四年級數學手抄報內容
在現實的學習、工作中,大家最不陌生的就是手抄報了吧,借助手抄報可以培養我們動手、動腦的習慣。還苦于找不到好的手抄報?下面是小編精心整理的四年級數學手抄報內容,歡迎閱讀,希望大家能夠喜歡。
四年級數學手抄報內容
一、小數的認識和加減法
【知識要點】
小數的意義
1、小數的意義: 用來表示十分之幾、百分之幾、千分之幾……的數,叫小數。
2、體會十進分數與小數的關系,并能互相轉。
3、表示十分之幾的小數是一位小數,百分之幾的小數是兩位小數,千分之幾的小數是三位小數……
4、小數的讀寫法。
5、借助計數器,介紹小數部分的數位以及數位之間的進率
6、掌握小數的數位和計數單位 .
7、了解小數的組成:整數部分和小數部分
測量活動(小數的單位換算 )
1、1分米=0.1米 1厘米=0.01米 1克=0.001千克……學會低級單位與高級單位之間的互化(長度單位,面積單位,重量單位……).低級單位轉化為高級單位時,先將這個低級單位的數改寫成分數的形式,再寫成小數的形式.
2、會進行單名數與復名數之間的互化.
比大小(比較小數的大小)
1、會比較兩個小數的大小以及將幾個小數按大小順序排列.
2、比較小數大小的方法:先看整數部分,整數部分大的小數就大.整數部分相同,再看小數部分的十分位,十分位上數字大的小數就大……
購物小票-----小數的加減法(不進位,不退位)
1、不進位加法,不退位減法的計算方法:小數點對齊,也就是相同數位對齊,再按照整數加減法的法則進行計算.
2、能解決簡單的小數加減法的實際問題.
量 體 重----小數的加減法(進位加、退位減)
1、小數進位加法和退位減法的計算法則(同整數加、減法的法則相同).
2、小數的性質:小數末尾加上“0”或去掉“0”小數的大小不變.
3、整數減去小數,可以在整數小數點的后面添上“0”,幫助計算.
歌手大賽---小數加、減法的混合運算
1、掌握小數混合運算的順序與整數四則混合運算一樣.
2、整數加、減法的運算定律同樣適用于小數加減法.
3、掌握小數加、減法的估算.
二、認識圖形
【知識框架】
1、圖形分類(按不同標準給已知圖形進行分類)
三角形的分類(認識直角三角形、銳角三角形、鈍角三角形、等腰三角形、等邊三角形)
2、三角形 三角形內角和
三角形三邊之間的關系
3、四邊形的分類(初步認識梯形、進一步認識平行四邊形)
4、圖案欣賞
【知識要點】
圖形分類
1、按照不同的標準給已知圖形進行分類:
(1)按平面圖形和立體圖形分;
(2)按平面圖形時否由線段圍成來分的;
(3)按圖形的邊數來分.通過自己動手分類,對圖形進行再認識,了解圖形的特征.
2、了解平行四邊形易變形和三角形的穩定性在生活中的應用.
三角形分類
1、把三角形按照不同的標準分類,并說明分類依據.
(1)按角分,分為:直角三角形、銳角三角形、鈍角三角形,并了解其本質特征:三個角都是銳角的三角形是銳角三角形,有一個角是直角的三角形是直角三角形,有一個角是鈍角的三角形是鈍角三角形.
(2)按邊分,分為:等腰三角形、等邊三角形、任意三角形.有兩條邊相等的三角形是等腰三角形,三條邊都相等的三角形是等邊三角形.
2、通過分類,使學生弄清等腰三角形和等邊三角形的關系:等邊三角形是特殊
的等腰三角形.
三角形內角和
1、任意一個三角形內角和等于180度.
2、 能應用三角形內角和的性質解決一些簡單的問題.
三角形邊的關系
1、 三角形任意兩邊之和大于第三邊.
2、根據上述知識點判斷所給的已知長度的三條線段能否圍成三角形.如果能圍
成三角形,能圍成一個什么樣的三角形.
四邊形的分類
1、通過觀察、比較、分類等活動,了解由四條線段圍成的圖形是四邊形,四邊形中有兩組對邊分別平行的四邊形是平行四邊形,只由一組對邊平行的四邊形是梯形.
2、知道長方形、正方形是特殊的平行四邊形.
3、了解正方形、長方形、等腰梯形、菱形、等腰三角形、等邊三角形、圓形是軸對稱圖形.
圖 案 欣 賞
1、通過欣賞圖案,體會圖形排列的規律,感受圖案的美.
2、利用對稱、平移和旋轉,設計簡單的圖案.
