一元二次方程練習題
在學習和工作的日常里,我們都離不開練習題,只有多做題,學習成績才能提上來。學習就是一個反復反復再反復的過程,多做題。你所了解的習題是什么樣的呢?下面是小編收集整理的一元二次方程練習題,僅供參考,希望能夠幫助到大家。
一元二次方程練習題 1
一、 選擇題(每小題3分,共30分)
1、已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2可以配方成下列的( )
A、(x-p)2=5 B、(x-p)2=9
C、(x-p+2)2=9 D、(x-p+2)2=5
2、已知m是方程x2-x-1=0的一個根,則代數式m2-m的值等于( )
A、-1 B、0 C、1 D、2
3、若α、β是方程x2+2x-20xx=0的兩個實數根,則α2+3α+β的值為( )
A、20xx B、20xx C、-20xx D、4010
4、關于x的方程kx2+3x-1=0有實數根,則k的取值范圍是( )
A、k≤- B、k≥- 且k≠0
C、k≥- D、k>- 且k≠0
5、關于x的一元二次方程的兩個根為x1=1,x2=2,則這個方程是[]( )
A、 x2+3x-2=0 B、x2-3x+2=0
C、x2-2x+3=0 D、x2+3x+2=0
6、已知關于x的.方程x2-(2k-1)x+k2=0有兩個不相等的實根,那么k的最大整數值是( )
A、-2 B、-1 C、0 D、1
7、某城20xx年底已有綠化面積300公頃,經過兩年綠化,綠化面積逐年增加,到20xx年底增加到363公頃,設綠化面積平均每年的增長率為x,由題意所列方程正確的是( )
A、300(1+x)=363 B、300(1+x)2=363
C、300(1+2x)=363 D、363(1-x)2=300
8、甲、乙兩個同學分別解一道一元二次方程,甲因把一次項系數看錯了,而解得方程兩根為-3和5,乙把常數項看錯了,解得兩根為2+ 和2- ,則原方程是( )
A、 x2+4x-15=0 B、x2-4x+15=0
C、x2+4x+15=0 D、x2-4x-15=0
9、若方程x2+mx+1=0和方程x2-x-m=0有一個相同的實數根,則m的值為( )
A、2 B、0 C、-1 D、
10、已知直角三角形x、y兩邊的長滿足|x2-4|+ =0,則第三邊長為( )
A、 2 或 B、 或2
C、 或2 D、 、2 或
二、 填空題(每小題3分,共30分)
11、若關于x的方程2x2-3x+c=0的"一個根是1,則另一個根是 。
12、一元二次方程x2-3x-2=0的解是 。
13、如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值是 。
14、等腰△ABC中,BC=8,AB、AC的長是關于x的方程x2-10x+m=0的兩根,則m的值是 。
15、20xx年某市人均GDP約為20xx年的1.2倍,如果該市每年的人均GDP增長率相同,那么增長率為 。
16、科學研究表明,當人的下肢長與身高之比為0.618時,看起來最美,某成年女士身高為153cm,下肢長為92cm,該女士穿的高根鞋鞋根的最佳高度約為 cm.(精確到0.1cm)
17、一口井直徑為2m,用一根竹竿直深入井底,竹竿高出井口0.5m,如果把竹竿斜深入井口,竹竿剛好與井口平,則井深為 m,竹竿長為 m.
