亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

高中數學的說課稿

時間:2024-06-13 14:23:21 數學說課稿 我要投稿

高中數學的說課稿

  作為一位無私奉獻的人民教師,時常會需要準備好說課稿,說課稿有助于提高教師的語言表達能力。那么優秀的說課稿是什么樣的呢?下面是小編幫大家整理的高中數學的說課稿,供大家參考借鑒,希望可以幫助到有需要的朋友。

高中數學的說課稿

高中數學的說課稿1

  課題《數列的概念與簡單表示方法(一)》選自普通高中課程標準試驗教科書人教版A版數學必修5第二章第一節的第一課時。我將從教材分析、學情分析、教學目標分析、教法分析、教學過程這五個方面來匯報我對這節課的教學設想。

  一、教材分析

  1、教材的地位和作用

  數列是高中數學的重要內容之一,它的地位作用可以從三個方面來看:

  (1)數列有著廣泛的實際應用。如堆放的物品的總數計算要用到數列的前n項和,又如分期儲蓄、付款公式的有關計算也要用到數列的一些知識。

  (2)數列起著承前啟后的作用。一方面,初中數學的許多內容在解決數列的某些問題中得到了充分運用,數列是前面函數知識的延伸及應用,可以使學生加深對函數概念的理解;另一方面,學習數列又為進一步學習數列的極限,等差數列、等比數列的前n項和以及通項公式打好了鋪墊。因此就有必要講好、學好數列。

 。3)數列是培養學生數學能力的良好題材。是進行計算,推理等基本訓練,綜合訓練的重要教材。學習數列,要經常觀察、分析、歸納、猜想,還要綜合運用前面的知識解決數列中的一些問題,這些都有助于學生數學能力的提高。

  二、學情分析

  從學生知識層面看:學生對數列已有初步的認識,對方程、函數、數學公式的運用已有一定的基礎,對方程、函數思想的體會也逐漸深刻。

  從學生素質層面看:從高一新生入學開始,我就很注意學生自主探究習慣的養成。現階段我的學生思維活躍,課堂參與意識較強,而且已經具有一定的分析、推理能力。

  三、教學目標分析

  根據上面的教材分析以及學情分析,確定了本節課的教學目標:

 。1)知識目標:認識數列的特點,掌握數列的概念及表示方法,并明白數列與集合的不同點。了解數列通項公式的意義及數列分類。能由數列的通項公式求出數列的各項,反之,又能由數列的前幾項寫出數列的一個通項公式。

  (2)能力目標:通過對數列概念以及通項公式的探究、推導、應用等過程,鍛煉了學生的觀察、歸納、類比等分析問題的能力。同時更深層次的理解了數學知識之間的相互滲透性思想。

 。3)情感目標:在教學中使學生體會教學知識與現實世界的聯系,并且利用各種有趣的,貼近學生生活的素材激發學生的學習興趣,培養熱愛生活的情感。

  四、教學重點與難點

  根據教學目標以及學生的理解能力與認知水平,我確定了如下的教學重難點。

  重點:理解數列的概念,能由函數的'觀點去認識數列,以及對通項公式的理解。

  難點:根據數列的前幾項的特點,通過多角度、多層次的觀察分析歸納出數列的一個通項公式。

  五、教法分析

  根據本節課的內容和學生的實際情況,結合波利亞的先猜后證理論,本節課主要以講解法為主,引導發現為輔,由老師帶領同學們發現問題,分析問題,并解決問題.考慮到學生的認知過程,本節課會采用由易到難的教學進程以及實例給出與練習設置,讓學生們充分體會到事物的發展規律。同時為了增大課堂容量,提高教學效率,更吸引同學們的眼光,提高學習熱情,本節課還會采用常規手段與現代手段相結合的辦法,充分利用多媒體,將引例、例題具體呈現.

高中數學的說課稿2

  一、教學目標:

  知識與技能目標:準確理解橢圓的定義,掌握橢圓的標準方程及其推導。

  過程與方法目標:通過引導學生親自動手嘗試畫圖、發現橢圓的形成過程進而歸納出橢圓的定義,培養學生觀察、辨析、歸納問題的能力。

  情感、態度與價值觀目標:通過經歷橢圓方程的化簡,增強學生戰勝困難的意志品質并體會數學的簡潔美、對稱美,通過討論橢圓方程推導的等價性養成學生扎實嚴謹的科學態度。

  二、教學重點、難點:

  重點是橢圓的定義及標準方程,難點是推導橢圓的標準方程。

  三、教學過程:

  教學環節

  教學內容和形式

  設計意圖

  復習

  提問:

 。1)圓的定義是什么?圓的標準方程的形式怎樣?

  (2)如何推導圓的標準方程呢?

  激活學生已有的認知結構,為本課推導橢圓標準方程提供了方法與策略。

  講授新課

  一、授新

  1.橢圓的定義:(略)

  活動過程:

  操作-----交流-----歸納-----多媒體演示-----聯系生活

  形成概念:

  操作:

  <1>固定一條細繩的兩端,用筆尖將細繩拉緊并運動,在紙上你得到了怎樣的圖形?

  在動手過程中,培養學生觀察、辨析、歸納問題的能力。

  在變化的過程中發現圓與橢圓的聯系;建立起用聯系與發展的觀點看問題;為下一節深入研究方程系數的幾何意義埋下伏筆。

  教學環節

  深化概念:

  注:1、平面內。

  2、若,則點P的軌跡為橢圓。

  若,則點P的軌跡為線段。

  若,則點P的軌跡不存在。

  聯系生活:

  情境1.生活中,你見過哪些類似橢圓的圖形或物體?

  情境2.讓學生觀察傾斜的圓柱形水杯的水面邊界線,并從中抽象出數學模型.(教師用多媒體演示)

  情境3.觀看天體運行的軌道圖片。

  教學內容和形式:

  準確理解橢圓的定義。

  滲透數學源于生活,圓錐曲線在生產和技術中有著廣泛的應用。

  設計意圖:

  2.橢圓的標準方程:

  例:已知點、為橢圓的兩個焦點,P為橢圓上的任意一點,且,其中,求橢圓的方程

  活動過程:點撥-----板演-----點評

  一般步驟:

  (1)建系設點

  (2)寫出點的集合

  (3)寫出代數方程

  (4)化簡方程:

  <1>請一位基礎較好,書寫規范的同學板演。

 。5)證明:討論推導的等價性

  掌握橢圓標準方程及推導方法。

  培養學生戰勝困難的意志品質并感受數學的簡潔美、對稱美。

  養成學生扎實嚴謹的科學態度。

  應用

  舉例

  教學環節

  二、應用

  例1.(1)橢圓的焦點坐標為:

  (2)橢圓的焦距為4,則m的值為:

  活動過程:思考-----解答-----點評

  例2.已知橢圓焦點的坐標分別是(-4,0)、(4,0),橢圓上一點P到兩焦點的距離的和等于10,求橢圓的標準方程

  活動過程:思考-----解答-----點評

  變式<1>已知橢圓焦點的坐標分別是(-4,0)(4,0),且經過點,求橢圓的標準方程。

  求橢圓的標準方程

  活動過程:思考-----解答-----點評

  認清橢圓兩種標準方程形式上的特征。

  課堂小結:

  提問:本節課學習的主要知識是什么?你學會了哪些數學思想與方法?

  活動過程:教師提問-----學生小結-----師生補充完善。

  讓學生回顧本節所學知識與方法,以逐步提高學生自我獲取知識的能力。

  作業布置:

  作業:教材第95頁,練習2、4,第96頁習題8-1,1、2、3、

  探索:平面內到兩個定點的距離差、積、商為定值的點的軌跡是否存在?若存在軌跡是什么?

  分層次布置作業,幫助學生鞏固所學知識;為學有余力的學生留有進一步探索、發展的`空間。

  四、板書設計

  8.1橢圓及其標準方程

  一、復習引入二、新課講解三、習題研討

  1.橢圓的定義

  2.橢圓的標準方程

  總體說明:本節課的設計力圖貫徹"以人的發展為本"的教育理念,體現"教師為主導,學生為主體"的現代教學思想。在對橢圓定義的講授中,遵循從生動直觀到抽象概括的教學原則和教學途徑,通過引導學生親自動手嘗試畫圖、發現橢圓的形成過程進而歸納出橢圓的定義,培養學生觀察、辨析、歸納問題的能力;讓橢圓生動靈活地呈現在學生面前,更有助于學生理解橢圓的內涵和外延。對本課另一難點標準方程推導的講授中,在關鍵處設疑,以疑導思,讓學生先從目的、再從方法上考慮,引導學生對比、分析,師生共同完成。通過經歷橢圓方程的化簡,增強了學生戰勝困難的意志品質并體會數學的簡潔美、對稱美.通過討論橢圓方程推導的等價性養成學生扎實嚴謹的科學態度。設計的例題及變式練習,充分利用新知識解決問題,使所學內容得以鞏固。變式(2)的設計讓學生站在方程的角度認清橢圓兩種標準方程形式上的特征,將學生的思維提升到了一個新的高度。課后分層次布置作業,幫助學生鞏固所學知識;課后探索更為學有余力的學生留有進一步探索、發展的空間。在教學中借助多媒體生動、直觀、形象的特點來突出教學重點。自始至終很好地調動學生的積極性,挖掘他們的內在潛能,提高學生的綜合素質。

高中數學的說課稿3

  一、教學目標

  (一)知識與技能

  1、進一步熟練掌握求動點軌跡方程的基本方法。

  2、體會數學實驗的直觀性、有效性,提高幾何畫板的操作能力。

  (二)過程與方法

  1、培養學生觀察能力、抽象概括能力及創新能力。

  2、體會感性到理性、形象到抽象的思維過程。

  3、強化類比、聯想的方法,領會方程、數形結合等思想。

  (三)情感態度價值觀

  1、感受動點軌跡的動態美、和諧美、對稱美

  2、樹立競爭意識與合作精神,感受合作交流帶來的成功感,樹立自信心,激發提出問題和解決問題的勇氣

  二、教學重點與難點

  教學重點:運用類比、聯想的方法探究不同條件下的軌跡

  教學難點:圖形、文字、符號三種語言之間的過渡

  三、、教學方法和手段

  【教學方法】觀察發現、啟發引導、合作探究相結合的教學方法。啟發引導學生積極思考并對學生的思維進行調控,幫助學生優化思維過程,在此基礎上,提供給學生交流的機會,幫助學生對自己的思維進行組織和澄清,并能清楚地、準確地表達自己的數學思維。

