亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

高中數(shù)學(xué)說(shuō)課稿

時(shí)間:2024-05-21 13:58:52 數(shù)學(xué)說(shuō)課稿 我要投稿

高中數(shù)學(xué)說(shuō)課稿(精華15篇)

  作為一名老師,通常會(huì)被要求編寫說(shuō)課稿,借助說(shuō)課稿可以更好地組織教學(xué)活動(dòng)。我們?cè)撛趺慈懻f(shuō)課稿呢?下面是小編幫大家整理的高中數(shù)學(xué)說(shuō)課稿,僅供參考,希望能夠幫助到大家。

高中數(shù)學(xué)說(shuō)課稿(精華15篇)

高中數(shù)學(xué)說(shuō)課稿1

  以下是高中數(shù)學(xué)《等差數(shù)列前n項(xiàng)和的公式》說(shuō)課稿,僅供參考。

  教學(xué)目標(biāo)

  A、知識(shí)目標(biāo):

  掌握等差數(shù)列前n項(xiàng)和公式的推導(dǎo)方法;掌握公式的運(yùn)用。

  B、能力目標(biāo):

  (1)通過(guò)公式的探索、發(fā)現(xiàn),在知識(shí)發(fā)生、發(fā)展以及形成過(guò)程中培養(yǎng)學(xué)生觀察、聯(lián)想、歸納、分析、綜合和邏輯推理的能力。

  (2)利用以退求進(jìn)的思維策略,遵循從特殊到一般的認(rèn)知規(guī)律,讓學(xué)生在實(shí)踐中通過(guò)觀察、嘗試、分析、類比的方法導(dǎo)出等差數(shù)列的求和公式,培養(yǎng)學(xué)生類比思維能力。

  (3)通過(guò)對(duì)公式從不同角度、不同側(cè)面的剖析,培養(yǎng)學(xué)生思維的靈活性,提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。

  C、情感目標(biāo):(數(shù)學(xué)文化價(jià)值)

  (1)公式的發(fā)現(xiàn)反映了普遍性寓于特殊性之中,從而使學(xué)生受到辯證唯物主義思想的熏陶。

  (2)通過(guò)公式的運(yùn)用,樹(shù)立學(xué)生"大眾教學(xué)"的思想意識(shí)。

  (3)通過(guò)生動(dòng)具體的現(xiàn)實(shí)問(wèn)題,令人著迷的數(shù)學(xué)史,激發(fā)學(xué)生探究的興趣和欲望,樹(shù)立學(xué)生求真的勇氣和自信心,增強(qiáng)學(xué)生學(xué)好數(shù)學(xué)的心理體驗(yàn),產(chǎn)生熱愛(ài)數(shù)學(xué)的情感。

  教學(xué)重點(diǎn):等差數(shù)列前n項(xiàng)和的.公式。

  教學(xué)難點(diǎn):等差數(shù)列前n項(xiàng)和的公式的靈活運(yùn)用。

  教學(xué)方法:?jiǎn)l(fā)、討論、引導(dǎo)式。

  教具:現(xiàn)代教育多媒體技術(shù)。

  教學(xué)過(guò)程

  一、創(chuàng)設(shè)情景,導(dǎo)入新課。

  師:上幾節(jié),我們已經(jīng)掌握了等差數(shù)列的概念、通項(xiàng)公式及其有關(guān)性質(zhì),今天要進(jìn)一步研究等差數(shù)列的前n項(xiàng)和公式。提起數(shù)列求和,我們自然會(huì)想到德國(guó)偉大的數(shù)學(xué)家高斯"神速求和"的故事,小高斯上小學(xué)四年級(jí)時(shí),一次教師布置了一道數(shù)學(xué)習(xí)題:"把從1到100的自然數(shù)加起來(lái),和是多少?"年僅10歲的小高斯略一思索就得到答案5050,這使教師非常吃驚,那么高斯是采用了什么方法來(lái)巧妙地計(jì)算出來(lái)的呢?如果大家也懂得那樣巧妙計(jì)算,那你們就是二十世紀(jì)末的新高斯。(教師觀察學(xué)生的表情反映,然后將此問(wèn)題縮小十倍)。我們來(lái)看這樣一道一例題。

  例1,計(jì)算:1+2+3+4+5+6+7+8+9+10.

  這道題除了累加計(jì)算以外,還有沒(méi)有其他有趣的解法呢?小組討論后,讓學(xué)生自行發(fā)言解答。

  生1:因?yàn)?+10=2+9=3+8=4+7=5+6,所以可湊成5個(gè)11,得到55。

  生2:可設(shè)S=1+2+3+4+5+6+7+8+9+10,根據(jù)加法交換律,又可寫成 S=10+9+8+7+6+5+4+3+2+1。

  上面兩式相加得2S=11+10+......+11=10×11=110

  10個(gè)

  所以我們得到S=55,

  即1+2+3+4+5+6+7+8+9+10=55

  師:高斯神速計(jì)算出1到100所有自然數(shù)的各的方法,和上述兩位同學(xué)的方法相類似。

  理由是:1+100=2+99=3+98=......=50+51=101,有50個(gè)101,所以1+2+3+......+100=50×101=5050。請(qǐng)同學(xué)們想一下,上面的方法用到等差數(shù)列的哪一個(gè)性質(zhì)呢?