三、小數乘法
【知識框架】
小數乘法的意義 小數乘法的意義
小數點移動引起小數大小變化的規律
積的小數位數與乘數的小數位數的關系
計算小數乘法 會用豎式計算小數乘法及估算
小數的混合運算(整數運算定律完全適合小數)
【知識要點】
文具店(小數乘法的意義)
通過具體情境教學使學生了解小數與整數相乘就是表示幾個相同加數的和的簡便運算.
1、小數乘法的意義
小數乘法的意義比整數乘法的意義,有了進一步的擴展.小數乘法的意義包括兩種情況:一是同整數乘法的意義相同,即求相同加數的和的簡便運算.二是求一個數的十分之幾,百分之幾……是多少.
2、小數的計算法則
計算小數乘法,先按照整數乘示的法則算出積,再看因數中一共有幾位小數,就從積的右邊起數出幾位,點上小數點.小數計算乘法,用的是轉化的思想方法.先把小數轉化為整數算出積,再確定小數點的位置,還原成小數乘法的積.如6.2×0.3看作62×3相乘的積是186,因數中一共有兩位小數,就從186的右邊起數出兩位,點上小數點還原成小數乘法的積1.86.因此,小數乘法的關鍵是處理好小數點.在點小數點時注意,乘得的積的小數位數不夠時,要在前面用0補足,如0.04×0.2=0.008,在8的前面補兩個0,點上小數點后,整數部分也寫一個0.
小數點搬家(掌握小數點移動引起小數大小變化的規律)
明白小數點向左移動一位,小數就縮小到原來的十分之一;小數點向左移動兩位,小數就縮小到原來的百分之一……以此類推.小數點向右移動一位,這個數就擴大到原來的10倍;小數點向右移動兩位,這個數就擴大到原來100倍……以此類推.
街心廣場(積的小數位數與乘數的小數位數的關系)
積的小數位數與乘法的小數位數的關系:小數乘法中各個因數中小數的位數和就是這道題中積的小數的位數.
包裝(小數乘法2)
小數乘小數計算方法,即將小數乘法轉化為整數乘法進行計算.根據乘數擴大的倍數,將積縮小相同倍數,進一步體會到兩個乘數共有幾位小數,積就有幾位小數.
爬行最慢的哺乳動物(小數乘法3)
進一步理解小數乘小數的計算方法即兩個因數里共有幾位小數,積就有幾位小數;當其中的一個因數是整十數時,積中如果有一位小數,就在末尾畫掉一個零……
手拉手(小數的混合運算)
小數四則混合運算的運算順序與整數四則混合運算的順序相同.整數的運算定律在小數運算中仍然適用.例如乘法的結合律,交換律,分配律.等等.
四、觀察物體
不同位置觀察物體的范圍不同
不同位置觀察物體的形狀不同
節日禮物(不同位置觀察物體的范圍不同)
1、隨著觀察位置的高低與遠近變化,能判斷出觀察對象的畫面所發生的相應變化.
2、根據觀察到的畫面,判斷出觀察者所在的位置.
天安門廣場(不同位置觀察物體的形狀不同)
1、通過觀察、比較一些照片,能夠識別和判斷拍攝地點與照片的對應關系.
2、通過觀察連續拍攝到的一組照片,能夠判斷照片拍攝的前后順序.
五、“小數除法”
《精打細算》―――除數是整數的小數除法
(1)、小數除法的意義:小數除法的意義與整數除法的意義相同,是已知兩個因數的積與其中的一個因數,求另一個因數的運算.
(2)、小數除以整數的計算方法:除數為整數的小數除法和整數除法的計算類似,只要商的小數點和被除數的小數點對齊就可以了.
2、《參觀博物館》―――整數除以整數商是小數的小數除法
整數除以整數,商是小數的小數除法的計算方法:先按照整數除法的法則去做,如果除到被除數的末尾仍有余數,就在后面填上0繼續除.
3、《誰打電話的時間長》―――除數是小數的除法
(1)、商不變的規律:被除數和除數同時擴大或縮小相同的倍數(0除外),商不變.
(2)、除數是小數的小數除法的計算方法:要把被除數和除數擴大相同的倍數,使除數變成整數,再按照小數除以整數的方法進行計算.
4、《人民幣兌換》―――積、商的近似值
求近似值方法:積取近似值是先精確計算,再根據題目要求取近似值;商取近似值是直接根據要求多除一位,然后根據題目要求取近似值.注意:有時會出現四不舍、五不入的情況,應根據題目的特點去求出近似數.
