求極限時使用等價無窮小的條件:
1、被代換的量,在去極限的時候極限值為0。
2、被代換的量,作為被乘或者被除的元素時可以用等價無窮小代換,但是作為加減的元素時就不可以。
無窮小就是以數零為極限的變量。然而常量是變量的特殊一類,就像直線屬于曲線的一種。確切地說,當自變量x無限接近某個值x0(x0可以是0、∞、或是別的什么數)時,函數值f(x)與零無限接近,即f(x)=0,則稱f(x)為當x→x0時的無窮小量。
等價無窮小是無窮小的一種。在同一點上,這兩個無窮小之比的極限為1,稱這兩個無窮小是等價的。等價無窮小也是同階無窮小。從另一方面來說,等價無窮小也可以看成是泰勒公式在零點展開到一階的泰勒展開公式。