  生3:數(shù)列{an}是等差數(shù)列,若m+n=p+q,則am+an=ap+aq.

  二、教授新課(嘗試推導(dǎo))

  師:如果已知等差數(shù)列的首項(xiàng)a1,項(xiàng)數(shù)為n,第n項(xiàng)an,根據(jù)等差數(shù)列的性質(zhì),如何來(lái)導(dǎo)出它的前n項(xiàng)和Sn計(jì)算公式呢?根據(jù)上面的例子同學(xué)們自己完成推導(dǎo),并請(qǐng)一位學(xué)生板演。

  生4:Sn=a1+a2+......an-1+an也可寫成

  Sn=an+an-1+......a2+a1

  兩式相加得2Sn=(a1+an)+(a2+an-1)+......(an+a1)

  n個(gè)

  =n(a1+an)

  所以Sn=

  #FormatImgID_0#

  (I)

  師:好!如果已知等差數(shù)列的首項(xiàng)為a1,公差為d,項(xiàng)數(shù)為n,則an=a1+(n-1)d代入公式(1)得

  Sn=na1+

  #FormatImgID_1#

  d(II) 上面(I)、(II)兩個(gè)式子稱為等差數(shù)列的前n項(xiàng)和公式。公式(I)是基本的,我們可以發(fā)現(xiàn),它可與梯形面積公式(上底+下底)×高÷2相類比,這里的上底是等差數(shù)列的首項(xiàng)a1,下底是第n項(xiàng)an,高是項(xiàng)數(shù)n。引導(dǎo)學(xué)生總結(jié):這些公式中出現(xiàn)了幾個(gè)量?(a1,d,n,an,Sn),它們由哪幾個(gè)關(guān)系聯(lián)系?[an=a1+(n-1)d,Sn=

  #FormatImgID_2#

  =na1+

  #FormatImgID_3#

  d];這些量中有幾個(gè)可自由變化?(三個(gè))從而了解到:只要知道其中任意三個(gè)就可以求另外兩個(gè)了。下面我們舉例說(shuō)明公式(I)和(II)的一些應(yīng)用。

  三、公式的應(yīng)用(通過(guò)實(shí)例演練,形成技能)。

  1、直接代公式(讓學(xué)生迅速熟悉公式,即用基本量觀點(diǎn)認(rèn)識(shí)公式)例2、計(jì)算:

  (1)1+2+3+......+n

  (2)1+3+5+......+(2n-1)

  (3)2+4+6+......+2n

  (4)1-2+3-4+5-6+......+(2n-1)-2n

  請(qǐng)同學(xué)們先完成(1)-(3),并請(qǐng)一位同學(xué)回答。

  生5:直接利用等差數(shù)列求和公式(I),得

  (1)1+2+3+......+n=

  #FormatImgID_4#

  (2)1+3+5+......+(2n-1)=

  #FormatImgID_5#

  (3)2+4+6+......+2n=

  #FormatImgID_6#

  =n(n+1)

  師:第(4)小題數(shù)列共有幾項(xiàng)?是否為等差數(shù)列?能否直接運(yùn)用Sn公式求解?若不能,那應(yīng)如何解答?小組討論后,讓學(xué)生發(fā)言解答。

  生6:(4)中的數(shù)列共有2n項(xiàng),不是等差數(shù)列,但把正項(xiàng)和負(fù)項(xiàng)分開(kāi),可看成兩個(gè)等差數(shù)列,所以

  原式=[1+3+5+......+(2n-1)]-(2+4+6+......+2n)

  =n2-n(n+1)=-n

  生7:上題雖然不是等差數(shù)列,但有一個(gè)規(guī)律,兩項(xiàng)結(jié)合都為-1,故可得另一解法:

  原式=-1-1-......-1=-n

  n個(gè)

  師:很好!在解題時(shí)我們應(yīng)仔細(xì)觀察,尋找規(guī)律,往往會(huì)尋找到好的方法。注意在運(yùn)用Sn公式時(shí),要看清等差數(shù)列的項(xiàng)數(shù),否則會(huì)引起錯(cuò)解。

  例3、(1)數(shù)列{an}是公差d=-2的等差數(shù)列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。

  生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4

  又∵d=-2,∴a1=6

  ∴S12=12 a1+66×(-2)=-60

  生9:(2)由a1+a2+a3=12,a1+d=4

  a8+a9+a10=75,a1+8d=25

  解得a1=1,d=3 ∴S10=10a1+

  #FormatImgID_7#

  =145

  師:通過(guò)上面例題我們掌握了等差數(shù)列前n項(xiàng)和的公式。在Sn公式有5個(gè)變量。已知三個(gè)變量,可利用構(gòu)造方程或方程組求另外兩個(gè)變量(知三求二),請(qǐng)同學(xué)們根據(jù)例3自己編題,作為本節(jié)的課外練習(xí)題,以便下節(jié)課交流。