5、《誰爬得快》―――循環小數
(1)、循環現象:生活中很多時候有依次不斷重復出現的現象.如:日出日落、時間……
(2)、循環小數:從小數部分的某一位起,一個數字或幾個數字依次不斷地重復出現,這樣的小數就叫做循環小數.
(3)、 會用四舍五入法對循環小數取近似值,方法與小數取近似值的方法相同,保留幾位小數就看這個小數的下一位.
6、《電視.》――小數的四則混合運算
(1)、小數連除和乘除混合運算,運算順序和整數是一樣的.
(2)、計算小數四則混合運算和整數四則混合運算的順序完全相同.
激情奧運
(1)通過“奧運”提供的各種信息,綜合應用所學的知識和方法,解決有關的問題.
(2)通過解決奧運賽場上的有關問題,體會到數學和體育這間的聯系,進一步體會數學的價值.
六、游戲公平
【知識框架】
通過游戲活動,體驗事件發生的等可能性.
等可能
通過游戲活動分析,判斷游戲規則的公平
能制定公平的游戲規則.
能通過實驗感受實際生活中的隨機性.
可能性不相等
游戲公平
能通過游戲活動,體驗事件發生可能性不相等.
能辨別游戲可能性是否相等.
能通過自己的分析思考修改游戲規則使之公平,且方法多樣.誰 先 走(判斷規則的公平性,設計公平的規則)
【知識要點】
1、體會事件發生的等可能性.體會可能性相同游戲公平,可能性不同游戲不公平.
2、感受規則在游戲中的作用,建立規則意識.并會制定公平的游戲規則.
3、進一步體驗游戲中存在的隨機性的特點.
七、方程
用字母表示數.
方程
1.方程的意義
2.解簡易方程3.列方程解應用題
【知識要點】
用字母表示數
1、用字母表示運算定律和有關圖形的面積公式.
例如:加法交換律:a+b=b+a
加法結合律:a+b+c=a+(b+c)
減法的特性:a-b-c=a-(b+c)
乘法交換律:a×b=b×a
乘法結合律:a×b×c=a×(b×c)
乘法分配律:a×(b+c)=a×b×a×c
正方形周長:c=4a
正方形面積:s=a×a
長方形的周長:C=(a+b)×2
長方形面積:s=a×b
此外,還可以拓展到以前曾經學過的
路程=速度×時間
總價=單價×數量……
2、字母表示數的時候,字母與數字相乘,字母與字母相乘,中間的乘號可以用小圓點代替或者省略.例如:a×5=5·a=5a 數字一般都寫在字母的前面.
3、區別a的平方和2乘a的區別.
方程(方程的意義)
1、了解方程的意義:含有未知數的等式叫做方程.
2、掌握方程與等式的關系:方程是等式但等式不一定是方程.或者說方程屬于等式,等式包含方程.并能用圖形表示.
3、根據情境圖找出等量關系,會列方程.
天平游戲一(解簡易方程未知數是加數或被減數)
1、等式兩邊都加上或減去同一個數,等式仍然成立.
2、能根據等式的.這個性質求出方程中的未知數.
方程的使方程左右兩邊相等的未知數的值叫做方程的解.
解方程:求方程的解的過程叫做解方程.
3、學會檢驗方程的解是否正確.
天平游戲二(解簡易方程未知數是因數或被除數)
1、等式兩邊都乘或除以同一個數(零除外),等式仍然成立.
2、能根據一定的情境,列方程解決問題.
猜數游戲(解簡易方程)
1、會利用等式的性質解ax±b=c類型的方程.并能夠把方程的解帶回方程中進行檢驗.
2、會用方程解答簡單的應用題.
郵票的張數(列方程解應用題)
1、學會解形如cx±ax=b這樣的方程,能夠運用方程解應用題.
2、使學生掌握應將一倍數設為未知數.
第一單元知識點(四則運算)
1. 在沒有括號的算式里,如果只有加、減法或者只有乘除法,都要從左往右按順序計算。(這是同級運算)
2. 在沒有括號的算式里,有乘、除法和加減法,要先算乘除法,在算加減法。(這是兩級運算)
3. 算式里有括號,先算括號里面的,在算括號外面的。
4. 加法、減法、乘法和除法統稱四則運算。
5. 一個數加上0還得原數,一個數減去0也得原數。
6. 被減數等于減數,差是0。
7. 一個數和零相乘,仍得0。
8. 0除以一個非0的數,還得0。
9. 0不能作除數。
10.在解決問題時,如果列綜合算式,必須用脫式計算。
11.任何數除以0都得0。(×)因為0不能做除數。小學四年級數學下冊四則運算知識點
第二單元知識點(觀察物體)
1. 如何確定物體所在的位置?