18、直角三角形的周長為2+ ,斜邊上的中線為1,則此直角三角形的面積為 。
19、如果方程3x2-ax+a-3=0只有一個正根,則 的值是 。
20、已知方程x2+3x+1=0的兩個根為α、β,則 + 的值為
一元二次方程練習題 2
【教學目的】
精選學生在解一元二次方程有關問題時出現的典型錯例加以剖析,幫助學生找出產生錯誤的原因和糾正錯誤的方法,使學生在解題時少犯錯誤,從而培養學生思維的批判性和深刻性。
【課前練習】
1、關于x的方程ax2+bx+c=0,當a_____時,方程為一元一次方程;當 a_____時,方程為一元二次方程。
2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當△_______時,方程有兩個相等的`實數根,當△_______時,方程有兩個不相等的實數根,當△________時,方程沒有實數根。
【典型例題】
例1 下列方程中兩實數根之和為2的方程是()
(A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0
錯答: B
正解: C
錯因剖析:由根與系數的關系得x1+x2=2,極易誤選B,又考慮到方程有實數根,故由△可知,方程B無實數根,方程C合適。
例2 若關于x的方程x2+2(k+2)x+k2=0 兩個實數根之和大于-4,則k的取值范圍是( )
(A) k-1 (B) k0 (c) -10 (D) -1≤k0
錯解 :B
正解:D
錯因剖析:漏掉了方程有實數根的前提是△≥0
例3(20xx廣西中考題) 已知關于x的一元二次方程(1-2k)x2-2 x-1=0有兩個不相等的實根,求k的取值范圍。
一元二次方程練習題 3
題型1:認識一元二次方程,并能找出各項的系數
解法:根據一元二次方程的概念,這個不難找,注意ax+bx+c=0,不是一元二次方程,因為沒有確定a的范圍,a=0時,它就不是。還有一定要化成一般形式我們再去判斷。
例題:若方程是(m+2)x|m|+3mx+1=0關于x的一元二次方程,則( )
A.m=±2 B.m=2 C.m= -2
例題:把一元二次方程2x(x﹣1)=(x﹣3)+4化成一般式之后,其二次項系數與一次項分別是( )
A、2,﹣3 B、﹣2,﹣3 C、2,﹣3x D、﹣2,﹣3x
題型2:方程根的考查
例題:已知x=2是關于x的一元二次方程ax2-3bx-5=0的一個根,則4a-6b的值是 。
例題:關于x的方程a(x+m)2+b=0的解是x1=-2,x2=1(a,m,b均為常數,
a≠0),則方程a(x+m+2)2+b=0的解是_________.
題型3:利用一元二次方程降次
解法:一般只要把二次項放在等式的左邊,其它放在等式的右邊,那么二次就降成一次了。
例題:
已知m,n是方程x-2x-1=0的兩根,且(2m-4m+a(3n-6n-7)=8,則a的值等于 。
例題:已知x-x-1=0,則-x+2x+20xx的為 。
題型4:利用一元二次方程因式分解
1475486091506914.png
題型5:整體思想解方程
解法:用整體思想來解方程,如果是在實際問題背景中,我們一定要記得檢驗,看是否會符合實際情況。
例題:已知(x+y)+(x+y)=0,則x+y=___________
例題:若實數a、b滿足(4a+4b) (4a+4b-2)-8=0,則a+b=_______.
題型6:一元二次方程的解法
解方程:(1)(y-1)2=2y(y-1)。 (2)2x2+1=3x. (配方法)
(3)9(x+2)2-16(2x + 3)2=0[來源2x2-3x=5;
題型7:根的'判別式
例題:
已知關于x的方程kx+(1-k)x-1=0,下列說法正確的是( )。
A.當k=0時,方程無解
B.當k=1時,方程有一個實數解
C.當k=-1時,方程有兩個相等的實數解
D.當k≠0時,方程總有兩個不相等的實數解
例題:下列命題:
①若b=2a+c/2,則一元二次方程ax+bx+c=O必有一根為-2;
②若ac<0, 則方程 cx+bx+a=O有兩個不等實數根;
③若b-4ac=0, 則方程 cx+bx+a=O有兩個相等實數根;
其中正確的個數是( )
A.O個 B.l個 C.2個 D.3 個
例題:已知關于x的一元二次方程x2+bx+b﹣1=0有兩個相等的實數根,則b的值是 。
題型8:一元二次方程與幾何的綜合
例題:已知等腰三角形兩腰長分別是x2,2x+3,底為2,求三角形的周長
例題:已知關于x的方程x2-(2a-1)x+4(a-1)=0的兩個根是斜邊長為5的直角三角形的兩條直角邊的長,求這個直角三角形的面積。
題型9:一元二次方程與幾何的綜合
例題:已知等腰三角形兩腰長分別是x2,2x+3,底為2,求三角形的周長
例題:已知關于x的方程x2-(2a-1)x+4(a-1)=0的兩個根是斜邊長為5的直角三角形的兩條直角邊的長,求這個直角三角形的面積。
一元二次方程練習題 4
1. 某商場禮品柜臺元旦期間購進大量賀年卡,一種賀年卡平均每天可售出500張,每張盈利0.3元.為了盡快減少庫存,商場決定采取適當的降價措施,調查發現,如果這種賀年卡的售價每降低0.1元,那么商場平均每天可多售出100張,商場要想平均每天盈利120元,每張賀年卡應降價多少元?