  【教學手段】利用網絡教室,四人一機,多媒體教學手段。通過上述教學手段,一方面:再現知識產生的過程,通過多媒體動態演示,突破學生在舊知和新知形成過程中的'障礙(靜態到動態);另一方面:節省了時間,提高了課堂教學的效率,激發了學生學習的興趣。

  【教學模式】重點中學實施素質教育的課堂模式“創設情境、激發情感、主動發現、主動發展”。

高中數學的說課稿4

  今天我說課的題目是《函數的單調性》,下面我將圍繞本節課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學目標分析、教學重難點分析、教法與學法、教學過程五方面逐一加以分析和說明。

  一、說教材

  1、教材的地位和作用

  本節內容選自北師大版高中數學必修1,第二章第3節。函數是高中數學的課程,它是描述事物運動變化的模型,而函數的單調性是函數的一大特征,它為我們之后的學習奠定重要基礎。

  2、學情分析

  本節課的學生是高一學生,他們在初中階段,通過一次函數、二次函數、反比例函數的學習已經對函數的增減性有了初步的感性認識。在高中階段,用符號語言刻畫圖形語言,用定量分析解釋定性結果,有利于培養學生的理性思維,為后續函數的學習作準備,也為利用倒數研究單調性的相關知識奠定了基礎。

  教學目標分析

  基于以上對教材和學情的分析以及新課標教學理念,我將教學目標分為以下三個部分:

  1、知識與技能(1)理解函數的單調性和單調函數的意義;

 。2)會判斷和證明簡單函數的單調性。

  2、過程與方法

 。1)培養從概念出發,進一步研究性質的意識及能力;

 。2)體會數形結合、分類討論的數學思想。

  3、情感態度與價值觀

  由合適的例子引發學生探求數學知識的欲望,突出學生的主觀能動性,激發學生學習數學的興趣。

  三、教學重難點分析

  通過以上對教材和學生的分析以及教學目標,我將本節課的重難點

  重點:

  函數單調性的概念,判斷和證明簡單函數的單調性。

  難點:

  1、函數單調性概念的認知

 。1)自然語言到符號語言的轉化;

 。2)常量到變量的轉化。

  2、應用定義證明單調性的代數推理論證。

  四、教法與學法分析

  1、教法分析

  基于以上對教材、學情的分析以及新課標的教學理念,本節課我采用啟發式教學、多媒體輔助教學和討論法。學生可以在多媒體中感受到數學在生活中的應用,啟發式教學和討論法發散學生思維,培養學生善于思考的能力。

  2、學法分析

  新課改理念告訴我們,學生不僅要學知識,更重要的是要學會怎樣學習,為終生學習奠定扎實的基礎。所以本節課我將引導學生通過合作交流、自主探索的方法理解函數的`單調性及特征。

  五、教學過程

  為了更好的實現本課的三維目標,并突破重難點,我設計以下五個環節來進行我的教學。

 。ㄒ唬┲R導入

  溫故而知新,我將先從之前學習的知識引入,給出一些函數,比如y=x、y=-x、y=|x|,讓學生作出這些函數的圖像,然后讓學生討論這些函數圖像是上升的還是下降的,由此引入到我的新課。在這個過程中不僅可以檢查學生掌握基本初等函數圖像的情況,而且符合學生的認知結構,通過學生自主探究,從知識產生、發展的過程中構建新概念,有利于激發學生的思維和學習的積極主動性。

 。ǘ┲v授新課

  1.問題:分別做出函數y=x2,y=x+2的圖像,指出上面的函數圖象在哪個區間是上升的,在哪個區間是下降的?

  通過學生熟悉的圖像,及時引導學生觀察,函數圖像上A點的運動情況,引導學生能用自然語言描述出,隨著x增大時圖像變化規律。讓學生大膽的去說,老師逐步修正、完善學生的說法,最后給出正確答案。

  2、觀察函數y=x2隨自變量x變化的情況,設置啟發式問題:

 。1)在y軸的右側部分圖象具有什么特點?

 。2)如果在y軸右側部分取兩個點(x1,y1),(x2,y2),當x1< p="">

 。3)如何用數學符號語言來描述這個規律?

  教師補充:這時我們就說函數y=x2在(0,+∞)上是增函數。

 。4)反過來,如果y=f(x)在(0,+∞)上是增函數,我們能不能得到自變量與函數值的變化規律呢?

  類似地分析圖象在y軸的左側部分。

  通過對以上問題的分析,從正、反兩方面領會函數單調性。師生共同總結出單調增函數的定義,并解讀定義中的關鍵詞,如:區間內,任意,當x1< p="">

  仿照單調增函數定義,由學生說出單調減函數的定義。

  教師總結歸納單調性和單調區間的定義。注意強調:函數的單調性是函數在定義域某個區間上的局部性質,也就是說,一個函數在不同的區間上可以有不同的單調性。

 。ㄎ覍⒔o出函數y=x2,并畫出這個函數的圖像,讓學生觀察函數圖像的特點,讓他們描述函數圖像的增減性,慢慢得到函數單調性的概念。在這個過程中,學生把對圖像的感性認識轉化為了數學關系,這種從特殊到一般的學習過程有利于學生對概念的理解)

  (三)鞏固練習

  1練習1:說出函數f(x)=的單調區間,并指明在該區間上的單調性。x

  練習2:練習2:判斷下列說法是否正確

 、俣x在R上的函數f(x)滿足f(2)>f(1),則函數是R上的增函數。

  ②定義在R上的函數f(x)滿足f(2)>f(1),則函數是R上不是減函數。

  1③已知函數y=,因為f(-1)< p="">

  1我將給出一些具體的函數,如y=,f(x)=3x+2讓學生說出函數的單調區間,并指明在該區間x

  上的單調性。通過這種練習的方式,幫助學生鞏固對知識的掌握。

 。ㄋ模w納總結

  我先讓學生進行小結,函數單調性定義,判斷函數單調性的方法(圖像、定義),然后教師進行補充,在這樣一個過程中既有利于學生鞏固知識,也有利于教師對學生的學習情況有一定的了解,為下一節課的教學過程做好準備。

 。ㄎ澹┎贾米鳂I

  必做題:習題2-3A組第2,4,5題。

  選做題:習題2-3B組第2題。

  新課程理念告訴我們,不同的人在數學上可以獲得不同的發展,因此要設計不同程度要求的習題。

高中數學的說課稿5

  開始:各位專家領導, 好!

  今天我將要為大家講的課題是

  首先,我對本節教材進行一些分析

  一、教材結構與內容簡析

  本節內容在全書及章節的地位:《 》是高中數學新教材第 冊( )第 章第 節。在此之前,學生已學習了

  ,這為過渡到本節的學習起著鋪墊作用。本節內容是 部分,因此,在 中,占據 的地位。

  數學思想方法分析:作為一名數學老師,不僅要傳授給學生數學知識,更重要的是傳授給學生數學思想、數學意識,因此本節課在教學中力圖向學生:

  二、 教學目標

  根據上述教材結構與內容分析,考慮到學生已有的認知結構心理特征,制定如下教學目標:

  1 基礎知識目標:

  2 能力訓練目標:

  3 創新素質目標:

  4 個性品質目標:

  三、 教學重點、難點、關鍵

  本著課程標準,在吃透教材基礎上,我確立了如下的教學重點、難點

  重點: 通過 突出重點

  難點: 通過 突破難點

  關鍵:

  下面,為了講清重點、難點,使學生能達到本節設定的教學目標,我再從教法和學法上談談:

  四、 教法

  數學是一門培養人的思維,發展人的思維的重要學科,因此,在教學中,不僅要使學生

  “知其然”而且要使學生“知其所以然”,

  我們在以師生既為主體,又為客體的原則下,展現獲取知識和方法的思維過程。基于本節課的特點:

  ,應著重采用 的教學方法。即:

  五、 學法

  我們常說:“現代的文盲不是不識字的人,而是沒有掌握學習方法的人”,因而在教學中要特別重視學法的指導。

  1、理論:

  2、實踐:

  3、能力:

  最后我來具體談一談這一堂課的教學過程:

  六、 教學程序及設想

  1、由 引入:

  把教學內容轉化為具有潛在意義的問題,讓學生產生強烈的問題意識,使學生的整個學習過程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過程。

  在實際情況下進行學習,可以使學生利用已有知識與經驗,同化和索引出當前學習的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問題情境中。

  對于本題:

  2、由實例得出本課新的知識點是:

  3、講解例題。

  我們在講解例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規律進行概括,有利于發展學生的思維能力。在題中:

  4、能力訓練。

  課后練習

  使學生能鞏固羨慕自覺運用所學知識與解題思想方法。

  5、總結結論,強化認識。

  知識性內容的小結,可把課堂教學傳授的知識盡快化為學生的素質;數學思想方法的小結,可使學生更深刻地理解數學思想方法在解題中的地位和應用,并且逐漸培養學生的良好的`個性品質目標。

  6、變式延伸,進行重構。

  重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯、累積、加工,從而達到舉一反三的效果。

  7、板書。

  8、布置作業。

  針對學生素質的差異進行分層訓練,既使學生掌握基礎知識,又使學有佘力的學生有所提高,從而達到拔尖和“減負”的目的。

  結束:說課是教師面對同行和其它聽眾口頭講述具體課題的教學設想及其根據的新的教學研究形式。以上,我僅從說教材,說學情,說教法,說學法,說教學程序上說明了“教什么”和“怎么教”,闡明了“為什么這樣教”。說課對我們大家仍是新事物,今后我也將進一步說好課,并希望各位專家領導對本堂說課提出寶貴意見。

  注意時間掌握

  六、注意靈活導入新知識點。

  電腦課件

  使用投影

  根據時間進行增刪

高中數學的說課稿6

  一、教材分析

  1、從在教材中的地位與作用來看

  《等比數列的前n項和》是數列這一章中的一個重要內容,它不僅在現實生活中有著廣泛的實際應用,如儲蓄、分期付款的有關計算等等,而且公式推導過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學生今后學習和工作中必備的數學素養。

  2、從學生認知角度看

  從學生的思維特點看,很容易把本節內容與等差數列前n項和從公式的形成、特點等方面進行類比,這是積極因素,應因勢利導。不利因素是:本節公式的推導與等差數列前n項和公式的推導有著本質的不同,這對學生的思維是一個突破,另外,對于q=1這一特殊情況,學生往往容易忽視,尤其是在后面使用的過程中容易出錯。

  3、學情分析

  教學對象是剛進入高中的學生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴謹。

  4、重點、難點

  教學重點:公式的推導、公式的特點和公式的運用。

  教學難點:公式的推導方法和公式的靈活運用。

  公式推導所使用的"錯位相減法"是高中數學數列求和方法中最常用的方法之一,它蘊含了重要的數學思想,所以既是重點也是難點。

  二、目標分析

  知識與技能目標:

  理解并掌握等比數列前n項和公式的推導過程、公式的特點,在此基礎上能初步應用公式解決與之有關的問題。

  過程與方法目標:

  通過對公式推導方法的探索與發現,向學生滲透特殊到一般、類比與轉

  化、分類討論等數學思想,培養學生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力。

  情感與態度價值觀:

  通過對公式推導方法的探索與發現,優化學生的思維品質,滲透事物之間等價轉化和理論聯系實際的辯證唯物主義觀點。

  三、過程分析

  學生是認知的主體,設計教學過程必須遵循學生的認知規律,盡可能地讓學生去經歷知識的形成與發展過程,結合本節課的特點,我設計了如下的教學過程:

  1、創設情境,提出問題

  在古印度,有個名叫西薩的人,發明了國際象棋,當時的印度國王大為贊賞,對他說:我可以滿足你的任何要求。西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數學家計算,結果出來后,國王大吃一驚。為什么呢?

