亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

初中幾何定理

時(shí)間:2024-09-04 16:28:30 好文 我要投稿
  • 相關(guān)推薦

初中幾何定理大全

  1過兩點(diǎn)有且只有一條直線

  2兩點(diǎn)之間線段最短

  3同角或等角的補(bǔ)角相等

  4同角或等角的余角相等

  5過一點(diǎn)有且只有一條直線和已知直線垂直

  6直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短

  7平行公理經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行

  8如果兩條直線都和第三條直線平行,這兩條直線也互相平行

  9同位角相等,兩直線平行

  10內(nèi)錯(cuò)角相等,兩直線平行

  11同旁內(nèi)角互補(bǔ),兩直線平行

  12兩直線平行,同位角相等

  13兩直線平行,內(nèi)錯(cuò)角相等

  14兩直線平行,同旁內(nèi)角互補(bǔ)

  15定理三角形兩邊的和大于第三邊

  16推論三角形兩邊的差小于第三邊

  17三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180°

  18推論1直角三角形的兩個(gè)銳角互余

  19推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和

  20推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角

  21全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等

  22邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等

  23角邊角公理(ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等

  24推論(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等

  25邊邊邊公理(SSS)有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等

  26斜邊、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等

  27定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

  28定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上

  29角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合

  30等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)

  31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊

  32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

  33推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°

  34等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)

  35推論1三個(gè)角都相等的三角形是等邊三角形

  36推論2有一個(gè)角等于60°的等腰三角形是等邊三角形

  37在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半

  38直角三角形斜邊上的中線等于斜邊上的一半

  39定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等?

  40逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

  41線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合

  42定理1關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形

  43定理2如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線

  44定理3兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上

  45逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱

  46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2

  47勾股定理的逆定理如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a^2+b^2=c^2,那么這個(gè)三角形是直角三角形

  48定理四邊形的內(nèi)角和等于360°

  49四邊形的外角和等于360°

  50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°

  51推論任意多邊的外角和等于360°

  52平行四邊形性質(zhì)定理1平行四邊形的對(duì)角相等

  53平行四邊形性質(zhì)定理2平行四邊形的對(duì)邊相等

  54推論夾在兩條平行線間的平行線段相等

  55平行四邊形性質(zhì)定理3平行四邊形的對(duì)角線互相平分

  56平行四邊形判定定理1兩組對(duì)角分別相等的四邊形是平行四邊形

  57平行四邊形判定定理2兩組對(duì)邊分別相等的四邊形是平行四邊形

  58平行四邊形判定定理3對(duì)角線互相平分的四邊形是平行四邊形

  59平行四邊形判定定理4一組對(duì)邊平行相等的四邊形是平行四邊形

  60矩形性質(zhì)定理1矩形的四個(gè)角都是直角

  61矩形性質(zhì)定理2矩形的對(duì)角線相等

  62矩形判定定理1有三個(gè)角是直角的四邊形是矩形

  63矩形判定定理2對(duì)角線相等的平行四邊形是矩形

  64菱形性質(zhì)定理1菱形的四條邊都相等

  65菱形性質(zhì)定理2菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角

  66菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷2

  67菱形判定定理1四邊都相等的四邊形是菱形

  68菱形判定定理2對(duì)角線互相垂直的平行四邊形是菱形

  69正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等

  70正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角

  71定理1關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的

  72定理2關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中心,并且被對(duì)稱中心平分

  73逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱

  74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等

  75等腰梯形的兩條對(duì)角線相等

  76等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形

  77對(duì)角線相等的梯形是等腰梯形

  78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  79推論1經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰

  80推論2經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊

  81三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半

  82梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2 S=L×h

  83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc

  如果ad=bc,那么a:b=c:d

  84(2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86平行線分線段成比例定理三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例

  87推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例

  88定理如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

  89平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例

  90定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似

  91相似三角形判定定理1兩角對(duì)應(yīng)相等,兩三角形相似(ASA)

  92直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似

  93判定定理2兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似(SAS)

  94判定定理3三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)

  95定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似

  96性質(zhì)定理1相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比

  97性質(zhì)定理2相似三角形周長(zhǎng)的比等于相似比

  98性質(zhì)定理3相似三角形面積的比等于相似比的平方

  99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值

  100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

  101圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

  102圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

  103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

  104同圓或等圓的半徑相等

  105到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓

  106和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線

  107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線

  108到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線

  109定理不在同一直線上的三點(diǎn)確定一個(gè)圓。

  110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

  111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧

  ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧

  ③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

  112推論2圓的兩條平行弦所夾的弧相等

  113圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形

  114定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

  115推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等

  116定理一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半

  117推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等

  118推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑

  119推論3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形

  120定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角

  121①直線L和⊙O相交d<r

  ②直線L和⊙O相切d=r

  ③直線L和⊙O相離d>r

  今天的內(nèi)容就介紹到這里了。

【初中幾何定理】相關(guān)文章:

幾何圖形作文11-02

曾幾何時(shí)作文09-20

《有趣的幾何圖形》04-29

初中的反思03-04

初中敘事12-19

初中家長(zhǎng)意見03-13

初中的精美段落03-08

關(guān)于初中反思06-04

初中物理反思06-08

初中個(gè)人介紹02-28