2. 小明將1000元存入銀行,定期一年,到期后他取出600元后,將剩下部分(包括利息)繼續存入銀行,定期還是一年,到期后全部取出,正好是550元,請問定期一年的利率是多少?
3. 一個正方形的邊長增加2cm,它的面積增加了40cm2,求這個正方形原來的邊長?
4. 用一塊長方形的鐵片,把它的四角各剪去一個邊長為4cm的小方塊,然后把四邊折起來,做成一個沒有蓋的盒子,已知鐵片的長是寬的2倍,做成盒子的容積是1 536cm3,求這塊鐵片的長和寬.
5. 我校生物興趣小組的同學有一塊長18米、寬12米的矩形試驗園.為了便于同學們參觀,現要開辟一橫兩縱三條等寬的小路.要使種植面積為176平方米,小路應該多寬?
6. 張大叔從市場上買回一塊矩形鐵皮,他將此矩形鐵皮的'四個角各剪去一個邊長為1米的正方形后,剩下的部分剛好能圍成一個容積為15m3的無蓋長方體箱子,且此長方體箱子的底面長比寬多2米,現已知購買這種鐵皮每平方米需20元錢,問張大叔購回這張矩形鐵皮共花了多少元錢?
一元二次方程練習題 5
1. 列方程解應用題
汽車產業的發展,有效促進我國現代化建設.某汽車銷售公司2009年盈利500萬元,到20年盈利260萬元,且從2009年到20年,每年盈利的年增長率相同.
(1)該公司2009年到20年每年盈利的年增長率是多少?
(2)若該公司盈利的年增長率繼續保持不變,預計202年盈利多少萬元?
2. 某漁民準備在石臼湖承包一塊正方形水域圍網養魚,通過調查得知:在該正方形水域四周的圍網費用平均每千米0.25萬元,上交承包費、購買魚苗、飼料和魚藥等開支每平方千米需0.5萬元.政府為鼓勵漁民發展水產養殖,每位承包戶補貼0.5萬元.預計每平方千米養的魚可售得4.5萬元.若該漁民期望養魚當年獲得凈收益3.5萬元,你應建議該漁民承包多大面積的水域?
3. 一個兩位數等于它的個位數字的平方,且個位數字比十位數字大3,求這個兩位數.
4. 某城市現有綠化面積200萬平方米,計劃用兩年的`時間將綠化面積增加到288萬平方米,求每年的平均增長率是多少?
5. 在△ABC中,∠C=90°,點P從B點開始沿BC邊向點C以cm/s的速度移動,點Q從點C開始沿CA邊向點C以2cm/s的速度移動.如果P,Q分別從A,B同時出發,經幾秒鐘,使△PQC的面積等于8cm2?
6. 一種商品經連續兩次降價后,價格是原來的,若兩次降價的百分率相同,則這個百分率為().