  設計意圖:設計這個情境目的是在引入課題的同時激發學生的興趣,調動學習的積極性。故事內容緊扣本節課的主題與重點。

  此時我問:同學們,你們知道西薩要的是多少粒小麥嗎?引導學生寫出麥?倲。帶著這樣的問題,學生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和。這時我對他們的這種思路給予肯定。

  設計意圖:在實際教學中,由于受課堂時間限制,教師舍不得花時間讓學生去做所謂的"無用功",急急忙忙地拋出"錯位相減法",這樣做有悖學生的認知規律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個教學關鍵處學生難以轉過彎來,因而在教學中應舍得花時間營造知識形成過程的氛圍,突破學生學習的障礙。同時,形成繁難的情境激起了學生的求知欲,迫使學生急于尋求解決問題的新方法,為后面的教學埋下伏筆、

  2、師生互動,探究問題

  在肯定他們的思路后,我接著問:1,2,22,.....,263是什么數列?有何特征?應歸結為什么數學問題呢?

  探討1:,記為(1)式,注意觀察每一項的特征,有何聯系?(學生會發現,后一項都是前一項的2倍)

  探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式。比較(1)(2)兩式,你有什么發現?

  設計意圖:留出時間讓學生充分地比較,等比數列前n項和的公式推導關鍵是變"加"為"減",在教師看來這是"天經地義"的,但在學生看來卻是"不可思議"的,因此教學中應著力在這兒做文章,從而抓住培養學生的辯證思維能力的良好契機。

  經過比較、研究,學生發現:(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:。老師指出:這就是錯位相減法,并要求學生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?

  設計意圖:經過繁難的計算之苦后,突然發現上述解法,不禁驚呼:真是太簡潔了!讓學生在探索過程中,充分感受到成功的情感體驗,從而增強學習數學的興趣和學好數學的信心。

  3、類比聯想,解決問題

  這時我再順勢引導學生將結論一般化,

  這里,讓學生自主完成,并喊一名學生上黑板,然后對個別學生進行指導。

  設計意圖:在教師的指導下,讓學生從特殊到一般,從已知到未知,步步深入,讓學生自己探究公式,從而體驗到學習的愉快和成就感。

  對不對?這里的q能不能等于1?等比數列中的公比能不能為1?q=1時是什么數列?此時sn=?(這里引導學生對q進行分類討論,得出公式,同時為后面的例題教學打下基礎。)

  再次追問:結合等比數列的通項公式an=a1qn—1,如何把sn用a1、an、q表示出來?(引導學生得出公式的另一形式)

  設計意圖:通過反問精講,一方面使學生加深對知識的認識,完善知識結構,另一方面使學生由簡單地模仿和接受,變為對知識的主動認識,從而進一步提高分析、類比和綜合的'能力。這一環節非常重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用。

  4、討論交流,延伸拓展

  在此基礎上,我提出:探究等比數列前n項和公式,還有其它方法嗎?我們知道,

  那么我們能否利用這個關系而求出sn呢?根據等比數列的定義又有,能否聯想到等比定理從而求出sn呢?

  設計意圖:以疑導思,激發學生的探索欲望,營造一個讓學生主動觀察、思考、討論的氛圍、以上兩種方法都可以化歸到,這其實就是關于的一個遞推式,遞推數列有非常重要的研究價值,是研究性學習和課外拓展的極佳資源,它源于課本,又高于課本,對學生的思維發展有促進作用、

  5、變式訓練,深化認識

  首先,學生獨立思考,自主解題,再請學生上臺來幻燈演示他們的解答,其它同學進行評價,然后師生共同進行總結。

  設計意圖:采用變式教學設計題組,深化學生對公式的認識和理解,通過直接套用公式、變式運用公式、研究公式特點這三個層次的問題解決,促進學生新的數學認知結構的形成。通過以上形式,讓全體學生都參與教學,以此培養學生的參與意識和競爭意識。

  6、例題講解,形成技能

  設計意圖:解題時,以學生分析為主,教師適時給予點撥,該題有意培養學生對含有參數的問題進行分類討論的數學思想。

  7、總結歸納,加深理解

  以問題的形式出現,引導學生回顧公式、推導方法,鼓勵學生積極回答,然后老師再從知識點及數學思想方法兩方面總結。

  設計意圖:以此培養學生的口頭表達能力,歸納概括能力。

  8、故事結束,首尾呼應

  最后我們回到故事中的問題,我們可以計算出國王獎賞的小麥約為1、84×1019粒,大約7000億噸,用這么多小麥能從地球到太陽鋪設一條寬10米、厚8米的大道,大約是全世界一年糧食產量的459倍,顯然國王兌現不了他的承諾。

  設計意圖:把引入課題時的懸念給予釋疑,有助于學生克服疲倦、繼續積極思維。

  9、課后作業,分層練習

  必做:P129練習1、2、3、4

  選作:

  (2)"遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?"這首中國古詩的答案是多少?

  設計意圖:出選作題的目的是注意分層教學和因材施教,讓學有余力的學生有思考的空間。

  四、教法分析

  對公式的教學,要使學生掌握與理解公式的來龍去脈,掌握公式的推導方法,理解公式的成立條件,充分體現公式之間的聯系。在教學中,我采用"問題――探究"的教學模式,把整個課堂分為呈現問題、探索規律、總結規律、應用規律四個階段。

  利用多媒體輔助教學,直觀地反映了教學內容,使學生思維活動得以充分展開,從而優化了教學過程,大大提高了課堂教學效率。

  五、評價分析

  本節課通過三種推導方法的研究,使學生從不同的思維角度掌握了等比數列前n項和公式。錯位相減:變加為減,等價轉化;遞推思想:縱橫聯系,揭示本質;等比定理:回歸定義,自然樸實。學生從中深刻地領會到推導過程中所蘊含的數學思想,培養了學生思維的深刻性、敏銳性、廣闊性、批判性。同時通過精講一題,發散一串的變式教學,使學生既鞏固了知識,又形成了技能。在此基礎上,通過民主和諧的課堂氛圍,培養了學生自主學習、合作交流的學習習慣,也培養了學生勇于探索、不斷創新的思維品質。

高中數學的說課稿7

各位老師:

  大家好!我叫張西元。我說課的題目是《系統抽樣》,內容選自于蘇教版必修3第二章第一節,課時安排為一個課時。下面我將從教材分析、教學目標分析、教學方法與手段分析、教學過程分析等五大方面來闡述我對這節課的分析和設計:

  一、教材分析

  1.教材所處的地位和作用

  學生已初步了解掌握了簡單隨機抽樣的兩種方法,即抽簽法與隨機數表法,在此基礎上進一步學習系統抽樣,它也是“統計學”的重要組成部分,通過對系統抽樣的學習,更加突出統計在日常生活中的應用,體現它在中學數學中的地位。

  2 教學的重點和難點

  重點:正確理解系統抽樣的概念,能夠靈活應用系統抽樣的方法解決統計問題。難點:當 不是整數時的處理辦法,個體編號具有某種周期性時,“壞樣本”的理解。

  二、教學目標分析

  1.知識與技能目標:

 。1)正確理解系統抽樣的概念;

 。2)掌握系統抽樣的一般步驟;

  (3)正確理解系統抽樣與簡單隨機抽樣的關系;

  2、過程與方法目標:

  通過對實際問題的探究,歸納應用數學知識解決實際問題的方法,理解分類討論的數學方法高考資源

  3、情感態度與價值觀目標:

  通過數學活動,感受數學對實際生活的需要,體會現實世界和數學知識的聯系

  三、教學方法與手段分析

  1.教學方法:為了充分讓學生自己分析、判斷、自主學習、合作交流。因此,我采用討論發現法教學。

  2.教學手段:通過各種教學媒體(計算機)調動學生參與課堂教學的主動性與積極性。

  四、教學過程分析

  (一)新課引入

  1、復習提問:

 。1)什么是簡單隨機抽樣?有哪兩種方法?

 。2)抽簽法與隨機數表法的一般步驟是什么?

 。3)簡單隨機抽樣應注意哪兩個原則?

  (4)什么樣的總體適合簡單隨機抽樣?為什么?

  [設計意圖]通過復習提問進一步理解掌握簡單隨機抽樣的概念方法和步驟?為新課學習打基礎

  2、實例探究

  實例:某學校為了了解高一年級學生對教師教學的`意見,打算從高一年級500名學生中抽取50名進行調查,除了用簡單隨機抽樣獲取樣本外,你能否設計其他抽取樣本的方法?

  當總體數量較多時,應當如何抽?結合具體事例探究問題,設計你的抽取樣本的方法。抽取的樣本公平性與代表性如何?學生自主探究后小組討論回答。

  [設計意圖]通過設置問題情境,讓學生參與問題解決的全過程,引導學生探究發現新知識新方法,完成從總體中抽取樣本,并發現“等距抽樣”的特性,從而形成感性的系統抽樣的概念與方法。這樣做既充分體現學生的主體地位和教師的主導作用,同時也較好地貫徹新課程所倡導“自主探究、合作交流”的學習方式。

 。ǘ┬抡n講授

  1、系統抽樣的概念方法步驟

  (學生閱讀課本上的內容,教師引導學生總結歸納得出“系統抽樣”的概念,并點明課題)

  [設計意圖]經歷實例探究過程,學生對系統抽樣的概念方法步驟應有大致了解,輔以教師引導,從具體到一般,本節新課題的學習便水到渠成。

  2、典型例題精析

  例1、某校高中三年級的300名學生已經編號為1,2,……,300,為了了解學生的學習情況,要按10%的比例抽取一個樣本,請用系統抽樣的方法進行抽取,并寫出過程。

 。ń處燁}意分析,引導學生應用新知識新方法,學生分析思考,探究解題,小組討論后口述解題過程)

  [設計意圖]實例鞏固,在得出新課的有關知識之后,再次讓學生在解決實際問題的過程中,進一步理解掌握系統抽樣的方法步驟,達到學以致用的技能,培養“學數學,用數學”的意識。

  例2、某單位在職職工共624人,為了調查工人用于上班途中的時間,決定抽取10%的工人進行調查,試采用系統抽樣方法抽取所需的樣本。

  [設計意圖]當 不是整數時,設置本題讓學生嘗試回答,并形成一般思路與方法。

  (三) 練習鞏固

  1、將全班學生按男女生交替排成一路縱隊,用擲骰的方法在前6名學生中任選一名,用 表示該名學生在隊列中的序號,將隊列中序號為 ,(k=1,2,3,…)的學生抽出作為樣本,這種抽樣方法叫做系統抽樣嗎?為什么?其樣本的代表性與公平性如何?

