">

亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

歡迎來到瑞文網!

y=arctanx的導數是什么?

回答
瑞文問答

2021-08-18

arctanx的導數:y=arctanx,x=tany,dx/dy=secy=tany+1,dy/dx=1/(dx/dy)=1/(tany+1)=1/(1+x)。

擴展資料

  反函數求導法則

  如果函數x=f(y)x=f(y)在區間IyIy內單調、可導且f′(y)≠0f′(y)≠0,那么它的反函數y=f1(x)y=f1(x)在區間Ix={x|x=f(y),y∈Iy}Ix={x|x=f(y),y∈Iy}內也可導,且

  [f1(x)]′=1f′(y)或dydx=1dxdy

  [f1(x)]′=1f′(y)或dydx=1dxdy

  這個結論可以簡單表達為:反函數的.導數等于直接函數導數的倒數。

  例:設x=siny,y∈[π2,π2]x=siny,y∈[π2,π2]為直接導數,則y=arcsinxy=arcsinx是它的反函數,求反函數的導數.

  解:函數x=sinyx=siny在區間內單調可導,f′(y)=cosy≠0f′(y)=cosy≠0

  因此,由公式得

  (arcsinx)′=1(siny)′

  (arcsinx)′=1(siny)′

  =1cosy=11sin2y√=11x2√

  =1cosy=11sin2y=11x2