(1)明確方向。
(2)明確距離。
2.根據方向和距離來確定物體的位置。
3.在生活中一般先說物體所在方向離的近(夾角較小)的方位。
4.平面圖形的一般畫法:
(1)先確定某建筑物的方向。
(2)再確定角度。(測量角度時,哪個方位在前,0刻度線就對準誰。)
(3)最后確定距離。
5.兩個城市的位置具有相對性,方向相對,角度和距離不發生改變。例如:甲地在乙地的南偏東30度500米處,則乙地在甲地的北偏西30度500米處。小學四年級數學觀察物體知識點
第三單元知識點(運算定律)
1.兩個數相加,兩個加數交換位置,和不變。這叫做加法交換律。
用字母表示為:a+b=b+a
2.三個數相加,先把前兩個數相加,再加第三個數,或者先把后兩個數相加,再加第一個數,和不變。這叫做加法結合律。用字母表示為:(a+b)+c=a+(b+c)
3.兩個數相乘,交換兩個因數的位置,積不變。這叫做乘法交換律。
用字母表示為:a×b=b×a
4.三個數相乘,先讓前兩個數相乘,再乘第三個數,或者先讓后兩個數相乘,再乘第一個數,積不變。這叫做乘法結合律。
用字母表示為:(a×b) ×c=a×(b×c)
5.兩個數的和與一個數相乘,可以先把它們與這個數分別相乘,再相加。這叫做乘法分配律。用字母表示為:(a+b)×c=a×c+b×c
6. 類似于乘法分配律的簡便公式;
(a-b)×c=a×c-b×c
(a+b)÷c=a÷c+b÷c
(a-b)÷c=a÷c-b÷c
7.從一個數里連續減去兩個數,等于從這個數里減去另兩個數的和。這叫做減法的運算性質。用字母表示為:a-b-c=a-(b+c)
8.在一個帶有括號的算式中,括號前面是“+”,去掉括號后,括號里面的運算符號不發生改變。用字母表示為:a+(b+c)=a+b+c a+(b-c)=a+b-c
括號前面是“-”,去掉括號后,括號里面的運算符號發生了變化,“+”變“-”, “-”變“+”。 用字母表示為:a-(b+c)=a-b-ca-(b-c)=a-b+c
9.一個數連續除以兩個數,等于這個數除以另兩個數的積。這時除法的運算性質。用字母表示為:a÷b÷c=a÷(b×c)
10. 在一個帶有括號的算式中,括號前面是“×”,去掉括號后,括號里面的運算符號不發生改變。用字母表示為:
a×(b×c)=a×b×c a×(b÷c)=a×b÷c
括號前面是“÷”,去掉括號后,括號里面的運算符號發生了改變。用字母表示為:a÷(b×c)=a÷b÷c a÷(b÷c)=a÷b×c
12.另兩種簡便方法:
(1)把一個因數改寫成兩個一位數相乘的形式。
(2)把一個因數改寫成兩個數相除的形式,然后變成乘除混和運算。小學四年級數學運算定律知識點
第四單元知識點(小數的意義和性質)
1. 在進行測量和計算時,往往不能正好得到整數的結果,這時就需要用小數來表示,這樣就產生了小數。
2. 分母是10、100、1000……的分數可以仿照整數的寫法寫在整數個位的右面,用圓點隔開,用來表示十分之幾、百分之幾、千分之幾……的數,叫做小數。
3. 小數的計數單位是十分之一、百分之一、千分之一……分別寫作0.1、0.01、0.001……每相鄰兩個計數單位間的進率是10。
4.一位小數的計數單位是十分之一(寫作0.1),兩位小數的計數單位是百分之一(寫作0.01),三位小數的計數單位是千分之一(寫作0.001)。
5.十分之幾用一位小數表示,百分之幾用兩位小數表示,千分之幾用三位小數表示……
6. 小數的讀法:
(1)先讀整數部分,再讀點,最后讀小數部分。
(2)整數部分按照整數的讀法來讀,小數部分要依次讀出每個數字。
(3)整數部分是0的小數,整數部分就讀“零”,小數部分有幾個0,就讀幾個零。
7.小數的性質:小數的末尾添上“0”或去掉“0”,小數的大小不變。
8.利用小數的性質進行小數的化簡和改寫。
例如:0.70=0.7 105.0900=105.09(這是小數的化簡)
又如:不改變數的大小,把下面各數寫成三位小數
0.2=0.200 4.08=4.0803=3.000(這是改寫小數)
9.如何比較小數的大。
先比較整數部分,整數部分相同,比較十分位上的數;十分位上的數相同,比較百分位上的數;百分位上的數相同,比較千分位上的數……
