能力。
高考(課程)數學試題十分重視對學生能力的考查,而這種能力是以整體的、完善的知識結構為前提的。國家教育部考試中心試題評價組《全國普通高考數學試題評價報告》明確指出:“試題注意數學各部分內容的聯系,具有一定的綜合性。加強數學各分支知識間內在聯系的考查……要求考生把數學各部分作為一個整體來學習、掌握,而不機械地分為幾塊。這個特點不但在解答題中突出,而且在選擇題中也有所體現。”
傳統的數學總復習是將各章劃分為若干課時,一個課時一個中心議題。這種做法有它的可取之處,但其不足也是很明顯的:第一,它將完整的知識結構切碎了、拆散了,不利于形成完整的知識體系;第二,它受制于各個課時的長度,而各個議題的容量并不都是相等的,那么在復習中勢必將短的拉長,將長的截短,難以做到重點突出;第三,它每課時都要追求“高潮”,可是這些高潮與高考的要求又不盡吻合,因而造成教學的浪費;第四,每個課時都要配置選擇題、填空題和解答題,而事實上有的議題并不需要設置解答題;第五,它受每個課時的制約,綜合運用各部分知識的空間較狹窄。
以章為一個單元,先在學生復習課本知識的基礎上,由師生共同串講梳理,從而建構既以本章為主線又廣涉有關各章的知識網絡系統,其次讓學生進行客觀性題目的練習,再講練主觀性題目。這樣的'做法可以在更廣闊的知識空間里自由馳騁,有利于培養學生整體駕馭知識的能力,它不受每個課時的約束,從全章考慮進行統籌安排,更便于重點、熱點的強化,難點的突破,而且做到經濟實惠,可取得最大的復習效益。
二、全面復習、突出重點、抓住典型、全面提高
1.繼續強化對基礎知識的理解,掌握抓住重點知識抓住薄弱的環節和知識的缺陷,全面搞好基礎知識全面搞好基礎知識的復習。中學數學的重點知識包括:(1)函數的基礎理論應用。(2)三角函數和三角變換。(3)不等式的求解、證明和綜合應用。(4)數列的基礎知識和應用。(5)直線與平面的位置關系。(6)曲線方程的求解。(7)直線、圓錐曲線的性質和位置關系。(8)新增內容有:向量的基礎知識和應用、概率與統計的基礎知識和應用、初等函數的導數和應用2、對基礎知識的復習應突出抓好兩點:(1)深入理解數學概念,正確揭示數學概念的本質,屬性和相互間的內在聯系,發揮數學概念在分析問題和解決問題中的作用。(2)對數學公式、法則、定理、定律務必弄清其來龍去脈,掌握它們的推導過程,使用范圍,使用方法(正用逆用、變用)熟練運用它們進行推理,證明和運算。
3、系統地對數學知識進行整理、歸納、溝通知識間的內在聯系,形成縱向、橫向知識鏈,構造知識網絡,從知識的聯系和整體上把握基礎知識。例如以函數為主線的知識鏈。又如直線與平面的位置關系中“平行”與“垂直”的知識鏈。
4、認真領悟數學思想,熟練掌握數學方法,正確應用它們分析問題和解決問題。
《考試大綱》指出:數學思想和數學方法是數學知識在更高層次上的抽象和概括,它蘊涵在數學知識的發生,發展和應用的過程中,因此對數學思想和方法的考查必然要與數學知識的考查結合進行,通過對數學知識的考查反映考生對數學思想和方法理解和掌握的程度。
數學思想數學在高考中涉及的數學思想有以下四種:(A)分類討論思想:分類討論思想是以概念的劃分,集合的分類為基礎的解題思想,是一種邏輯劃分的思想方法。分類討論的實質是“化整為零、積零為整”。科學分類的基本原則是正確,不重不漏,合理,便于討論,科學分類的步驟是:明確對象的全體——確定分類標準——科學分類——逐一討論——歸納小結得出結論。
(B)函數與方程的思想:函數與方程是貫穿中學數學的主線,函數是客觀實踐中量與量之間相互依存,相互制約的關系的反映,方程則是這種關系在某種特定條件下的具體形式。
(C)變換與轉化思想:在研究和解決一些數學問題時常采用某種手段進行命題變換,以達解決問題的目的。常見有以下三個方面①把復雜問題通過變換轉化為較簡單的問題。②把較難問題通過變換轉化為較易的問題。③把沒解決問題通過變換轉化為已解決的問題。常見轉化方法有:直接轉化法、換元轉化法、數形結合轉化法、構造模型轉化法、參數轉化法、類比轉化法。