  師:(繼續(xù)引導(dǎo)學(xué)生,將第(2)小題改編)

  ①數(shù)列{an}等差數(shù)列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n

  ②若此題不求a1,d而只求S10時(shí),是否一定非來(lái)求得a1,d不可呢?引導(dǎo)學(xué)生運(yùn)用等差數(shù)列性質(zhì),用整體思想考慮求a1+a10的值。

  2、用整體觀點(diǎn)認(rèn)識(shí)Sn公式。

  例4,在等差數(shù)列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教師啟發(fā)學(xué)生解)

  師:來(lái)看第(1)小題,寫出的計(jì)算公式S16=

  #FormatImgID_8#

  =8(a1+a6)與已知相比較,你發(fā)現(xiàn)了什么?

  生10:根據(jù)等差數(shù)列的性質(zhì),有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。

  師:對(duì)!(簡(jiǎn)單小結(jié))這個(gè)題目根據(jù)已知等式是不能直接求出a1,a16和d的,但由等差數(shù)列的性質(zhì)可求a1與an的和,于是這個(gè)問(wèn)題就得到解決。這是整體思想在解數(shù)學(xué)問(wèn)題的體現(xiàn)。

  師:由于時(shí)間關(guān)系,我們對(duì)等差數(shù)列前n項(xiàng)和公式Sn的運(yùn)用一一剖析,引導(dǎo)學(xué)生觀察當(dāng)d≠0時(shí),Sn是n的二次函數(shù),那么從二次(或一次)的函數(shù)的觀點(diǎn)如何來(lái)認(rèn)識(shí)Sn公式后,這留給同學(xué)們課外繼續(xù)思考。

  最后請(qǐng)大家課外思考Sn公式(1)的逆命題:

  已知數(shù)列{an}的前n項(xiàng)和為Sn,若對(duì)于所有自然數(shù)n,都有Sn=

  #FormatImgID_9#

  。數(shù)列{an}是否為等差數(shù)列,并說(shuō)明理由。

  四、小結(jié)與作業(yè)。

  師:接下來(lái)請(qǐng)同學(xué)們一起來(lái)小結(jié)本節(jié)課所講的內(nèi)容。

  生11:1、用倒序相加法推導(dǎo)等差數(shù)列前n項(xiàng)和公式。

  2、用所推導(dǎo)的兩個(gè)公式解決有關(guān)例題,熟悉對(duì)Sn公式的運(yùn)用。

  生12:1、運(yùn)用Sn公式要注意此等差數(shù)列的項(xiàng)數(shù)n的值。

  2、具體用Sn公式時(shí),要根據(jù)已知靈活選擇公式(I)或(II),掌握知三求二的解題通法。

  3、當(dāng)已知條件不足以求此項(xiàng)a1和公差d時(shí),要認(rèn)真觀察,靈活應(yīng)用等差數(shù)列的有關(guān)性質(zhì),看能否用整體思想的方法求a1+an的值。

  師:通過(guò)以上幾例,說(shuō)明在解題中靈活應(yīng)用所學(xué)性質(zhì),要糾正那種不明理由盲目套用公式的學(xué)習(xí)方法。同時(shí)希望大家在學(xué)習(xí)中做一個(gè)有心人,去發(fā)現(xiàn)更多的性質(zhì),主動(dòng)積極地去學(xué)習(xí)。

  本節(jié)所滲透的數(shù)學(xué)方法;觀察、嘗試、分析、歸納、類比、特定系數(shù)等。

  數(shù)學(xué)思想:類比思想、整體思想、方程思想、函數(shù)思想等。

高中數(shù)學(xué)說(shuō)課稿2

  一、教材分析:

  1、教材的地位與作用。

  本節(jié)內(nèi)容是在學(xué)生學(xué)習(xí)了“事件的可能性的基礎(chǔ)上來(lái)學(xué)習(xí)如何預(yù)測(cè)不確定事件(隨機(jī)事件)發(fā)生的可能性的大小。”用概率預(yù)測(cè)隨機(jī)發(fā)生的可能性大小,在日常生活、自然、科技領(lǐng)域有著廣泛的應(yīng)用,學(xué)習(xí)本單元知識(shí),無(wú)論是今后繼續(xù)深造(高中學(xué)習(xí)概率的乘法定理)還是參加社會(huì)實(shí)踐活動(dòng)都是十分必要的。概率的概念比較抽象,概率的定義學(xué)生較難理解。

  在教材的處理上,采取小單元教學(xué),本節(jié)課安排讓學(xué)生了解求隨機(jī)事件概率的兩種方法,目的`是讓學(xué)生能夠比較系統(tǒng)地理解概率的意義及求概率的方法,為下面學(xué)習(xí)求比較復(fù)雜的情況的概率打下基礎(chǔ)。