10.小數點移動的規律:
(1)小數點向右
移動一位,小數就擴大到原數的10倍;
移動兩位,小數就擴大到原數的100倍;
移動三位,小數就擴大到原數的1000倍;
……
(2)小數點向左
移動一位,小數就縮小到原數的1/10;
移動兩位,小數就縮小到原數的1/100;
移動三位,小數就縮小到原數的1/1000;
……
11.把量和單位名稱合起來的數叫名數。
12.單名數:只帶一個單位名稱的名數。例如:4千米、0.8噸、15.38元……
13.復名數:帶有兩個或兩個以上的單位名稱的名數。例如:
20元5角8分 5噸600克……
14.名數改寫的規律:先找進率;再看是把高級單位改寫成低級單位,還是是把低級單位改寫成高級單位;最后移動小數點?谠E如下:
(1)高到低,乘進率,小數點,向右移,移幾位,看進率。
例如:1.32千克=(1320)克 (58 )厘米=0.58米
1千克=1000克1米=100厘米
高→低 低←高
1.32×1000=1320克0.58×100=58厘米
(2)低到高,用除法,小數點,向左移,移幾位,看進率。
例如:
7450米=(7.45 )千米 (9.02)噸=9020千克
1千米=1000米1噸=1000千克
低→高 高←低
7450÷1000=7.45千米 9020÷1000=9.02噸
15.求小數的近似數,可用“四舍五入”法。
16.在表示近似數時,小數末尾的0不能去掉。
17.求小數的近似數的方法:
求近似數時,保留整數,表示精確到個位,看十分位上的數;保留一位小數,表示精確到十分位,看百分位上的數;保留兩位小數,表示精確到百分位,看百分位上的數;保留三位小數,表示精確到千分位,看萬分位上的數……。然后根據“四舍五入”法進行取舍。
例如:9.953≈ 10(保留整數)
9.953≈10.0 (保留一位小數)
9.953≈9.95 (保留兩位小數)
23.4395≈23.440 (保留三位小數)
18. 1.0比1精確。保留的位數越多,數就越精確。
19.如何把一個數改寫成以萬為單位的數?
方法一:把已知數的小數點向左移動四位,進行化簡后,在數的末尾加寫一個萬字。
方法二:(1)先找萬位;(2)在萬位后面點“.”;(3)根據實際情況進行化簡;(4)在數的末尾加寫一個萬字;(5)如果有單位名稱一定照抄過來。
20.如何把一個數改寫成以億為單位的數?
方法一:把已知數的小數點向左移動八位,進行化簡后,在數的末尾加寫一個億字。
方法二:(1)先找億位;(2)在億位后面點“.”;(3)根據實際情況進行化簡;(4)在數的末尾加寫一個億字;(5)如果有單位名稱一定照抄過來。
注:對于改寫的方法,同學們靈活掌握。
21.下列各數中的“6”分別表示什么?
6.32(表示6個一) 0.6(表示6個十分之一)0.86(表示6個百分之一)
62.32(表示6個十)3.416(表示千分之一)
22.三位小數一定小于四位小數。(×)例如:1.003﹥0.5678
23.去掉小數點后面的0,小數的大小不變。(×)
應該是去掉小數末尾的零,小數的大小不變。
24.小數就是比1小的數。(×)例如:10.1﹥1
25.近似數是0.5的兩位小數有5個。(×)
近似數是0.5的兩位小數有9個,分別是:0.45、0.46、0.47、0.48、0.49、0.51、0.52、0.53、0.54。(先看百分位上的數,再利用“四舍五入” 法。)
26.近似數4.0與精確數4.0末尾的0都可以去掉。(×)
在表示近似數時,小數末尾的0不能去掉。
27.小數的位數越多,數就越大。(×)
28.小數都比自然數小。(×)
29.整數都大于小數。(×)
30.0.4與0.6之間的小數只有一個。(×)因為0.4與0.6之間的小數有無數個。31.近似數是6.50的三位小數中,最大是(6.504),最小是(6.495)。
方法:求最大近似數時,一定比6.50大,千分位上的數必須“舍”,也就是千分位上只能是1、2、3、4,其中最大的數是4,所以近似數是6.50的三位小數中,最大是6.504。