  2、若按體重大小次序排成一路縱隊呢?

  [設計意圖]配合課本第60頁“邊空”問題:“請將這種抽樣方法與簡單隨機抽樣做一個比較,你認為系統抽樣能提高樣本的代表性嗎?為什么?”,幫助理解個體編號具有某種周期性時,樣本代表性較差的特點。同時分析系統抽樣的優點與缺點。

 。ㄋ模┗仡櫺〗Y

  1、師生共同回顧系統抽樣的概念方法與步驟

  2、與簡單隨機抽樣比較,系統抽樣適合怎樣的總體情況?

  3、當 不是整數時,一般步驟是什么?此時樣本的公平性與代表性如何?

 。ㄎ澹┎贾米鳂I

  課本第61頁的練習第1,2,3題

  設計意圖:課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度以及實際接受情況,并促使學生進一步鞏固和掌握所學內容。

高中數學的說課稿8

  我今天說課的課題是新課標高中數學人教版A版必修第二冊第三章“3.1.1傾斜角與斜率”。我說課的程序主要由說教材、說教法、說學法、說教學程序這四個部分組成。

  一、說教材:

  1、教材分析:直線的傾斜角和斜率是解析幾何的重要概念之一,也是直線的重要的幾何要素。學生在原有的對直線的有關性質及平面向量的相關知識理解的基礎上,重新以坐標化(解析化)的方式來研究直線相關性質,而本節直線的傾斜角與斜率,是直線的重要的幾何性質,是研究直線的方程形式,直線的位置關系等的思維的起點;另外,本節也初步向學生滲透解析幾何的基本思想和基本方法。因此,本節課的有著開啟全章,奠定基調,滲透方法,明確方向,承前啟后的作用。

  2、教學目標

  根據本課教材的特點,新大綱對本節課的教學要求,結合學生身心發展的合理需要,我從三個方面確定了以下教學目標:

  (1)知識與技能目標:

  了解直線的方程和方程的直線的概念;在新的.問題的情境中,去主動構建理解直線的傾斜角和斜率的定義;初步感悟用代數方法解決幾何問題的思想方法。

 。2)過程與方法目標:

  引導學生觀察發現、類比,猜想和實驗探索,培養學生的創新能力和動手能力

 。3)情感、態度與價值觀目標:

  在平等的教學氛圍中,通過學生之間、師生之間的交流、合作和評價,實現共同探究、教學相長的教學情境。

  3、教學重點、難點

 。1)教學重點:理解直線的傾斜角和斜率的概念,經歷用代數方法刻畫直線斜率的過程,掌握過兩點的直線的斜率的計算公式。

  (2)教學難點:斜率公式的推導

  二、說教法

  課堂教學應有利于學生的數學素質的形成與發展,即在課堂教學過程中,創設問題的情境,激發學生主動的發現問題解決問題,充分調動學生學習的主動性、積極性;有效地滲透數學思想方法,發展學生個性思維品質,這是本節課的教學原則。根據這樣的原則及所要完成的教學目標,我采用觀察發現、啟發引導、探索實驗相結合的教學方法。啟發引導學生積極的思考并對學生的思維進行調控,使學生優化思維過程;在此基礎上,通過學生交流與合作,從而擴展自己的數學知識和使用數學知識及數學工具的能力,實現自覺地、主動地、積極地學習。

  三、說學法

  在實際教學中,根據學生對問題的感受程度不同,學習熱情、身心特點等,對學生進行針對性的學法指導。主要運用引導、啟發、情感暗示等隱性形式來影響學生,多提供機會讓學生去想、去做,給學生自己動手、參與教學過程、發現問題、討論問題提供了很好的機會。這不僅讓學生對所學內容留下了深刻的印象,而且能力得到培養,素質得以提高,充分地調動學生學習的熱情,讓學生學會學習,學會探索問題的方法,培養學生的能力。

  四、說教學程序:

  1、導入新課:

  提出問題:如何確定一條直線的位置?

 。1)兩點確定一條直線;

 。2)一點能確定一條直線嗎?

  過一點P可以作無數條直線,這些直線的傾斜程度不同,如何描述直線的傾斜程度?本節課將解決這個問題。

  設計意圖:打開了學生的原有認知結構,為知識的創新做好了準備;同時也讓學生領會到,直線的傾斜角這一概念的產生是因為研究直線的需要,從而明確新課題研究的必要性,觸發學生積極思維活動的展開。

  2、探究發現:

 。1)直線的傾斜角:

  有新課導入直接引出此概念,學生易于接受,但是容易忽視其中的重點字。因此重點強調定義的幾個注意點:①x軸正半軸;②直線向上方向;③當直線與x軸平行或重合時,直線的傾斜角為0度。由此得出直線傾斜角的取值范圍。

  (2)直線的確定方法:

  確定平面直角坐標系中一條直線位置的幾何要素:直線上的一個定點以及它的傾斜角,二者缺一不可。

 。3)直線的斜率:

  注:直線的傾斜角與斜率的區別:

  所有的直線都有傾斜角;但是不是所有直線都有斜率(傾斜角為90°的直線沒有斜率,因為90°的正切不存在。)

  (4)由兩點確定的直線的斜率:

  先讓學生自主探究、學生之間互相交流,然后再由師生共同歸納得出結論:

  經過兩點P1(x1.y1),P2(x2,y2)直線的斜率公式:(x1≠x2)。

  3、學用結合:

 。1)例題講解:P89-90/例題1和例題2。

  例題的講解主要關注思路的點撥以及解題過程的規范書寫。

  (2)課堂練習:

  P91/練習第1、2題

  4、總結歸納:

  直線的傾斜角直線的斜率直線的斜率公式

  定義

  取值范圍

  5、布置作業:P 91/練習第3、4題。

高中數學的說課稿9

各位老師:

  大家好!

  我叫xxx,來自xx。我說課的題目是《用樣本的數字特征估計總體的數字特征》,內容選自于高中教材新課程人教A版必修3第二章第二節,課時安排為三個課時,本節課內容為第一課時。下面我將從教材分析、教學目標分析、教學方法與手段分析、教學過程分析四大方面來闡述我對這節課的分析和設計:

  一、教材分析

  1、教材所處的地位和作用

  在上一節我們已經學習了用圖、表來組織樣本數據,并且學習了如何通過圖、表所提供的信息,用樣本的頻率分布估計總體的分布情況。本節課是在前面所學內容的基礎上,進一步學習如何通過樣本的情況來估計總體,從而使我們能從整體上更好地把握總體的規律,為現實問題的解決提供更多的幫助。

  2教學的重點和難點

  重點:⑴能利用頻率頒布直方圖估計總體的眾數,中位數,平均數。

 、企w會樣本數字特征具有隨機性

  難點:能應用相關知識解決簡單的實際問題。

  二、教學目標分析

  1、知識與技能目標

  (1)能利用頻率頒布直方圖估計總體的眾數,中位數,平均數。

  (2)能用樣本的眾數,中位數,平均數估計總體的眾數,中位數,平均數,并結合實際,對問題作出合理判斷,制定解決問題的有效方法。

  2、過程與方法目標:

  通過對本節課知識的學習,初步體會、領悟"用數據說話"的統計思想方法。

  3、情感態度與價值觀目標:

  通過對有關數據的搜集、整理、分析、判斷培養學生"實事求是"的科學態度和嚴謹的.工作作風。

  三、教學方法與手段分析

  1、教學方法:結合本節課的教學內容和學生的認知水平,在教法上,我采用"問答探究"式的教學方法,層層深入。充分發揮教師的主導作用,讓學生真正成為教學活動的主體。

  2、教學手段:通過多媒體輔助教學,充分調動學生參與課堂教學的主動性與積極性。

  四、教學過程分析

  1、復習回顧,問題引入

  「屏幕顯示」

  〈問題1〉在日常生活中,我們往往并不需要了解總體的分布形態,而是更關心總體的某一數字特征,例如:買燈泡時,我們希望知道燈泡的平均使用壽命,我們怎樣了解燈泡的的使用壽命呢?當然不能把所有燈泡一一測試,因為測試后燈泡則報廢了。于是,需要通過隨機抽樣,把這批燈泡的壽命看作總體,從中隨機取出若干個個體作為樣本,算出樣本的數字特征,用樣本的數字特征來估計總體的數字特征。

  提出問題:什么是平均數,眾數,中位數?

  (教師提問,鋪墊復習,學生思考、積極回答。根據學生回答,給出補充總結,借助用多媒體分別給出他們的定義)

  「設計意圖」使學生對本節課的學習做好知識準備。

  (進一步提出實例、導入新課。)

  「屏幕顯示」

  〈問題2〉選擇薪水高的職業是人之常情,假如你大學畢業有兩個工作相當的單位可供選擇,現各從甲乙兩單位分別隨機抽取了50名員工的月工資資料如下(單位:元)

  分組計算這兩組50名員工的月工資平均數,眾數,中位數并估計這兩個公司員工的平均工資。你選擇哪一個公司,并說明你的理由。

 。▽W生分組分別求兩組數據的平均工資。

  學生:甲、乙平均工資分別為:甲:1320元,乙:1530元。

  所以我選乙公司。

  學生乙:甲、乙兩公司的眾數分別為甲:1200,乙:1000,所以我選擇甲公司。

  學生丙:我要根據我的能力選擇。)

  「設計意圖」學生按"常理"做出選擇,教師指出只憑平均工資做出判斷的依據并不可靠,從而引導學生進一步深入問題。

  2講授新課,深入認識

 、拧钙聊伙@示」

  例如,在上一節抽樣調查的100位居民的月均用水量的數據中,我們畫出了這組數據的頻率分布直方圖,F在,觀察這組數據的頻率分布直方圖,能否得出這組數據的眾數、中位數和平均數?