  2、重點(diǎn)與難點(diǎn)。

  重點(diǎn):對(duì)概率意義的理解,通過(guò)多次重復(fù)實(shí)驗(yàn),用頻率預(yù)測(cè)概率的方法,以及用列舉法求概率的方法。

  難點(diǎn):對(duì)概率意義的理解和用列舉法求概率過(guò)程中在各種可能性相同條件下某一事件可能發(fā)生的總數(shù)及總的結(jié)果數(shù)的分析。

  二、目的分析:

  知識(shí)與技能:掌握用頻率預(yù)測(cè)概率和用列舉法求概率方法。

  過(guò)程與方法:組織學(xué)生自主探究,合作交流,引導(dǎo)學(xué)生觀察試驗(yàn)和統(tǒng)計(jì)的結(jié)果,進(jìn)而進(jìn)行分析、歸納、總結(jié),了解并感受概率的定義的過(guò)程,引導(dǎo)學(xué)生從數(shù)學(xué)的視角觀察客觀世界,用數(shù)學(xué)的思維思考客觀世界,以數(shù)學(xué)的語(yǔ)言描述客觀世界。

  情感態(tài)度價(jià)值觀:學(xué)生經(jīng)歷觀察、分析、歸納、確認(rèn)等數(shù)學(xué)活動(dòng),感受數(shù)學(xué)活動(dòng)充滿了探索性與創(chuàng)造性,感受量變與質(zhì)變的對(duì)立統(tǒng)一規(guī)律,同時(shí)為概率的精準(zhǔn)、新穎、獨(dú)特的思維方法所震撼,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,增強(qiáng)對(duì)數(shù)學(xué)價(jià)值觀的認(rèn)識(shí)。

  三、教法、學(xué)法分析:

  引導(dǎo)學(xué)生自主探究、合作交流、觀察分析、歸納總結(jié),讓學(xué)生經(jīng)歷知識(shí)(概率定義計(jì)算公式)的產(chǎn)生和發(fā)展過(guò)程,讓學(xué)生在數(shù)學(xué)活動(dòng)中學(xué)習(xí)數(shù)學(xué)、掌握數(shù)學(xué),并能應(yīng)用數(shù)學(xué)解決現(xiàn)實(shí)生活中的實(shí)際問(wèn)題,教師是學(xué)生學(xué)習(xí)的組織者、合作者和指導(dǎo)者,精心設(shè)計(jì)教學(xué)情境,有序組織學(xué)生活動(dòng),讓課堂充滿生機(jī)活力,體現(xiàn)“教” 為“學(xué)”服務(wù)這一宗旨。

  四、教學(xué)過(guò)程分析:

  1、引導(dǎo)學(xué)生探究

  精心設(shè)計(jì)問(wèn)題一,學(xué)生通過(guò)對(duì)問(wèn)題一的探究,一方面復(fù)習(xí)前面學(xué)過(guò)的“確定事件和不確定事件”的知識(shí),為學(xué)好本節(jié)內(nèi)容理清知識(shí)障礙,二是讓學(xué)生明確為什么要學(xué)習(xí)概率(如何預(yù)測(cè)隨機(jī)事件可能性發(fā)生大小)。引導(dǎo)學(xué)生對(duì)問(wèn)題二的探究與觀察實(shí)驗(yàn)數(shù)據(jù),使學(xué)生了解概率這一重要概念的實(shí)際背景,感受并相信隨機(jī)事件的發(fā)生中存在著統(tǒng)計(jì)規(guī)律性,感受數(shù)學(xué)規(guī)律的真實(shí)的發(fā)現(xiàn)過(guò)程。

  2、歸納概括

  學(xué)生從試驗(yàn)中得到的統(tǒng)計(jì)數(shù)字及概率呈現(xiàn)穩(wěn)定在某一數(shù)值附近這一規(guī)律,讓學(xué)生明確概率定義的由來(lái)。

  引導(dǎo)學(xué)生重新對(duì)問(wèn)題一和問(wèn)題二的探究,分析某事件發(fā)生的各種可能性在全部可能發(fā)生結(jié)果中所占比例,得到用列舉法求概率的公式,引導(dǎo)學(xué)生進(jìn)行理性思維,邏輯分析,既培養(yǎng)學(xué)生的分析問(wèn)題能力,又讓學(xué)生明確用列舉法求概率這一簡(jiǎn)便快捷方法的合理性。

  P(A)= = = (m

  3、舉例應(yīng)用

  ⑴引導(dǎo)學(xué)生對(duì)教材書(shū)例題、問(wèn)題一、問(wèn)題二中問(wèn)題的進(jìn)一步分析與探究,讓學(xué)生掌握用列舉法求概率的方法。