一元二次方程練習題 6
1:某種服裝,平均每天可以銷售20件,每件盈利44元,在每件降價幅度不超過10元的情況下,若每件降價1元,則每天可多售出5件,如果每天要盈利1600元,每件應降價多少元
解:設沒件降價為x,則可多售出5x件,每件服裝盈利44-x元,
依題意x10
(44-x)(20+5x)=1600
展開后化簡得:x-44x+144=0
即(x-36)(x-4)=0
x=4或x=36(舍)
即每件降價4元
要找準關系式
2.游行隊伍有8行12列,后又增加了69人,使得隊伍增加的行列數相同,增加了多少行多少列
解:設增加x (8+x)(12+x)=96+69 x=3
增加了3行3列
3.某化工材料經售公司購進了一種化工原料,進貨價格為每千克30元.物價部門規定其銷售單價不得高于每千克70元,也不得低于30元.市場調查發現:單價每千克70元時日均銷售60kg;單價每千克降低一元,日均多售2kg。在銷售過程中,每天還要支出其他費用500元(天數不足一天時,按一天計算).如果日均獲利1950元,求銷售單價
解: (1)若銷售單價為x元,則每千克降低了(70-x)元,日均多售出2(70-x)千克,日均銷售量為[60+2(70-x)]千克,每千克獲利(x-30)元.
依題意得:
y=(x-30)[60+2(70-x)]-500
=-2x^2+260x-6500
(30=x=70)
(2)當日均獲利最多時:單價為65元,日均銷售量為60+2(70-65)=70kg,那么獲總利為1950*7000/70=195000元,當銷售單價最高時:單價為70元,日均銷售60kg,將這批化工原料全部售完需7000/60約等于117天,那么獲總利為(70-30)*7000-117*500=221500
元,而221500195000時且221500-195000=26500元.
銷售單價最高時獲總利最多,且多獲利26500元.
4.一輛警車停在路邊,當警車發現一輛一8M/S的速度勻速行駛的貨車有違章行為,決定追趕,經過2.5s,警車行駛100m追上貨車.試問
(1)從開始加速到追上貨車,警車的速度平均每秒增加多少m
(2)從開始加速到行駛64m處是用多長時間
解:
2.5*8=20 100-20=80 80/8=10
100/【(0+10a)/2】=10解方程為2
64/【(0+2a)/2】=a解方程為8
5.用一個白鐵皮做罐頭盒,每張鐵皮可制作25個盒身,或制作盒底40個,一個盒身和兩個盒底配成一套罐頭盒。現在有36張白鐵皮,用多少張制盒身,多少張制盒底可以使盒身和盒底正好配套
6、解:設用 X 張制罐身 用 Y 張制罐底 則X+Y=36 X=36-Y 25X=40Y/2 X=4Y/5 4Y/5=36-Y Y=20 X=16
7.現有長方形紙片一張,長19cm,寬15cm,需要剪去邊長多少的小正方形才能做成底面積為77平方cm的無蓋長方形的紙盒
解:設邊長x
則(19-2x)(15-2x)=77
4x^2-68x+208=0
x^2-17x+52=0
(x-13)(x-4)=0,當x=13時19-2x0不合題意,舍去
故x=4
8. 某超市一月分銷售額是20萬元,以后每月的利潤都比上個月的利潤增長10%,則二月分銷售額是多少 3月的銷售額是多少
解:二月20*(1+0.1)=22 三月22*(1+0.1)=24.2
9. 某企業2007年利潤為50萬元,如果以后每年的利潤都比上年的利潤增長x%。那么2009年的年利潤將達到多少萬元
解:50*(1+x%)^2
10. 某廠經過兩年體制改革和技術革新,生產效率翻了一番,求平均每年的增長率(精確到0.1%)
解:設平均每年的增長率x
(x+1)^2=2
x=0.414
11. 一拖拉機廠,一月份生產出甲、乙兩種新型拖拉機,其中乙型16臺,從二月份起,甲型每月增產10臺,乙型每月按相同的增長率逐月遞增,又知二月份甲、乙兩型的產量之比為3:2,三月份甲、乙兩型產量之和為65臺,求乙型拖拉機每月增長率及甲型拖拉機一月份的產量。
解:設乙的增長率為X,那么二月乙就是16(1+X)臺,甲就是16(1+X)32;三月乙就是16(1+X)臺,甲就是16(1+X)32+10臺,所以列出算式16(1+X)+16(1+X)32+10=65 求解,然后可以分別算出一月二月乙的產量,然后就可以解得甲的產量了17.
