自然數a、b的最小公倍數可以記作[a,b],自然數a、b的最大公因數可以記作(a、b),當(a、b)=1時,[a、b]=a×b。如果兩個數是倍數關系,則它們的最小公倍數就是較大的數,相鄰的兩個自然數的最小公倍數是它們的乘積。最小公倍數=兩數的乘積/最大公約(因)數,解題時要避免和最大公約(因)數問題混淆。
計算方法
分解質因數法:
先把這幾個數的質因數寫出來,最小公倍數等于它們所有的質因數的乘積(如果有幾個質因數相同,則比較兩數中哪個數有該質因數的個數較多,乘較多的次數)。
例如:計算36和270的最小公倍數
36=2*2*3*3
270=2*3*3*3*5
不同的質因數是5。2這個質因數在36中比較多,為兩個,所以乘兩次;3這個質因數在270個比較多,為三個,所以乘三次。
公式法:
由于兩個數的乘積等于這兩個數的最大公約數與最小公倍數的積。即(a,b)×[a,b]=a×b。所以,求兩個數的最小公倍數,就可以先求出它們的最大公約數,然后用上述公式求出它們的最小公倍數。
例如,求[18,20],即得[18,20]=18×20÷(18,20)=18×20÷2=180。求幾個自然數的最小公倍數,可以先求出其中兩個數的最小公倍數,再求這個最小公倍數與第三個數的最小公倍數,依次求下去,直到最后一個為止。最后所得的那個最小公倍數,就是所求的幾個數的最小公倍數。