  ⑵引導(dǎo)學(xué)生對(duì)練習(xí)中的問(wèn)題思考與探究,鞏固對(duì)概率公式的應(yīng)用及加深對(duì)概率意義的理解。

  深化發(fā)展

  ⑴設(shè)置3個(gè)小題目,引導(dǎo)學(xué)生歸納、分析、總結(jié),加深對(duì)知識(shí)與方法的理解,并學(xué)會(huì)靈活運(yùn)用。

  ⑵讓學(xué)生設(shè)計(jì)活動(dòng)內(nèi)容,對(duì)知識(shí)進(jìn)行升華和拓展,引導(dǎo)學(xué)生創(chuàng)造性地運(yùn)用知識(shí)思考問(wèn)題和解決問(wèn)題,從而培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新能力。

高中數(shù)學(xué)說(shuō)課稿3

  一、教材分析

  集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個(gè)重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來(lái)越廣泛的領(lǐng)域種得到應(yīng)用。

  本節(jié)課主要分為兩個(gè)部分,一是理解集合的定義及一些基本特征。二是掌握集合與元素之間的關(guān)系。

  二、教學(xué)目標(biāo)

  1、學(xué)習(xí)目標(biāo)

  (1)通過(guò)實(shí)例,了解集合的含義,體會(huì)元素與集合之間的關(guān)系以及理解“屬

  于”關(guān)系;

  (2)能選擇自然語(yǔ)言、圖形語(yǔ)言、集合語(yǔ)言(列舉法或描述法)描述不同的具體問(wèn)題,感受集合語(yǔ)言的意義和作用;

  2、能力目標(biāo)

  (1)能夠把一句話一個(gè)事件用集合的方式表示出來(lái)。

  (2)準(zhǔn)確理解集合與及集合內(nèi)的元素之間的關(guān)系。

  3、情感目標(biāo)

  通過(guò)本節(jié)的把實(shí)際事件用集合的方式表示出來(lái),從而培養(yǎng)數(shù)學(xué)敏感性,了 解到數(shù)學(xué)于生活中。

  三、教學(xué)重點(diǎn)與難點(diǎn)

  重點(diǎn) 集合的基本概念與表示方法;

  難點(diǎn) 運(yùn)用集合的兩種常用表示方法———列舉法與描述法,正確表示一些簡(jiǎn)單的集合;

  四、教學(xué)方法

  (1)本課將采用探究式教學(xué),讓學(xué)生主動(dòng)去探索,激發(fā)學(xué)生的學(xué)習(xí)興趣。并分層教學(xué),這樣可顧及到全體學(xué)生,達(dá)到優(yōu)生得到培養(yǎng),后進(jìn)生也有所收獲的效果;

  (2)學(xué)生在老師的引導(dǎo)下,通過(guò)閱讀教材,自主學(xué)習(xí)、思考、交流、討論和概括,從而完成本節(jié)課的教學(xué)目標(biāo)。

  五、學(xué)習(xí)方法

  (1)主動(dòng)學(xué)習(xí)法:舉出例子,提出問(wèn)題,讓學(xué)生在獲得感性認(rèn)識(shí)的同時(shí),

  教師層層深入,啟發(fā)學(xué)生積極思維,主動(dòng)探索知識(shí),培養(yǎng)學(xué)生思維想象 的綜合能力。

  (2)反饋補(bǔ)救法:在練習(xí)中,注意觀察學(xué)生對(duì)學(xué)習(xí)的反饋情況,以實(shí)現(xiàn)“培

  優(yōu)扶差,滿足不同。”

  六、教學(xué)思路

  具體的思路如下

  復(fù)習(xí)的引入:講一些集合的相關(guān)數(shù)學(xué)及相關(guān)數(shù)學(xué)家的經(jīng)歷故事!這可以讓學(xué)生更加了解數(shù)學(xué)史從何使學(xué)生對(duì)數(shù)學(xué)更加感興趣,有助于上課的效率!因?yàn)闀r(shí)間關(guān)系這里我就不說(shuō)相關(guān)數(shù)學(xué)史咯。

  一、 引入課題

  軍訓(xùn)前學(xué)校通知:8月15日8點(diǎn),高一年段在體育館集合進(jìn)行軍訓(xùn)動(dòng)員;試問(wèn)這個(gè)通知的對(duì)象是全體的高一學(xué)生還是個(gè)別學(xué)生?

  在這里,集合是我們常用的一個(gè)詞語(yǔ),我們感興趣的是問(wèn)題中某些特定(是高一而不是高二、高三)對(duì)象的總體,而不是個(gè)別的對(duì)象,為此,我們將學(xué)習(xí)一個(gè)新的概念——集合,即是一些研究對(duì)象的總體。

  二、 正體部分

  學(xué)生閱讀教材,并思考下列問(wèn)題:

  (1)集合有那些概念?

  (2)集合有那些符號(hào)?

  (3)集合中元素的特性是什么?

  (4)如何給集合分類?

  (一)集合的有關(guān)概念

  (1)對(duì)象:我們可以感覺(jué)到的客觀存在以及我們思想中的事物或抽象符號(hào),

  都可以稱作對(duì)象.

