重要定理:
1、每一個線性空間都有一個基。
2、對一個 n 行 n 列的非零矩陣 A,如果存在一個矩陣 B 使 AB = BA =E(E是單位矩陣),則 A 為非奇異矩陣(或稱可逆矩陣),B為A的逆陣。
3、矩陣非奇異(可逆)當且僅當它的行列式不為零。
4、矩陣非奇異當且僅當它代表的.線性變換是個自同構。
5、矩陣半正定當且僅當它的每個特征值大于或等于零。
6、矩陣正定當且僅當它的每個特征值都大于零。
7、解線性方程組的克拉默法則。
8、判斷線性方程組有無非零實根的增廣矩陣和系數矩陣的關系。
通用的區間記號中,圓括號表示“排除”,方括號表示“包括”。例如,區間(10, 20)表示所有在10和20之間的實數,但不包括10或20。另一方面,10, 20表示所有在10和20之間的實數,以及10和20。(僅供參考)">
2021-08-14
重要定理:
1、每一個線性空間都有一個基。
2、對一個 n 行 n 列的非零矩陣 A,如果存在一個矩陣 B 使 AB = BA =E(E是單位矩陣),則 A 為非奇異矩陣(或稱可逆矩陣),B為A的逆陣。
3、矩陣非奇異(可逆)當且僅當它的行列式不為零。
4、矩陣非奇異當且僅當它代表的.線性變換是個自同構。
5、矩陣半正定當且僅當它的每個特征值大于或等于零。
6、矩陣正定當且僅當它的每個特征值都大于零。
7、解線性方程組的克拉默法則。
8、判斷線性方程組有無非零實根的增廣矩陣和系數矩陣的關系。