求最小的近似數時,一定比6.50小一個計數單位(本題少一個0.01,也就是6.49),這時千分位上的數必須“入”, 千分位上只能是5、6、7、8、9,其中最小的數是5,所以近似數是6.50的三位小數中,最小是6.495。小學四年級數學知識點:小數的意義和性質
第五單元知識點(三角形)
1.由三條線段圍成的圖形(每相鄰兩條線段的端點相連)叫做三角形。
2.三角形有3條邊,3個角,3個頂點。
3.從三角形的一個頂點到它的對邊做一條垂線,頂點和垂足之間的線段叫做三角形的高,這條對邊叫做三角形的底。
4.三角形有3條高,3個底。
5.三角形具有穩定性,不易變形。
6.三角形任意兩邊的和大于第三邊。
7.三角形任意兩邊的差小于第三邊。
8. 快速判斷任意三條線段能否圍成一個三角形:看兩條較短的線段之和是否大于第三條線段。
9.直角三角形的兩條直角邊互為底和高。
10.三個角都是銳角的三角形,是銳角三角形。
11.有一個直角的三角形,是直角三角形。
12.有一個鈍角的三角形,是鈍角三角形。
13.三角形按角分:銳角三角形、直角三角形、鈍角三角形
13.三角形按邊分:普通三角形、等腰三角形、等邊三角形
14.有兩條邊相等的三角形是等腰三角形。(按邊)
有兩個角相等的三角形是等腰三角形。(按角)
15.有三條邊相等的三角形是等邊三角形。(按邊)
有三個角相等的三角形是等邊三角形。(按角)
注:課本83頁三角形集合圖。
16.等邊三角形是特殊的等腰三角形。
17.等邊三角形一定是銳角三角形。
18.等腰三角形的兩腰相等,兩個底角相等。
19.等邊三角形的三條邊相等,三個角也相等,都是60度。
20.等邊三角形也叫正三角形。
21.等腰三角形中,兩腰相交于一點形成的夾角是頂角;兩腰與底相交形成的兩個夾角是底角。(P84圖)
22.三角形的內角和是180度。
23.多邊形的內角和=180度×(多邊形的邊數-2)
24. 任意一個四邊形的內角和是360度。
25.兩個完全一樣的三角形可以拼成三角形、正方形、長方形、平行四邊形、和四邊形。
26.最少用2個直角三角形可以拼成一個長方形;
最少用3個等邊三角形可以拼成一個等腰梯形。
最少用2個等邊三角形可以拼成一個菱形。
27.無論是什么形狀的圖形,沒有重疊、沒有空隙地鋪在平面上,就是密鋪。
28.把任何一個三角形的三個內角剪下來,都可以拼成一個平角。
29.所有的等邊三角形都是銳角三角形。
30.有三個角的圖形一定是三角形。(×)
31.有兩個銳角的三角形一定是銳角三角形。(×) 因為也有可能是直角三角形。
32.等腰三角形一定是銳角三角形。(×) 因為等腰三角形中可能是等腰直角三角形、等腰銳角三角形、等腰鈍角三角形。
33.一個大三角形和一個小三角形的三個內角和是不相等的。(×)
因為三角形的內角和是180度。
34.一個鈍角三角形里最多有兩個鈍角。(×)
因為任意一個三角形里至少有兩個銳角,如果有兩個鈍角或兩個直角,三角形的內和就大于了180度,根本拼不成三角形。
35.兩個三角形一定能拼成一個平行四邊形。(×)
因為必須是兩個完全一樣的三角形才能拼成一個平行四邊形。
36.用兩個直角三角形一定可以拼成一個長方形。(×)
因為必須是兩個完全一樣的直角三角形才能拼成一個長方形。
37.由三條線圍成的圖形叫做三角形。(×)
因為由三條線段圍成的圖形(每相鄰兩條線段的端點相連)叫做三角形。
38.三角形的底越長,這條底邊上的高就越短。(√)
39.一個三角形的每一條邊的長度確定后,這個三角形的形狀就再不發生變化。(√)
40一個三角形只有一條高。(×) 因為每個三角形都有3條高。
41.直角三角形的兩個銳角的和是90度。(√)
42.有一個角是60度的等腰三角形一定是正三角形。(√)
43.0.15時=15分(×)因為每相鄰兩個時間單位的進率不是100。
44.0.3與0.30的大小相同,但表示的意義不同,計數單位也不同。(√)
45.四個完全一樣的正三角形可以拼成一個大三角形。(√)小學四年級數學知識點:三角形
第六、七單元知識點(小數的加法和減法、平均數與條形統計圖)
1.小數加、減法應注意:
(1)小數點要對齊,也就是相同的數位要對齊;
(2)從最低位算起;
(3)得數小數部分末尾有0,一般要把0去掉。