  (2)集合:把一些能夠確定的不同的對(duì)象看成一個(gè)整體,就說(shuō)這個(gè)整體是由

  這些對(duì)象的全體構(gòu)成的集合.

  (3)元素:集合中每個(gè)對(duì)象叫做這個(gè)集合的元素.

  集合通常用大寫的拉丁字母表示,如A、B、C、??元素通常用小寫的拉丁字母表示,如a、b、c、??

  1. 思考:課本P3的思考題,并再列舉一些集合例子和不能構(gòu)成集合的例子,

  對(duì)學(xué)生的例子予以討論、點(diǎn)評(píng),進(jìn)而講解下面的問(wèn)題。

  2、元素與集合的關(guān)系

  (1)屬于:如果a是集合A的元素,就說(shuō)a屬于A,記作a∈A。(舉例)集合A={2,3,4,6,9}a=2 因此我們知道 a∈A

  (2)不屬于:如果a不是集合A的元素,就說(shuō)a不屬于A,記作a?A

  要注意“∈”的方向,不能把a(bǔ)∈A顛倒過(guò)來(lái)寫. (舉例)

  集合A={3,4,6,9}a=2 因此我們知道a?A

  3、集合中元素的特性

  (1)確定性:給定一個(gè)集合,任何對(duì)象是不是這個(gè)集合的元素是確定的了.

  (2)互異性:集合中的元素一定是不同的.

  (3)無(wú)序性:集合中的.元素沒(méi)有固定的順序.

  4、集合分類

  根據(jù)集合所含元素個(gè)屬不同,可把集合分為如下幾類:

  (1)把不含任何元素的集合叫做空集Ф

  (2)含有有限個(gè)元素的集合叫做有限集

  (3)含有無(wú)窮個(gè)元素的集合叫做無(wú)限集

  注:應(yīng)區(qū)分?,{?},{0},0等符號(hào)的含義

  5、常用數(shù)集及其表示方法

  (1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合.記作N

  (2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集.記作N*或N+

  (3)整數(shù)集:全體整數(shù)的集合.記作Z

  (4)有理數(shù)集:全體有理數(shù)的集合.記作Q

  (5)實(shí)數(shù)集:全體實(shí)數(shù)的集合.記作R

  注:(1)自然數(shù)集包括數(shù)0.

  (2)非負(fù)整數(shù)集內(nèi)排除0的集.記作N*或N+,Q、Z、R等其它數(shù)集內(nèi)排

  除0的集,也這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*

  (二)集合的表示方法

  我們可以用自然語(yǔ)言來(lái)描述一個(gè)集合,但這將給我們帶來(lái)很多不便,除此之外還常用列舉法和描述法來(lái)表示集合。

  (1) 列舉法:把集合中的元素一一列舉出來(lái),寫在大括號(hào)內(nèi)。

  如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;

  例1.(課本例1)

  思考2,引入描述法

  說(shuō)明:集合中的元素具有無(wú)序性,所以用列舉法表示集合時(shí)不必考慮元素的順序。

  (2) 描述法:把集合中的元素的公共屬性描述出來(lái),寫在大括號(hào){}內(nèi)。 具體方法:在大括號(hào)內(nèi)先寫上表示這個(gè)集合元素的一般符號(hào)及取值(或變化)范圍,再畫(huà)一條豎線,在豎線后寫出這個(gè)集合中元素所具有的共同特征。

  如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;

  例2.(課本例2)

  說(shuō)明:(課本P5最后一段)

  思考3:(課本P6思考) 強(qiáng)調(diào):描述法表示集合應(yīng)注意集合的代表元素

  {(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數(shù)},即代表整數(shù)集Z。

  辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數(shù)}。下列寫法{實(shí)數(shù)集},{R}也是錯(cuò)誤的。

  說(shuō)明:列舉法與描述法各有優(yōu)點(diǎn),應(yīng)該根據(jù)具體問(wèn)題確定采用哪種表示法,要注意,一般集合中元素較多或有無(wú)限個(gè)元素時(shí),不宜采用列舉法。

  (三)課堂練習(xí)(課本P6練習(xí))

  三、 歸納小結(jié)與作業(yè)

  本節(jié)課從實(shí)例入手,非常自然貼切地引出集合與集合的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說(shuō)明,然后介紹了集合的常用表示方法,包括列舉法、描述法。

  書(shū)面作業(yè):習(xí)題1.1,第1- 4題

高中數(shù)學(xué)說(shuō)課稿4

  新課標(biāo)指出,高中數(shù)學(xué)課程的教學(xué)要能提高學(xué)生的“四基、四能”,根據(jù)這一課程目標(biāo),本節(jié)課我將從教材分析、教學(xué)目標(biāo)、教學(xué)過(guò)程等幾個(gè)方面來(lái)展開(kāi)我的說(shuō)課。