 。ò褜W生分成若干小組,分別計算平均數、中位數、眾數,或估計平均數、中位數、眾數。然后比較結果,會發現通過計算的結果和通過估計的結果出現了一定的誤差。引導學生分析產生誤差的原因。原因是由于樣本數據的頻率分布直方圖把原始的一些數據給遺失了。讓學生明白產生這樣的誤差對總體的估計沒有大的影響,因為樣本本身也有隨機性。)

  「設計意圖」讓學生懂得如何根據頻率分布直方圖估計樣本的平均數、中位數和眾數。使學生明白從直方圖中估計樣本的數字特征雖然會有一些誤差,但直觀、快速、可避免繁瑣的計算和閱讀數據的過程。

 、啤刺岢鰡栴}〉根據樣本的眾數、中位數、平均數估計總體平均數的基本數據,并對上一節的探究問題制定一個合理平價用水量的的標準。

 。◣熒ㄟ^共同交流探討得知僅以平均數或只使用中位數或眾數制定出平價用水標準都是不合理的,必須綜合考慮才能做出合理的選擇)

  「設計意圖」使學生會依據眾數、中位數、平均數對數據進行綜合判斷,并做出合理選擇。也為接下來對他們優缺點的總結打下基礎。

  ⑶總結出眾數、中位數、平均數三種數字特征的優缺點。

  (先由學生思考,然后再老師的引導下做出總結)

  「設計意圖」使學生能更準確更全面地依據樣本的眾數、中位數、平均數對數據進行綜合判斷,并做出合理選擇,使實際問題得到正確的解決。

  3、反思小結、培養能力

 、賹W習利用頻率直方圖估計總體的眾數、中位數和平均數的方法。

 、诮榻B眾數、中位數和平均數這三個特征數的優點和缺點。

  ③學習如何利用眾數、中位數和平均數的特征去分析解決實際問題。

  「設計意圖」小節是一堂課的概括和總結,有利于優化學生的認知結構,把課堂教學傳授的知識較快轉化為學生的素質,也更進一步培養學生的歸納概括能力

  4、課后作業,自主學習

  課本練習

  [設計意圖]課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度,并促使學生進一步鞏固和掌握所學內容。

  5、板書設計

高中數學的說課稿10

  一、教材分析

  教材的地位和作用:本節課教學內容是高一(下)第四章4.6節第一課時(兩角和與差的余弦)。本節內容是三角恒等變形的基礎,是正弦線、余弦線和誘導公式等知識的延伸,同時,它又是兩角和、差、倍、半角等公式的“源頭”。兩角和與差的正弦、余弦、正切是本章的重要內容,對于三角變換、三角恒等式的證明和三角函數式的化簡、求值等三角問題的解決有著重要的支撐作用。本課時主要講授平面內兩點間距離公式、兩角和與差的余弦公式以及它們的簡單應用。這節內容在高考中不但是熱點,而且一般都是中、低檔題,是一定要拿到分的題。

  教學重點:兩角和與差的余弦公式的推導與運用。

  教學難點:余弦和角公式的推導以及應用,學會恰當代換、逆用公式等技能。

  二、教學目標

 。ㄒ唬┲R目標:

  1、掌握利用平面內兩點間的距離公式進行C(α+β)公式的推導;

  2、能用代換法推導C(α-β)公式;

  3、初步學會公式的簡單應用和逆用公式等基本技能。

 。ǘ┠芰δ繕耍

  1、通過公式的推導,在培養學生三大能力的基礎上,著重培養學生獲得數學知識的能力和數學交流的能力;

  2、通過公式的靈活運用,培養學生的轉化思想和變換能力。

  (三)情感目標:

  1、通過觀察、對比體會公式的線形美,對稱美

  2、通過教師啟發引導,培養學生不怕困難,勇于探索勇于創新的求知精神。

  三、學情分析:

  根據現在的學生知識遷移能力差、計算能力差的特點,第一節課不要太多公式應用。

  四、教法分析

  1、創設情境----提出問題----探索嘗試----啟發引導----解決問題。

  引導學生建立一直角坐標系xOy,同時在這一坐標系內作單位圓O,并作出角,使角的始邊為Ox,交圓O于點,終邊交圓O于點;角的始邊為O,終邊交圓O于,角的始邊為O,終邊交圓O于點,并引導學生用的三角函數標出點的坐標。并充分利用單位圓、平面內兩點的距離公式,使學生弄懂由距離等式化得的三角恒等式,并整理成為余弦的和角公式,從而克服本課的難點。

  2、教具:多媒體投影系統。(多媒體系統可以有效增加課堂容量,色彩的強烈對比可以突出對比效果;動畫的應用可以將抽象的問題直觀化,體現直觀性原則。)

  五、學法指導

  1、能靈活求寫角的終邊與單位圓的交點坐標,并結合平面幾何知識推證出公式。

  2、本節的中心公式是,然后對作不同的特值代換可得其他公式,故靈活適當的代換是學好本節內容的基礎。

  3、讓學生注意觀察、對比兩角和與差的余弦公式中正弦、余弦的順序;角的順序關系,培養學生的觀察能力,并通過觀察體會公式的對稱美。

  在教學過程中,啟動學生自主性學習,自得知識,自覓規律,自悟原理,主動發展思維和能力。

  六、教學過程

 。ㄒ唬┬抡n引入,產生對公式的需求。

  1、學生先討論“ =cos(450+300)=cos450+cos300是否成立?”。(學生可能通過計算器、量余弦線的長度、特殊角三角函數值和余弦函數的值域三種途徑解決問題)。得出cos(450+300)≠cos450 +cos300。進而得出cos(α+β)≠cosα+cosβ這個結論。那么此時又是多少,75°,15°雖然不是特殊角,但有某種特殊性,即可以表示成特殊角的和與差。那么能不能由特殊角的三角函數值來表示這種和角與差角的三角函數值?

  2、如果特殊角可以,對一般的兩個角,當它的三角函數值已知時,能否求出和與差的三角函數值?即能否用單角的三角函數來表示復角的三角函數呢?提出cos(α+β)又等于什么呢?寫出標題。

 。ǘ╊A備知識

  在解決上面的問題之前,我們先來作一點準備,解決“平面內兩點間距離的公式”這一問題。

 。1)回憶初中學習過的數軸上的兩點間的距離公式

 。2)通過上面的復習,我們已經熟悉了數軸上兩點間距離公式。那么,平面內兩點間距離與這兩點的坐標有什么樣的關系呢?(通過課件演示讓學生體會平面內兩點間距離和同一坐標軸上兩點間距離的關系)

  平面內兩點間距離公式推導分析:設P1(x1,y1),P2(x2,y2)由勾股定理聯想從P1、P2分別作X、Y軸的垂線,則有:M1(x1,0),M2(x2,0),N1(0,y1),N2(0,y2)。通過演示課件P1Q= M1M2=│x2-x1│ QP2= N1N2=│y2-y1│根據勾股定理寫出P1P22=P1Q2+QP22=(x2-x1)2+(y2-y1)2。由此得平面內P1(x1,y1)、P2(x2,y2)兩點間的距離公式:P1P2= (x2-x1)2+(y2-y1)2

  習:P(3,-1),Q(-3,-9)求PQ(建議這部分不要花太多時間)

 。3)、復習單位圓上點的坐標表示,為推導公式作鋪墊。

 。ㄈ┕酵茖

  我們要用α、β、α+β的三角函數來表示α+β的余弦,那么就得作出α、β、α+β的角,構造α、β、α+β的角時,聯想建坐標系、作單位圓。(1)分別指出點P1、P2、P3的`坐標。(2)求出弦P1P3的長。(3)思考構造弦P1P3的等量關系。當發現|P1P3|可以用cos(α+β)表示時,想到應該尋找與P1P3相等的弦,從而才想到作出角(-β)。

  在直角坐標系內做單位圓,并做出任意角α,α+β和-β。它們的終邊分別交單位圓于P2、P3和P4點,單位圓與X軸交于P1。則:P1(1,0)、 P2(cosα,sinα)、P3(cos(α+β),sin(α+β))、

  1.根據“同圓中相等的圓心角所對的弦相等”得到距離等式

  2.將轉化為三角恒等式,逐步變形整理成余弦的和角公式。

  [cos(α+β)-1]2+sin2(α+β)=[cos(-β)-cosα]2+[sin(-β)-sinα]2展開,整理得2-2cos(α+β)=2-2cosαcosβ+2sinαsinβ

  所以cos(α+β)=cosαcosβ-sinαsinβ.記作

  注意:(1)公式的結構特征:左邊是兩角和的余弦,右邊是兩兩同名函數的積。

 。2)公式的記憶口訣:哥哥撿傘傘(用音譯,讓學生覺得有趣并得以記住公式)

 。3)公式的用途:用單角α、β的三角函數來表示復角的α+β余弦

  (4)注意強調公式中α、β是任意角。因為α、β是任意角,且兩點間的距離公式具有一般性,所以此公式適用于任意角,具有一般性。以后可以用此公式導出其它公式,如用-β去代替β導出C(α-β) 。

 。ㄋ模┕綉

  正因為α、β的任意性,所以賦予C(α+β)公式的強大生命力。

  提問:

  1、請用特殊角分別代替公式中α、β,你會求出哪些非特殊角的值呢?

  讓學生動筆自由嘗試、主動探索。同學會求cos15°、cos75°、cos105°等。

  2、若β固定,分別用代替α,你將發現什么結論呢?