12.如圖,出發沿BC勻速向點C運動。已知點N的速度每秒比點M快1cm,兩點同時出發,運動3秒后相距10cm。求點M和點N運動的速度。
解:設M速度x,則N為(x+1),(BC3x)的平方加上3(x+1)的平方=10的平方,解得x=1或x=5/3又因為AC=7,所以x=1,M的速度為1m/s,N的速度2m/s
13.用長為100cm的金屬絲做一個矩形框.李明做的矩形框的面積為400平方厘米,而王寧做的矩形框的面積為600平方厘米,你知道這是為什么嗎
解:設矩形一邊長為X厘米,則相鄰一邊長為1/2(100-2X)厘米,即(50-X)厘米,依題意得:
X*(50-X)=400 解之得:X1=40,X2=10;
X*(50-X)=600 解之得:X1=20,X2=30;
所以李明做的矩形的長是40厘米,寬是10厘米;
王寧做的矩形的長是30厘米,寬是20厘米。
14.某商品進價為每件40元,如果售價為每件50元,每個月可賣出210件,如果售價超過50元,但不超過80元,每件商品的售價每上漲10元,每個月少賣1件,如果售價超過80元后,若再漲價,每件商品的售價每漲1元,每個月少賣3件。設該商品的售價為X元。
(1)、每件商品的'利潤為 元。若超過50元,但不超過80元,每月售 件。
若超過80元,每月售 件。(用X的式子填空。)
(2)、若超過50元但是不超過80元,售價為多少時 利潤可達到7200元
(3)、若超過80元,售價為多少時利潤為7500元。
解: 1)x-40 210-(x-40)10 210-(x-40)10-3(x-80)
(2)設售價為a (a-40)[210-(a-40)10=7200
(3)設售價為b (b-40)[210-(b-40)10-3(b-80)=7500 (第2 、3問也可設該商品的售價為X1 x2元)
15.某商場銷售一批襯衫,平均每天可出售30件,每件賺50元,為擴大銷售,加盈利,盡量減少庫存,商場決定降價,如果每件降1元,商場平均每天可多賣2件,若商場平均每天要賺2100元,問襯衫降價多少元
解:襯衫降價x元
2100=(50-x)(30+2x)=1500+70x-x^2
x^2-70x+600=0
(x-10)(x-60)=0
x-60=0 x=6050 舍去
x-10=0 x=10
16.在一塊面積為888平方厘米的矩形材料的四角,各剪掉一個大小相同的正方形(剪掉的正方形作廢料處理,不再使用),做成一個無蓋的長方體盒子,要求盒子的長為25cm,寬為高的2倍,盒子的寬和高應為多少
解:設剪去正方形的邊長為x,x同時是盒子的高,則盒子寬為2x;
矩形材料的尺寸:
長:25+2x
寬:4x;
(25+2x)*4x=888,
解得:x1=6,x2=-18.5(舍去)
盒子的寬:12cm;盒子的高:6cm。
17.某公司生產開發了960件新產品,需要經過加工后才能投放市場,現在有A,B兩個工廠都想參加加工這批產品,已知A工廠單獨加工這批產品比B工廠單獨加工這批產品要多用20天,而B工廠每天比A工廠多加工8件產品,公司需要支付給A工廠每天80元的加工費,B工廠每天120元的加工費。
1. A,B兩個工廠每天各能加工多少件新產品
2. 公司制定產品方案如下:可以由每個廠家單獨完成;也可以由兩個廠家同時合作完成。在加工過程中,公司需要派一名工程師每天到廠進行技術指導,并負擔每天5元的午餐補助費。請幫助公司選擇哪家工廠加工比較省錢,并說明理由。
解:1.設A每天加工x件產品,則B每天加工x+8件產品
由題意得960/x-960/(x+8)=20
解得x=16件
所以A每天加工16件產品,則B每天加工24件產品
2.設讓A加工x件,B加工960-x件
則公司費用為x/16*(80+5)+(960-x)/24*(120+5)
化簡為5/48*x+5000