2.在小數減法中,如果被減數是整數,一般要補齊小數部分,補幾位,看減數。例如:20-1.86,列豎式時應寫成:20.00-1.86
3.整數的運算定律在小數運算中同樣適用。
4.關于解決小數中人民幣的問題,如沒有特殊要求,一般保留兩位小數。
5.條形統計圖很容易看出數量的多少,折線統計圖不但可以看出數量的多少,而且能清楚地表示出數量的增減變化。
6.在折線統計圖中,所畫的線段越接近垂直(或線段越長)說明上升(或下降)的越快;所畫的線段越接近水平(或線段越短),說明變化得越小。如果觀察不出折線統計圖的趨勢來,只好計算后再作比較。
7.折線統計圖的特點:能反映變化趨勢。
衛星運行 (三位數乘兩位數)
知識點 :
估算方法。用四舍五入法進行估算。
利用豎式計算三位數乘兩位數。注意,第二個因數的十位要乘三遍,第二步的乘積末尾寫在十位上。
補充 知識點
時、分、日之間的單位互化。
1時=60分 1日=24時
因數中間或末尾有0的三位數乘兩位數。
中間有0也要和因數分別相乘;末尾有0的,要將兩個因數0前面數的末位對齊,用0前面的數相乘,乘完之后在落0,有幾個0落幾個0。
體育場(實際生活中的估算)
知識點 :
估算的方法及注意事項:要將因數估成整十、整百或整千的數。估算時注意,要符合實際,接近精確值。
神奇的計算工具
知識點 :
在學生原有基礎上進一步認識并會使用計算器。
利用“M+”存儲鍵,“MR”提取鍵,計算四則運算的題目。
了解計算機中使用的是二進制計數法,就是滿2進1。
補充 知識點 :了解兩個因數越接近(即差越小),積越大,兩個因數相等時,積是最大的;兩個因數的差越大,積越小。
探索與發現(一)(有趣的算式)
知識點 :
第一組算式:積的位數是兩個因數位數之和-1,積的最高位和最低位都是1,中間的數字為因數的位數,兩邊的數字相同并依次減1。(此為回文數)
第二組算式:積都由1、4、2、8、5、7幾個數字組成,而且前后排列的順序不變,只需要確定末位數字就可以算出積(如果能直接推算出首位數字則更好)
第三組算式:積的個位都是1,首位都是9;積的位數正好是兩個因數位數之和;積的每一位都是由9、8、0、1組成,只要在首位補9,倒數第二位補0就可以了,只有一個8和一個1。
第四組算式:在0~9的十個數字中,任意選擇四個數字,組成數字不重復的最大的四位數和最小的四位數。然后兩數相減,并把結果的四個數字重現組成一個最大的四位數與最小的四位數。再次相減······在這樣不斷重復的過程中,最后得到數字4176。
數學廣角——植樹問題
一、1.兩頭(兩端)要栽:棵數=間隔數+1
2.一頭(一端)要栽:棵數=間隔數
3.兩頭(兩端)不栽:棵數=間隔數-1
二、棋盤棋子數目:
1.棋盤最外層棋子數:每邊棋子數×邊數-邊數
2.棋盤總的棋子數:每行棋子數×每列棋子數
3.方陣最外層人數:每邊人數×4-4
4.多邊形上擺花盆:每邊擺的花盆數×邊數-邊數
數學廣角——鴿巢問題
一、鴿巢問題
1.把n+1(n是大于的自然數)個物體放進n個“鴿籠”中,總有一個“鴿籠”至少放進了2個物體。
2.把多于kn(k、n都是大于的自然數)個物體放進n個“鴿籠”中,總有一個“鴿籠”至少放進(k+1)個物體。
二、鴿巢問題的應用
1.如果有n(n是大于的自然數)個“鴿籠”,要保證有一個“鴿籠”至少放進了2個物品,那么至少需要有n+1個物品。
2.如果有n(n是大于的自然數)個“鴿籠”,要保證有一個“鴿籠”至少放進了(k+1)(k是大于的自然數)個物品,那么至少需要有(kn+1)個物品。
3.(分放的物體總數-1)÷(其中一個鴿籠里至少有的物體個數-1)=a……b(b),a就是所求的鴿籠數。
4.利用“鴿巢問題”解決問題的思路和方法:構造“鴿巢”,建立“數學模型”;把物體放入“鴿巢”,進行比較分析;說明理由,得出結論。
例如:有4只鴿子飛進3個鴿籠,總有一個鴿籠至少飛進了2只鴿子。
提示:解決“鴿巢問題”的關鍵是找準誰是“鴿籠”,誰是“鴿子”。
小學數學四大領域主要內容
數與代數:的認識,數的表示,數的大小,數的運算,數量的估計;
圖形與幾何:空間與平面的基本圖形,圖形的性質和分類;圖形的平移、旋轉、軸對稱;