  用C(α±β)公式得到證明:讓學生發現C(α±β)公式是誘導公式的推廣,誘導公式是C(α±β)公式的特殊情況。當其中一個角是的整數倍時用誘導公式較好。

  由P1P3=P2P4(同圓相等的

  圓心角所對弦相等)及兩點

  間距離公式,得:

  [cos(α+β)-1]2+[sin(α+β)-0]2

  =[cos(-β)-cosα]2+[sin(-β)-sinα]2

  展開整理合并得:

  cos(α+β)=cosα cosβ-sinαsinβ這就是兩角和的余弦公式。(其中α,β為任意角)將其中β換成-β,公式仍成立:

  cos(α+ β)=cosαcosβ -sinαsinβ

  cos(α+(-β))= cosαcos(-β)-sinαsin(-β)

  化簡得兩角差的余弦公式:

  cos(α-β)= cosαcosβ+sinαsinβ

  求證:(1)cos(-α)= sinα

 。2)sin(-α)= cosα

  證明:

 。1)cos(-α)=cos cosα+sin sinα

  =sinα

  (2)sin(-α)=cos[ -(-α)]

  =cosα

  證明(1)、(2)的結論即為誘導公式。

  例1、利用和(差)角公式求750、150角的余弦。

  分析:將750可以看成450+300而450和300均為特殊

  角,借助它們即可求出750的余弦。(學生自己完成)

  解:cos750 = cos(450+300)

  = cos450cos300 -sin450sin300

  = ×- ×

  =cos150

  = cos(450-300)

  = cos450cos300+sin450sin300

高中數學的說課稿11

  尊敬的各位評委、各位老師大家好!我說課的題目是《直線的點斜式方程》,選自人民教育出版社普通高中課程標準試驗教科書數學必修2(A版),是第三章直線與方程中的第2節的第一課時3.2.1直線的點斜式方程的內容。下面我將從教學背景、教學方法、教學過程及教學特點等四個方面具體說明。

  一、教學背景的分析

  1.教材分析

  直線的方程是學生在初中學習了一次函數的概念和圖象及高中學習了直線的斜率后進行研究的。直線的方程屬于解析幾何學的基礎知識,是研究解析幾何學的開始,對后續研究兩條直線的位置關系、圓的方程、直線與圓的位置關系、圓錐曲線等內容,無論在知識上還是方法上都是地位顯要,作用非同尋常,是本章的重點內容之一!爸本的點斜式方程”可以說是直線的方程的形式中最重要、最基本的形式,在此花多大的時間和精力都不為過。直線作為常見的最簡單的曲線,在實際生活和生產實踐中有著廣泛的應用。同時在這一節中利用坐標法來研究曲線的數形結合、幾何直觀等數學思想將貫穿于我們整個高中數學教學。

  2.學情分析

  我校的生源較差,學生的基礎和學習習慣都有待加強。又由于剛開始學習解析幾何,第一次用坐標法來求曲線的方程,在學習過程中,會出現“數”與“形”相互轉化的困難。另外我校學生在探究問題的能力,合作交流的意識等方面更有待加強。

  根據上述教材分析,考慮到學生已有的認知結構和心理特征,我制定如下教學目標:

  3.教學目標

  (1)了解直線的方程的概念和直線的點斜式方程的推導過程及方法;

  (2)明確點斜式、斜截式方程的形式特點和適用范圍;初步學會準確地使用直線的點斜式、斜截式方程 ;

  (3)從實例入手,通過類比、推廣、特殊化等,使學生體會從特殊到一般再到特殊的認知規律;

  (4)提倡學生用舊知識解決新問題,通過體會直線的斜截式方程與一次函數的關系等活動,培養學生主動探究知識、合作交流的意識,并初步了解數形結合在解析幾何中的應用。

  4. 教學重點與難點

  (1)重點: 直線點斜式、斜截式方程的特點及其初步應用。

  (2)難點:直線的方程的概念,點斜式方程的推導及點斜式、斜截式方程的應用。

  二、教法學法分析

  1.教法分析:根據學情,為了能調動學生學習的.積極性,本節課采用“實例引導的啟發式”問題教學法。幫助學生將幾何問題代數化,用代數的語言描述直線的幾何要素及其關系,進而將直線的問題轉化為直線方程的問題,通過對直線的方程的研究,最終解決有關直線的一些簡單的問題。另外可以恰當的利用多媒體課件進行輔助教學,激發學生的學習興趣。

  2.學法分析:學生從問題中嘗試、總結、質疑、運用,體會學習數學的樂趣;通過推導直線的點斜式方程的學習,要了解用坐標法求方程的思想;通過一個點和方向可以確定一條直線,進而可求出直線的點斜式方程,要能體會“形”與“數”的轉化思想。

  下面我就對具體的教學過程和設計加以說明:

  三、教學過程的設計及實施

  整個教學過程是由六個問題組成,共分為四個環節,學習或涉及四個概念:

  溫故知新,澄清概念----直線的方程

  深入探究,獲得新知--------點斜式

  拓展知識,再獲新知--------斜截式

  小結引申,思維延續--------兩點式

  平面上的點可以用坐標表示,直線的傾斜程度可以用斜率表示,那么平面上的直線如何表示呢?這就是本節要學習的內容。

  (一)溫故知新,澄清概念----直線的方程

  問題一:畫出一次函數y=2x+1的圖象;y=2x+1是一個方程嗎?若是,那么方程的解與圖象上的點的坐標有何關系?

  [學生活動] 通過動手畫圖,思考并嘗試用語言進行初步的表述。

  [教師活動] 對于不同學生的表述進行分析、歸納,用規范的語言對方程和直線的方程進行描述。

  [設計意圖]從學生熟知的舊知識出發澄清直線的方程的概念,試圖做到“用學生已有的數學知識去學數學”,從而突破難點。通過對這個問題的研究,一方面認識到以方程的解為坐標的點在直線上,另一方面認識到直線上的點的坐標滿足方程;從而使同學意識到直線可以由直線上任意一點P(x,y)的坐標x和y之間的等量關系來表示。

  問題二:若直線經過點A(-1, 3),斜率為-2,點P在直線l上。

  (1) 若點P在直線l上從A點開始運動,橫坐標增加1時,點P的坐標是 ;

  (2)畫出直線l,你能求出直線l的方程嗎?

  (3)若點P在直線l上運動,設P點的坐標為(x,y),你會有什么方法找到x,y滿足的關系式?

  [學生活動]學生獨立思考5分鐘,必要的話可進行分組討論、合作交流。

  [教師活動]巡視?隙▽W生的各種方法及大膽嘗試的行為;并引導學生觀察發現,得到當點P在直線l上運動時(除點 A外),點P與定點A(-1, 3)所確定的直線的斜率恒等于-2,體會“動中有靜”的思維策略。

  [設計意圖]復習斜率公式;待定系數法;初步體會坐標法。同時引導學生注意為什么要把分式化簡?(若不化簡,就少一點),感受數學簡潔的美感和嚴謹性。還要指出這樣的事實:當點P在直線l上運動時,P的坐標(x,y)滿足方程2x+y-1=0.反過來,以方程2x+y-1=0的解為坐標的點在直線l上。把學生的思維引到用坐標法研究直線的方程上來,此時再把問題深入,進入第二環節。

  (二)深入探究,獲得新知----點斜式

  問題三: ① 若直線l經過點P0(x0,y0),且斜率為k,求直線l的方程。

 、谥本的點斜式方程能否表示經過P0(x0,y0)的所有直線?

  [學生活動] ①學生敘述,老師板書,強調斜率公式與點斜式的區別。 ②指導學生用筆轉一轉不難發現,當直線l的傾斜角α=90°時,斜率k不存在,當然不存在點斜式方程;討論k=0的情況;觀察并總結點斜式方程的特征。

  [設計意圖] 由特殊到一般的學習思路,突破難點,培養學生的歸納概括能力。通過對這個問題的探究使學生獲得直線點斜式方程;由②知:當直線斜率k不存在時,不能用點斜式方程表示直線,培養思維的嚴謹性,這時直線l與y軸平行,它上面的每一點的橫坐標都等于x0,直線l的方程是:x=x0;通過學生的觀察討論總結,明確點斜式方程的形式特點和適用范圍,通過下面的例題和基礎練習,突破重難點。

  問題四:分別求經過點且滿足下列條件的直線的方程

  (1) 斜率;(2)傾斜角; (3)與軸平行 ;(4)與軸垂直。

  [練習]P95.1、2。

  [學生活動]學生獨立完成并展示或敘述,老師點評。

  [設計意圖]充分用好教材的例題和習題,因為這些題都是專家精心編排的,充分體現必要性及合理性;做到及時反饋,便于反思本環節的教學,指導下個環節的安排;突破重點內容后,進入第三環節。

  (三)拓展知識,再獲新知----斜截式

  問題五:(1)一條直線與y軸交于點(0,3),直線的斜率為2,求這條直線的方程。

  (2)若直線l斜率為k,且與y軸的交點是 P(0,b),求直線l的方程。

  [學生活動]學生獨立完成后口述,教師板書。

  [設計意圖] 由一般到特殊再到一般,培養學生的推理能力,同時引出截距的概念及斜截式方程,強調截距不是距離。類比點斜式明確斜截式方程的形式特點和適用范圍及幾何意義,并討論其與一次函數的關系。通過下面的基礎練習,突破重點。

  [練習]P95.3。

  [設計意圖]充分用好教材習題,及時反饋本環節的教學情況,指導下個環節的安排。

  (四)小結引申,思維延續----兩點式

  課堂小結 1、有哪些收獲?(點斜式方程:;斜截式方程:;求直線方程的方法:公式法、等斜率法、待定系數法。)

  2、哪些地方還沒有學好?

  問題六:(1)直線l過(1,0)點,且與直線平行,求直線l的方程。

  (2)直線l過點(2,-1)和點(3,-3),求直線l的方程。

  [學生活動]學生獨立思考并嘗試自主完成,可以相互討論,探討解題思路。

  [教師活動]教師深入學生中,與學生交流,了解學生思考問題的進展過程,有時間的話,可以讓學生口述解題思路,也可以投影學生的證明過程,糾正出現的錯誤,規范書寫的格式;沒時間就布置分層作業。

  [設計意圖](1)小題與上一節的平行綜合,學生應該有思路求出方程;(2)小題解決方法較多,預設有利用公式法、等斜率法、待定系數法,讓好一點的學生有一些發散思維的機會,以及課后學習的空間,使探究氣氛有一點高潮。另外也為下節課研究直線的兩點式方程作了重要的準備。

  分層作業 必做題:P100.A組:1.(1)(2)(3)、5.

  選做題:P100.A組:1.(4)(5)(6).