所以x=0時最省錢,即全讓B廠加工
18.一元二次方程解應用題 將進貨單價為40元的商品按50元出售時,能賣500個,如果該商品每漲價1元,其銷售量就減少10個。商店為了賺取8000元的利潤,這種商品的售價應定為多少應進貨多少
解:利潤是標價-進價
設漲價x元,則:
(10+x)(500-10x)=8000
5000-100x+500x-10x^2=8000
x^2-40x+300=0
(x-20)^2=100
x-20=10或x-20=-10
x=30或x=10
經檢驗,x的值符合題意
所以售價為80元或60元
所以應進8000/(10+x)=200個或400個
所以應標價為80元或60元
應進200個或400個
19.參加一次聚會的每兩個人都握了一次手,所有人共握手10次,有多少人參加聚會
34.參加一次足球聯賽的每兩個隊之間都進行兩次比賽,共要比賽90場,共有多少個隊參加比賽
35.要組織一次籃球聯賽,賽制為單循環形式(每兩個隊之間賽一場),計劃安排15場比賽,應邀請多少個球隊參加比賽
解:34、n(n-1)2=10
n=5
35、x(x-1)2*2=90
x=10
36、y(y-1)2=15
y=6
20.在某場象棋比賽中,每位選手和其他選手賽一場,勝者記2分,敗者記0分,平局各記1分,今有四位統計員統計了全部選手的得分之和分別是2025分、2027分、2080分、2085分,經核實,只有一位統計員的結果是正確的,問這場比賽有幾位選手參加
解: 無論如何,每一局兩人合計都應得2分,所以最終的總得分一定是偶數,由于2025、2027、2085都是奇數,所以都不符合題意,所以正確的是第三個記分員
設有x人參加,則一共比了x(x-1)/2局
你的數字似乎有錯,請確認是否為2070,而不是2080(2080得不出整數解)
x(x-1)/2=2070/2
x-x-2070=0
(x-46)(x+45)=0
x1=46,x2=-45(舍)
答:一共有46位選手參加.
21.將進貨單價為40元的商品按50元出售時,能賣出500個,已知該商品每降價1元,其銷售量就要減少10個,為了賺8000元利潤,售價應定為多少這時進貨應為多少個
22.某商店如果將進貨價8元的商品按每件10元出售,每天可銷售200件,現采用提高售價,減少進貨量的方法增加利潤,已知這種商品每漲0.5元,其銷售量就可以減少10元,問應將售價定為多少時,才能使所賺利潤最大,并求出最大利潤
23解:設售價應定為x元,根據題意列方程得 整理得
(x-60)(x-80)=0
解得x1=60,x2=80
答:當x1=60時,進貨量為400個
當x2=80時,進貨量為200個
44解:由題意列方程得,a(350-10a)-21(350-10a)=400
(a-25)(a-31)=0
解得,a1=25,a2=31
∵ a2=31不合題意,舍去
350-10a=100
答:需要賣出100品,商品售價25元
分析:根據表格可以看出每件的售價每降1元時,每日就多銷售1件,根據這個隱含條件就可以得出此類型題和以上的練習非常相似了
45.解:若定價為m元時,售出的商品為
[70-(m-130)]件
列方程得
整理得
m1=m2=160
答:m的值是160
24解:設售價定為x元,則每件的利潤為
(x-8)元,銷售量為 件,列式得(x-8)
整理得,
即當x=14時,所得利潤有最大值,最大利潤是720元
【一元二次方程練習題】相關文章:
一元二次方程練習題10-26
一元二次方程練習題(3篇)11-04
九年級一元二次方程練習題及參考答案08-07
九年級數學一元二次方程的應用練習題09-27
一元二次方程教學反思03-22
《一元二次方程》教學反思03-30
一元二次方程試題及答案09-24
《一元二次方程》教案及反思11-02
一元二次方程教學反思04-04