  一、說(shuō)教材

  本節(jié)課選自人教A版高中數(shù)學(xué)必修3第三章。本節(jié)課的內(nèi)容是在古典概型基礎(chǔ)上的進(jìn)一步發(fā)展,是等可能事件的概念從有限向無(wú)限的延伸。通過(guò)本節(jié)課的學(xué)習(xí),學(xué)生能進(jìn)一步體會(huì)實(shí)驗(yàn)結(jié)果的隨機(jī)性與規(guī)律性,并體會(huì)到對(duì)事物的看法不應(yīng)該持絕對(duì)化的觀點(diǎn)。

  二、說(shuō)學(xué)情

  高中生智力發(fā)育已趨于成熟,對(duì)于未知事物有著很強(qiáng)的探究欲望,且此前古典概型的學(xué)習(xí)為本節(jié)課打下了良好的基礎(chǔ)。但基本事件有無(wú)數(shù)多個(gè)的'發(fā)現(xiàn)以及此種情況下概率該如何計(jì)算,學(xué)生并不容易想到。因此我會(huì)從具體的生活、實(shí)踐問(wèn)題入手,組織學(xué)生開(kāi)展活動(dòng),在觀察、思考中抽象、概括本節(jié)課的要點(diǎn)。

  三、說(shuō)教學(xué)目標(biāo)

  結(jié)合以上分析,我制定本節(jié)課教學(xué)目標(biāo)如下:

  (一)知識(shí)與技能

  初步體會(huì)幾何概型的意義,掌握幾何概型的概率計(jì)算公式,并能進(jìn)行簡(jiǎn)單應(yīng)用。

  (二)過(guò)程與方法

  在通過(guò)幾何概型特點(diǎn)概括出幾何概型概率計(jì)算公式的過(guò)程中,進(jìn)一步發(fā)展合情推理能力,學(xué)會(huì)運(yùn)用數(shù)形結(jié)合的思想解決概率計(jì)算問(wèn)題。

  (三)情感、態(tài)度與價(jià)值觀

  通過(guò)貼近生活的素材,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣,體會(huì)用科學(xué)的態(tài)度、辯證的思想去觀察、分析、研究客觀世界。

  四、說(shuō)教學(xué)重難點(diǎn)

  同時(shí),本節(jié)課教學(xué)重點(diǎn)為:幾何概型的意義及概率計(jì)算公式。教學(xué)難點(diǎn)為:幾何概型概率計(jì)算公式的推導(dǎo)。

  五、說(shuō)教法和學(xué)法

  教學(xué)的一切活動(dòng)都必須以強(qiáng)調(diào)學(xué)生的主動(dòng)性、積極性為出發(fā)點(diǎn),根據(jù)這一教學(xué)理念,本節(jié)課我將采用講授法、自主探究法、練習(xí)法等教學(xué)方法。

  六、說(shuō)教學(xué)過(guò)程

  下面說(shuō)說(shuō)我的教學(xué)過(guò)程。

  (一)引入新課

  首先我會(huì)帶領(lǐng)學(xué)生復(fù)習(xí)確定隨機(jī)事件發(fā)生的概率的兩種方法,一是通過(guò)頻率估算概率,二是用古典概型的概率公式來(lái)計(jì)算事件發(fā)生的概率。但古典概型是基于試驗(yàn)的所有結(jié)果是有限個(gè),當(dāng)試驗(yàn)的所有可能結(jié)果有無(wú)窮多個(gè)時(shí),無(wú)法利用之前的方法進(jìn)行計(jì)算,進(jìn)而進(jìn)入本節(jié)課的學(xué)習(xí)。

  利用復(fù)習(xí)導(dǎo)入,一來(lái)可以鞏固之前所學(xué),二來(lái)將等可能事件從有限拓展到無(wú)限,引發(fā)學(xué)生的認(rèn)知沖突,體現(xiàn)出學(xué)習(xí)本節(jié)課的必要性。

  (二)講解新知

  接下來(lái)是新知講解。為了讓學(xué)生初步感知幾何概型的基本特點(diǎn),我會(huì)舉例:

  (1)一個(gè)人到單位的時(shí)間可能是8:00~9:00之間任一時(shí)刻。

  (2)往一方格中投一個(gè)石子。并請(qǐng)學(xué)生說(shuō)說(shuō)此人到達(dá)單位的時(shí)間點(diǎn)以及石子落在方格的哪個(gè)位置,會(huì)不會(huì)在某一時(shí)間點(diǎn)到達(dá)或落在某一位置的概率比較大。學(xué)生結(jié)合生活經(jīng)驗(yàn)?zāi)軌虬l(fā)現(xiàn),此時(shí)基本事件有無(wú)數(shù)多個(gè),且基本事件發(fā)生是等可能的。

  僅僅知道特點(diǎn)還是不夠的,還要知道相應(yīng)概率的求法。為了讓學(xué)生有更直觀的感知,我會(huì)出示具體問(wèn)題:如圖,甲、乙兩人玩轉(zhuǎn)盤游戲,規(guī)定當(dāng)指針指向B區(qū)域時(shí),甲獲勝,否則乙獲勝。請(qǐng)學(xué)生思考在兩種情況下甲獲勝的概率分別是多少。