統計與概率:收集、整理和描述數據,處理數據;
實踐與綜合應用:以一類問題為載體,學生主動參與的學習活動,是幫助學生積累數學活動經驗的重要途徑。
數學列方程解應用題的一般步驟
1、弄清題意,找出未知數,并用X表示;
2、找出應用題中數量之間的相等關系,列方程;
3、解方程;
4、檢驗、寫出答案。
大數的認識
1、10個一千是一萬,10個一萬是十萬,10個十萬是一百萬,10個一百萬是一千萬。
2、10個一千萬是一億,10個一億是十億,10個十億是一百億,10個一百億是一千億。
3、一(個)、十、百、萬、十萬、百萬、千萬、億、十億……都是計數單位。
4、按照我國的計數習慣,從右邊起,每四個數位是一級。
數位順序表
數級……億級萬級個級
數位……千億位百億位十億位億位千萬位百萬位十萬位萬位千位百位十位個位
計數單位……千億百億十億億千萬百萬十萬萬千百十個
5、每相鄰兩個計數單位之間的進率都是10的計數方法叫做十進制計數法。
6、讀數時,只是在每一級的末尾加上“萬”或“億”字;每級末尾的0都不讀,其它數位有一個0或幾個0,都只讀一個“零”。
7、寫數時,萬級和億級上的數都是按照個級上數的方法來寫,哪一位不夠用0來補足。改寫“萬”或“億”作單位的數,只要將末尾的4個0或8個0去掉或加上“萬”或“億”字就行了。1.把多位數改寫成“萬”、“億”。中間要用“=”連接
8、通常我們用“四舍五入”的方法省略尾數求一個數的近似數。
方法是:看尾數位上的數,如果是4或比4小,就把尾數舍去,并在數的末尾添上一個計數單位“萬”或者“億”;如果是5或比5大,要在前一位加1,再把尾數舍去,添上計數單位“萬”或者“億”。得出的是近似數,中間要用“≈”連接。
9、表示物體個數的1,2,3,4,5,6,7,8,9,10,11,…都是自然數。一個物體也沒有用0表示,0也是自然數。最小的自然數是0,沒有的自然數,自然數的個數是無限的。
10、我國在十四世紀發明的至今仍在使用的計算工具是算盤。算盤上方一個珠子代表5,下方一個珠子表示1。
11、在計算器上,ON/C鍵是開關及清屏鍵,CE鍵是清除鍵,AC鍵是歸0鍵。+、-、×、÷鍵是運算符號鍵。
怎么樣才能打好數學基礎
第一,重視數學公式。有很多同學數學學不好就是因為對概念和公式不夠重視,具體的表現為對數學概念的理解只是停留在表明,不去挖掘引申的含義,對數學概念的特殊情況不明白。還有對數學概念和公式有的學生只是死記硬背,學生缺乏對概念的理解。
還有一部分同學不重視對數學公式的記憶。其實記憶是理解的基礎。我們設想如果你不能將數學公式爛熟于心,那么又怎么能夠在數學題目中熟練的應用呢?
第二,就是總結那些相似的數學題目。當我們養成了總結歸納的習慣,那么的學生就會知道自己在解決數學題目的時候哪些是自己比較擅長的,哪些是自己還不足的。
同時善于總結也會明白自己掌握哪些數學的解題方法,只有這樣你才能夠真正掌握了數學的解題技巧。其實,做到總結和歸納是學會數學的關鍵,如果學生不會做到這一點那么久而久之,不會的數學題目還是不會。
小學數學整數的概念
十進制計數法;一(個)、十、百、千、萬……都叫做計數單位。其中“一”是計數的基本單位.10個1是10,10個10是100……每相鄰兩個計數單位之間的進率都是十。這種計數方法叫做十進制計數法
整數的讀法:從高位一級一級讀,讀出級名(億、萬),每級末尾0都不讀。其他數位一個或連續幾個0都只讀一個“零”。
整數的寫法:從高位一級一級寫,哪一位一個單位也沒有就寫0。
四舍五入法:求近似數,看尾數最高位上的數是幾,比5小就舍去,是5或大于5舍去尾數向前一位進1。這種求近似數的方法就叫做四舍五入法.
整數大小的比較:位數多的數較大,數位相同最高位上數大的就大,最高位相同比看第二位較大就大,以此類推。
【四年級數學手抄報內容】相關文章:
數學手抄報內容比06-29
數學手抄報內容精選06-26
數學手抄報內容08-23
數學的手抄報內容08-17
數學手抄報的內容10-11
關于數學手抄報內容09-09
數學天地手抄報內容06-25
漂亮數學手抄報內容03-01
數學樂園手抄報內容08-29
趣味數學手抄報內容08-05