(D)數形結合思想:數形結合思想是應用客觀事物中數與形的對應關系,把抽象的數學語言與直觀的圖形結合起來:①尋求解題的切入點 ②簡化解題過程 ③
轉換命題 ④驗證結論的正確與完整。數形結合的思想就是利用圖形進行思維簡縮,對選擇、填空題的求解住住能大大簡化思維過程,爭取解題時間。數形結合住住借助:①
函數與圖像的對應關系② 方程與曲線的對應關系③ 以幾何元素,幾何條件建立的概念。④ 數與式的結構具有明顯的幾何意義。
5、有計劃地加強有效訓練,不斷提高四種數學能力。
考試大綱指出“對能力的考察”以思維能力為核心,全面考察各種能力,強調探究性、綜合性、應用性、切合考生實際,對數學能力的考察要以數學基礎知識,數學思想方法為基礎,加強思維品質的考察,對數學應用問題,要把握好提出問題所涉及的數學知識方法的深度和廣度,切合中學數學教學實際。
(1)思維能力思維能力是數學能力的核心,數學思維能力包括如下要求:(A)數學概括能力(B)數學抽象能力(C)數學推理能力(D)數學歸納能力(E)數學簡縮能力(F)數學語言的表述能力。數學思維主要是邏輯思維,邏輯思維操作的對象是概念,即從概念出發,嚴格遵循邏輯推理的規則(主要是“三段論”的推理模式)進行推理,達到判斷和證明的目的。
(2)運算能力提高運算能力注意以下幾點:(A)合理運用概念、公式、法則、定理、定律、提高運算的準確性。(B)精心設計運算過程,提高運算的合理性和簡捷程度。(C)靈活運用數學思想方法,化繁為簡。
(3)空間想象能力。高考對這種數學能力要求有(A)根據題設條件想象和畫出圖形。識別圖形——能利用圖形的題設條件“看”出幾何體的形狀、大小相互位置關系,幾何體的幾個元素在平面上,空間中的相互位置關系,排列順序。畫出圖像——能將題目給出的文字語言、符號、語言轉換為圖形語言,按照畫法規則繪制相應的空間圖形。(B)對幾何圖形的處理——圖形的分割、組合、變形能對圖形進行分割、補全、折疊、展開。能對圖形進行平移變形處理,添加輔助線、面、體,將空間圖形的某部分移出體外,空間圖形的平面化處理將復雜圖形簡單化,非標準圖形標準化。通過建立空間坐標系,利用向量知識解決有關立體幾何問題是綜合考察數學能力的重要途徑。
(4)解決實際問題的能力解決實際問題的能力是人們認識世界,改造世界的能力。較之前三種能力,它是更高層次和內涵更為寬泛的能力。高考對解決實際問題能力的考察要求是:(A)設計情景新,設問方式新的試題,增大思考量,減少運算量。(B)加強對數學語言的考察,要求學生通過閱讀和思維,把文字語言,表格語言、圖形語言轉化為數學語言,考察考生接受信息處理信息的能力。(C)近年來對實際能力的考察,主要是通過開放性試題和實際應用問題來進行的。
開放性試題包括:判斷性問題、歸納性問題、操作性問題。
應用性問題包括:直接套用現成方式求解、利用現成數學模型求解、根據數學條件建立數學模型求解。
解決實際問題的一般程序:審題——讀懂題面,理解題意,分清條件和結論,利用圖表理順數量關系。建模——將題中的文字語言,轉化為數學語言,建立相應的數學模型。解模——求解模型,得出數學結論。還原——將數學結論還原為實際問題的意義,通過檢驗得出應用問題的結論。
6.發揮選擇題,填空題的思維訓練和能力訓練功能選擇、填空題都是客觀試題,它的特點是:概念性強、量化突出、充滿思辨性、形數皆備、解法多樣形、題量大,分值高,實現對“三基”的考查。
【高考理科數學復習計劃與重點點撥】相關文章:
數學的重點復習計劃05-04
高考政治復習計劃及重點04-23
高考政治復習計劃重點04-13
高考理科生全年復習計劃07-13
高考理科綜合復習計劃書11-13
高考素材展示及點撥04-02
高考數學的復習計劃04-30
高考數學復習計劃04-22
高考數學復習計劃06-18