  [設計意圖]通過分層作業,做到因材施教,使不同的學生在數學上得到不同的發展,讓每一個學生都得到符合自身實踐的感悟,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發學生飽滿的學習興趣,促進學生自主發展。

  四、教學特點分析

  (一)實例引導。在字母運算、公式推導之前,總是用實例作為鋪墊,使學生有學習知識的可能和興趣,關注學困生的成長與發展。

  (二)啟發式教學。教學中總是以提問的方式敘述所學內容,如:1.直角坐標系內的所有直線都有點斜式方程嗎?2.截距是距離嗎?它可以是負數嗎?3.你會求直線在軸上的截距嗎?4.觀察方程 ,它的形式具有什么特點?它與我們學過的一次函數有什么關系?等等。啟發學生的思維,作好與學生的對話與交流活動。

  (三)注重自主探究。設計問題鏈,環環相扣,使學生的探究活動貫穿始終。教師總是站在學生思維的最近發展區上,布設了由淺入深的學習環境突破重點、難點,引導學生逐步發現知識的形成過程。設計了兩次思維發散點,分別是問題二和問題六的第(2)問,要求學生分組討論,合作交流,為學生創造充分的探究空間,學生在交流成果的過程中,高效的完成教學任務。

高中數學的說課稿12

  大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個方面介紹我這堂課的教學設計。

  一 教材分析

  本節知識是必修五第一章《解三角形》的第一節內容,與初中學習的三角形的邊和角的基本關系有密切的聯系與判定三角形的全等也有密切聯系,在日常生活和工業生產中也時常有解三角形的問題,而且解三角形和三角函數聯系在高考當中也時?家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。

  根據上述教材內容分析,考慮到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:

  認知目標:在創設的問題情境中,引導學生發現正弦定理的內容,推證正弦定理及簡單運用正弦定理與三角形的內角和定理解斜三角形的兩類問題。

  能力目標:引導學生通過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養學生的創新意識和觀察與邏輯思維能力,能體會用向量作為數形結合的工具,將幾何問題轉化為代數問題。

  情感目標:面向全體學生,創造平等的教學氛圍,通過學生之間、師生之間的交流、合作和評價,調動學生的主動性和積極性,給學生成功的體驗,激發學生學習的興趣。

教學重點:正弦定理的內容,正弦定理的證明及基本應用。

  教學難點:正弦定理的`探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數。

  二 教法

  根據教材的內容和編排的特點,為是更有效地突出重點,空破難點,以學業生的發展為本,遵照學生的認識規律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想, 采用探究式課堂教學模式,即在教學過程中,在教師的啟發引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發現”為基本探究內容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。突破重點的手段:抓住學生情感的興奮點,激發他們的興趣,鼓勵學生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進。另外,抓知識選擇的切入點,從學生原有的認知水平和所需的知識特點入手,教師在學生主體下給以適當的提示和指導。突破難點的方法:抓住學生的能力線聯系方法與技能使學生較易證明正弦定理,另外通過例題和練習來突破難點

  三 學法:

  指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結合,體現學生的主體地位,增強學生由特殊到一般的數學思維能力,形成了實事求是的科學態度,增強了鍥而不舍的求學精神。

  四 教學過程

  第一:創設情景,大概用2分鐘

  第二:實踐探究,形成概念,大約用25分鐘

  第三:應用概念,拓展反思,大約用13分鐘

  (一)創設情境,布疑激趣

  “興趣是最好的老師”,如果一節課有個好的開頭,那就意味著成功了一半,本節課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。

 。ǘ┨綄ぬ乩岢霾孪

  1.激發學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發現正弦定理。

  2.那結論對任意三角形都適用嗎?指導學生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。

  3.讓學生總結實驗結果,得出猜想:

  在三角形中,角與所對的邊滿足關系

  這為下一步證明樹立信心,不斷的使學生對結論的認識從感性逐步上升到理性。

  (三)邏輯推理,證明猜想

  1.強調將猜想轉化為定理,需要嚴格的理論證明。

  2.鼓勵學生通過作高轉化為熟悉的直角三角形進行證明。

  3.提示學生思考哪些知識能把長度和三角函數聯系起來,繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學思想。

  4.思考是否還有其他的方法來證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來證明

 。ㄋ模w納總結,簡單應用

  1.讓學生用文字敘述正弦定理,引導學生發現定理具有對稱和諧美,提升對數學美的享受。

  2.正弦定理的內容,討論可以解決哪幾類有關三角形的問題。

  3.運用正弦定理求解本節課引引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發學生知識后用于實際的價值觀。

 。ㄎ澹┲v解例題,鞏固定理

  1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

  例1簡單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

  2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

高中數學的說課稿13

  各位評委老師,大家好!

  我是本科數學**號選手,今天我要進行說課的課題是高中數學必修一第一章第三節第一課時《函數單調性與最大(。┲怠罚ǹ梢栽谶@時候板書課題,以緩解緊張)。我將從教材分析;教學目標分析;教法、學法;教學過程;教學評價五個方面來陳述我對本節課的設計方案。懇請在座的專家評委批評指正。

  一、教材分析

  1、 教材的地位和作用

  (1)本節課主要對函數單調性的學習;

  (2)它是在學習函數概念的基礎上進行學習的,同時又為基本初等函數的學習奠定了基礎,所以他在教材中起著承前啟后的重要作用;(可以看看這一課題的前后章節來寫)

 。3)它是歷年高考的熱點、難點問題

 。ǜ鶕唧w的課題改變就行了,如果不是熱點難點問題就刪掉)

  2、 教材重、難點

  重點:函數單調性的定義

  難點:函數單調性的證明

  重難點突破:在學生已有知識的基礎上,通過認真觀察思考,并通過小組合作探究的辦法來實現重難點突破。(這個必須要有)

  3.學情分析

  高一學生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過渡到理性思維,并由此向邏輯思維發展,但學生思維不成熟、不嚴密、意志力薄弱,故而整個教學環節總是創設恰當的問題情境,引導學生積極思考,培養他們的邏輯思維能力。從學生的認知結構來看,他們只能根據函數的圖象觀察出“隨著自變量的增大函數值增大”等變化趨勢,所以在教學中要充分利用好函數圖象的直觀性,發揮好多媒體教學的優勢;由于學生在概念的掌握上缺少系統性、嚴謹性,在教學中注意加強.

  二、教學目標

  知識目標:

 。1)函數單調性的定義

  (2)函數單調性的證明

  能力目標:

  培養學生全面分析、抽象和概括的能力,以及了解由簡單到復雜,由特殊到一般的化歸思想

  情感目標:

  培養學生勇于探索的`精神和善于合作的意識

  (這樣的教學目標設計更注重教學過程和情感體驗,立足教學目標多元化)

  三、教法學法分析

  1、教法分析

  “教必有法而教無定法”,只有方法得當才會有效。新課程標準之處教師是教學的組織者、引導者、合作者,在教學過程要充分調動學生的積極性、主動性。本著這一原則,在教學過程中我主要采用以下教學方法:開放式探究法、啟發式引導法、小組合作討論法、反饋式評價法

  2、學法分析

  “授人以魚,不如授人以漁”,最有價值的知識是關于方法的只是。學生作為教學活動的主題,在學習過程中的參與狀態和參與度是影響教學效果最重要的因素。在學法選擇上,我主要采用:自主探究法、觀察發現法、合作交流法、歸納總結法。

  (前三部分用時控制在三分鐘以內,可適當刪減)

  四、教學過程

  1、以舊引新,導入新知

  通過課前小研究讓學生自行繪制出一次函數f(x)=x和二次函數f(x)=x^2的圖像,并觀察函數圖象的特點,總結歸納。通過課上小組討論歸納,引導學生發現,教師總結:一次函數f(x)=x的圖像在定義域是直線上升的,而二次函數f(x)=x^2的圖像是一個曲線,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當添加手勢,這樣看起來更自然)

  2、創設問題,探索新知

  緊接著提出問題,你能用二次函數f(x)=x^2表達式來描述函數在(-∞,0)的圖像?教師總結,并板書,揭示函數單調性的定義,并注意強調可以利用作差法來判斷這個函數的單調性。

  讓學生模仿剛才的表述法來描述二次函數f(x)=x^2在(0,+∞)的圖像,并找個別同學起來作答,規范學生的數學用語。

  讓學生自主學習函數單調區間的定義,為接下來例題學習打好基礎。

  3、 例題講解,學以致用

  例1主要是對函數單調區間的鞏固運用,通過觀察函數定義在(—5,5)的圖像來找出函數的單調區間。這一例題主要以學生個別回答為主,學生回答之后通過互評來糾正答案,檢查學生對函數單調區間的掌握。強調單調區間一般寫成半開半閉的形式

  例題講解之后可讓學生自行完成課后練習4,以學生集體回答的方式檢驗學生的學習效果。

  例2是將函數單調性運用到其他領域,通過函數單調性來證明物理學的波意爾定理。這是歷年高考的熱點跟難點問題,這一例題要采用教師板演的方式,來對例題進行證明,以規范總結證明步驟。一設二差三化簡四比較,注意要把f(x1)-f(x2)化簡成和差積商的形式,再比較與0的大小。

  學生在熟悉證明步驟之后,做課后練習3,并以小組為單位找部分同學上臺板演,其他同學在下面自行完成,并通過自評、互評檢查證明步驟。

  4、歸納小結

  本節課我們主要學習了函數單調性的定義及證明過程,并在教學過程中注重培養學生勇于探索的精神和善于合作的意識。

  5、作業布置

  為了讓學生學習不同的數學,我將采用分層布置作業的方式:一組 習題1.3A組1、2、3 ,二組 習題1.3A組2、3、B組1、2

  6、板書設計

  我力求簡潔明了地概括本節課的學習要點,讓學生一目了然。

 。ㄟ@部分最重要用時六到七分鐘,其中定義講解跟例題講解一定要說明學生的活動)

  五、教學評價

  本節課是在學生已有知識的基礎上學習的,在教學過程中通過自主探究、合作交流,充分調動學生的積極性跟主動性,及時吸收反饋信息,并通過學生的自評、互評,讓內部動機和外界刺激協調作用,促進其數學素養不斷提高。

高中數學的說課稿14

  高三第一階段復習,也稱“知識篇”。在這一階段,學生重溫高一、高二所學課程,全面復習鞏固各個知識點,熟練掌握基本方法和技能;然后站在全局的高度,對學過的知識產生全新認識。在高一、高二時,是以知識點為主線索,依次傳授講解的,由于后面的相關知識還沒有學到,不能進行縱向聯系,所以,學的知識往往是零碎和散亂,而在第一輪復習時,以章節為單位,將那些零碎的、散亂的知識點串聯起來,并將他們系統化、綜合化,把各個知識點融會貫通。對于普通高中的學生,第一輪復習更為重要,我們希望能做高考試題中一些基礎題目,必須側重基礎,加強復習的針對性,講求實效。

  一、內容分析說明

  1、本小節內容是初中學習的多項式乘法的繼續,它所研究的二項式的乘方的展開式,與數學的其他部分有密切的聯系:

  (1)二項展開式與多項式乘法有聯系,本小節復習可對多項式的變形起到復習深化作用。

 。2)二項式定理與概率理論中的二項分布有內在聯系,利用二項式定理可得到一些組合數的恒等式,因此,本小節復習可加深知識間縱橫聯系,形成知識網絡。

  (3)二項式定理是解決某些整除性、近似計算等問題的一種方法。

  2、高考中二項式定理的試題幾乎年年有,多數試題的難度與課本習題相當,是容易題和中等難度的

  試題,考察的題型穩定,通常以選擇題或填空題出現,有時也與應用題結合在一起求某些數、式的

  近似值。

  二、學校情況與學生分析

 。1)我校是一所鎮普通高中,學生的基礎不好,記憶力較差,反應速度慢,普遍感到數學難學。但大部分學生想考大學,主觀上有學好數學的愿望。

  (2)授課班是政治、地理班,學生聽課積極性不高,聽課率低(60﹪),注意力不能持久,不能連續從事某項數學活動。課堂上喜歡輕松詼諧的氣氛,大部分能機械的模仿,部分學生好記筆記。

  三、教學目標

  復習課二項式定理計劃安排兩個課時,本課是第一課時,主要復習二項展開式和通項。根據歷年高考對這部分的考查情況,結合學生的特點,設定如下教學目標:

  1、知識目標:(1)理解并掌握二項式定理,從項數、指數、系數、通項幾個特征熟記它的展開式。

 。2)會運用展開式的通項公式求展開式的特定項。

  2、能力目標:(1)教給學生怎樣記憶數學公式,如何提高記憶的持久性和準確性,從而優化記憶品質。記憶力是一般數學能力,是其它能力的基礎。

  (2)樹立由一般到特殊的解決問題的意識,了解解決問題時運用的數學思想方法。

  3、情感目標:通過對二項式定理的復習,使學生感覺到能掌握數學的部分內容,樹立學好數學的信心。有意識地讓學生演練一些歷年高考試題,使學生體驗到成功,在明年的高考中,他們也能得分。

  四、教學過程

  1、知識歸納

 。1)創設情景:

 、偻瑢W們,還記得嗎? 、 展開式是什么?

 、趯W生一起回憶、老師板書。

  設計意圖:

  ①提出比較容易的問題,吸引學生的注意力,組織教學。

  ②為學生能回憶起二項式定理作鋪墊:激活記憶,引起聯想。

 。2)二項式定理:①設問 展開式是什么?待學生思考后,老師板書

  = C an+C an-1b1+…+C an-rbr+…+C bn(n∈N__)

 、诶蠋熞髮W生說出二項展開式的特征并熟記公式:共有 項;各項里a的指數從n起依次減小1,直到0為止;b的指數從0起依次增加1,直到n為止。每一項里a、b的指數和均為n。

 、垤柟叹毩 填空

  設計意圖:

 、俳探o學生記憶的方法,比較分析公式的特點,記規律。

 、谧冇霉剑煜す。

  (3) 展開式中各項的系數C , C , C ,… , 稱為二項式系數.

  展開式的通項公式Tr+1=C an-rbr , 其中r= 0,1,2,…n表示展開式中第r+1項.

  2、例題講解

  例1求 的展開式的第4項的二項式系數,并求的第4項的系數。

  講解過程

  設問:這里 ,要求的第4項的有關系數,如何解決?

  學生思考計算,回答問題;

  老師指明

  ①當項數是4時, ,此時 ,所以第4項的二項式系數是 ,②第4項的系數與的第4項的二項式系數區別。

  板書

  解:展開式的第4項

  所以第4項的系數為 ,二項式系數為 。

  選題意圖:

 、倮猛椆角箜椀南禂岛投検较禂担

 、趶土曋笖祪邕\算。

  例2 求 的展開式中不含的 項。

  講解過程

  設問:

  ①不含的 項是什么樣的項?即這一項具有什么性質?

 、趩栴}轉化為第幾項是常數項,誰能看出哪一項是常數項?

  師生討論 “看不出哪一項是常數項,怎么辦?”

  共同探討思路:利用通項公式,列出項數的方程,求出項數。

  老師總結思路:先設第 項為不含 的項,得 ,利用這一項的指數是零,得到關于 的方程,解出 后,代回通項公式,便可得到常數項。

  板書

  解:設展開式的第 項為不含 項,那么

  令 ,解得 ,所以展開式的第9項是不含的 項。

  因此 。

  選題意圖:

  ①鞏固運用展開式的通項公式求展開式的特定項,形成基本技能。

  ②判斷第幾項是常數項運用方程的思想;找到這一項的項數后,實現了轉化,體現轉化的數學思想。

  例3求 的展開式中, 的系數。

  解題思路:原式局部展開后,利用加法原理,可得到展開式中的 系數。

  板書

  解:由于 ,則 的展開式中 的系數為 的展開式中 的系數之和。

  而 的展開式含 的項分別是第5項、第4項和第3項,則 的展開式中 的系數分別是: 。

  所以 的展開式中 的系數為

  例4 如果在( + )n的展開式中,前三項系數成等差數列,求展開式中的有理項.

  解:展開式中前三項的系數分別為1, , ,由題意得2× =1+ ,得n=8.

  設第r+1項為有理項,T =C · ·x ,則r是4的'倍數,所以r=0,4,8.

  有理項為T1=x4,T5= x,T9= .

  3、課堂練習

  1.(20__年江蘇,7)(2x+ )4的展開式中x3的系數是

  A.6B.12 C.24 D.48

  解析:(2x+ )4=x2(1+2 )4,在(1+2 )4中,x的系數為C ·22=24.

  答案:C

  2.(20__年全國Ⅰ,5)(2x3- )7的展開式中常數項是

  A.14 B.14 C.42 D.-42

  解析:設(2x3- )7的展開式中的第r+1項是T =C (2x3) (- )r=C 2 ·

  (-1)r·x ,當- +3(7-r)=0,即r=6時,它為常數項,∴C (-1)6·21=14.

  答案:A

  3.(20__年湖北,文14)已知(x +x )n的展開式中各項系數的和是128,則展開式中x5的系數是_____________.(以數字作答)

  解析:∵(x +x )n的展開式中各項系數和為128,∴令x=1,即得所有項系數和為2n=128.

  ∴n=7.設該二項展開式中的r+1項為T =C (x ) ·(x )r=C ·x ,令 =5即r=3時,x5項的系數為C =35.

  答案:35

  五、課堂教學設計說明

  1、這是一堂復習課,通過對例題的研究、討論,鞏固二項式定理通項公式,加深對項的系數、項的二項式系數等有關概念的理解和認識,形成求二項式展開式某些指定項的基本技能,同時,要培養學生的運算能力,邏輯思維能力,強化方程的思想和轉化的思想。

  2、在例題的選配上,我設計了一定梯度。第一層次是給出二項式,求指定的項,即項數已知,只需直接代入通項公式即可(例1);第二層次(例2)則需要自己創造代入的條件,先判斷哪一項為所求,即先求項數,利用通項公式中指數的關系求出,此后轉化為第一層次的問題。第三層次突出數學思想的滲透,例3需要變形才能求某一項的系數,恒等變形是實現轉化的手段。在求每個局部展開式的某項系數時,又有分類討論思想的指導。而例4的設計是想增加題目的綜合性,求的n過程中,運用等差數列、組合數n等知識,求出后,有化歸為前面的問題。

  六、個人見解

高中數學的說課稿15

  一、教材分析

  (一)教材的地位和作用

  “一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發展,又是本章集合知識的運用與鞏固,也為下一章函數的定義域和值域教學作鋪墊,起著鏈條的作用。同時,這部分內容較好地反映了方程、不等式、函數知識的內在聯系和相互轉化,蘊含著歸納、轉化、數形結合等豐富的數學思想方法,能較好地培養學生的觀察能力、概括能力、探究能力及創新意識。

  (二)教學內容

  本節內容分2課時學習。本課時通過二次函數的圖象探索一元二次不等式的解集。通過復習“三個一次”的關系,即一次函數與一元一次方程、一元一次不等式的關系;以舊帶新尋找“三個二次”的關系,即二次函數與一元二次方程、一元二次不等式的關系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數學中的和諧美,體驗成功的樂趣。

  二、教學目標分析

  根據教學大綱的要求、本節教材的特點和高一學生的認知規律,本節課的教學目標確定為:

  知識目標——理解“三個二次”的關系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。

  能力目標——通過看圖象找解集,培養學生“從形到數”的轉化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。

  情感目標——創設問題情景,激發學生觀察、分析、探求的學習激情、強化學生參與意識及主體作用。

  三、重難點分析

  一元二次不等式是高中數學中最基本的不等式之一,是解決許多數學問題的重要工具。本節課的重點確定為:一元二次不等式的解法。

  要把握這個重點。關鍵在于理解并掌握利用二次函數的圖象確定一元二次不等式解集的方法——圖象法,其本質就是要能利用數形結合的思想方法認識方程的解,不等式的解集與函數圖象上對應點的橫坐標的內在聯系。由于初中沒有專門研究過這類問題,高一學生比較陌生,要真正掌握有一定的難度。因此,本節課的難點確定為:“三個二次”的關系。要突破這個難點,讓學生歸納“三個一次”的關系作鋪墊。

  四、教法與學法分析

  (一)學法指導

  教學矛盾的主要方面是學生的學。學是中心,會學是目的。因此在教學中要不斷指導學生學會學習。本節課主要是教給學生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學習方法,這樣做增加了學生自主參與,合作交流的機會,教給了學生獲取知識的途徑、思考問題的方法,使學生真正成了教學的主體;只有這樣做,才能使學生“學”有新“思”,“思”有新“得”,“練”有新“獲”,學生也才會逐步感受到數學的美,會產生一種成功感,從而提高學生學習數學的興趣;也只有這樣做,課堂教學才富有時代特色,才能適應素質教育下培養“創新型”人才的需要。

  (二)教法分析

  本節課設計的指導思想是:現代認知心理學——建構主義學習理論。

  建構主義學習理論認為:應把學習看成是學生主動的`建構活動,學生應與一定的知識背景即情景相聯系,在實際情景下進行學習,可以使學生利用已有知識與經驗同化和索引出當前要學習的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。

  本節課采用“誘思引探教學法”。把問題作為出發點,指導學生“畫、看、說、用”。較好地探求一元二次不等式的解法。

  五、課堂設計

  本節課的教學設計充分體現以學生發展為本,培養學生的觀察、概括和探究能力,遵循學生的認知規律,體現理論聯系實際、循序漸進和因材施教的教學原則,通過問題情境的創設,激發興趣,使學生在問題解決的探索過程中,由學會走向會學,由被動答題走向主動探究。

  (一)創設情景,引出“三個一次”的關系

  本節課開始,先讓學生解一元二次方程x2-x-6=0,如果我把“=”改成“>”則變成一元二次不等式x2-x-6>0讓學生解,學生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構造懸念,激活學生的思維興趣。

  為此,我設計了以下幾個問題:

  1、請同學們解以下方程和不等式:

 、2x-7=0;②2x-7>0;③2x-7<0

  學生回答,我板書

【高中數學的說課稿】相關文章:

高中數學向量說課稿09-09

高中數學說課稿11-14

高中數學說課稿06-12

高中數學說課稿[精選]06-10

關于高中數學說課稿11-26

高中數學說課稿范文06-27

高中數學說課稿優秀11-14

高中數學說課稿【精】01-07

高中數學說課稿【薦】01-07