高中數(shù)學(xué)說(shuō)課稿5

  一、教學(xué)目標(biāo)

  (一)知識(shí)與技能

  1、進(jìn)一步熟練掌握求動(dòng)點(diǎn)軌跡方程的基本方法。

  2、體會(huì)數(shù)學(xué)實(shí)驗(yàn)的直觀性、有效性,提高幾何畫(huà)板的操作能力。

  (二)過(guò)程與方法

  1、培養(yǎng)學(xué)生觀察能力、抽象概括能力及創(chuàng)新能力。

  2、體會(huì)感性到理性、形象到抽象的思維過(guò)程。

  3、強(qiáng)化類比、聯(lián)想的方法,領(lǐng)會(huì)方程、數(shù)形結(jié)合等思想。

  (三)情感態(tài)度價(jià)值觀

  1、感受動(dòng)點(diǎn)軌跡的動(dòng)態(tài)美、和諧美、對(duì)稱美

  2、樹(shù)立競(jìng)爭(zhēng)意識(shí)與合作精神,感受合作交流帶來(lái)的成功感,樹(shù)立自信心,激發(fā)提出問(wèn)題和解決問(wèn)題的勇氣

  二、教學(xué)重點(diǎn)與難點(diǎn)

  教學(xué)重點(diǎn):運(yùn)用類比、聯(lián)想的方法探究不同條件下的軌跡

  教學(xué)難點(diǎn):圖形、文字、符號(hào)三種語(yǔ)言之間的過(guò)渡

  三、、教學(xué)方法和手段

  【教學(xué)方法】觀察發(fā)現(xiàn)、啟發(fā)引導(dǎo)、合作探究相結(jié)合的教學(xué)方法。啟發(fā)引導(dǎo)學(xué)生積極思考并對(duì)學(xué)生的思維進(jìn)行調(diào)控,幫助學(xué)生優(yōu)化思維過(guò)程,在此基礎(chǔ)上,提供給學(xué)生交流的機(jī)會(huì),幫助學(xué)生對(duì)自己的思維進(jìn)行組織和澄清,并能清楚地、準(zhǔn)確地表達(dá)自己的.數(shù)學(xué)思維。

  【教學(xué)手段】利用網(wǎng)絡(luò)教室,四人一機(jī),多媒體教學(xué)手段。通過(guò)上述教學(xué)手段,一方面:再現(xiàn)知識(shí)產(chǎn)生的過(guò)程,通過(guò)多媒體動(dòng)態(tài)演示,突破學(xué)生在舊知和新知形成過(guò)程中的障礙(靜態(tài)到動(dòng)態(tài));另一方面:節(jié)省了時(shí)間,提高了課堂教學(xué)的效率,激發(fā)了學(xué)生學(xué)習(xí)的興趣。

  【教學(xué)模式】重點(diǎn)中學(xué)實(shí)施素質(zhì)教育的課堂模式“創(chuàng)設(shè)情境、激發(fā)情感、主動(dòng)發(fā)現(xiàn)、主動(dòng)發(fā)展”。

高中數(shù)學(xué)說(shuō)課稿6

  一、教材分析

  函數(shù)的單調(diào)性是函數(shù)的重要性質(zhì).從知識(shí)的網(wǎng)絡(luò)結(jié)構(gòu)上看,函數(shù)的單調(diào)性既是函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、三角函數(shù)的單調(diào)性等內(nèi)容的基礎(chǔ),在研究各種具體函數(shù)的性質(zhì)和應(yīng)用、解決各種問(wèn)題中都有著廣泛的應(yīng)用.函數(shù)單調(diào)性概念的建立過(guò)程中蘊(yùn)涵諸多數(shù)學(xué)思想方法,對(duì)于進(jìn)一步探索、研究函數(shù)的其他性質(zhì)有很強(qiáng)的啟發(fā)與示范作用.

  根據(jù)函數(shù)單調(diào)性在整個(gè)教材內(nèi)容中的地位與作用,本節(jié)課教學(xué)應(yīng)實(shí)現(xiàn)如下教學(xué)目標(biāo):

  知識(shí)與技能使學(xué)生理解函數(shù)單調(diào)性的概念,初步掌握判別函數(shù)單調(diào)性的方法;

  過(guò)程與方法引導(dǎo)學(xué)生通過(guò)觀察、歸納、抽象、概括,自主建構(gòu)單調(diào)增函數(shù)、單調(diào)減函數(shù)等概念;能運(yùn)用函數(shù)單調(diào)性概念解決簡(jiǎn)單的問(wèn)題;使學(xué)生領(lǐng)會(huì)數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力。

  情感態(tài)度與價(jià)值觀在函數(shù)單調(diào)性的學(xué)習(xí)過(guò)程中,使學(xué)生體驗(yàn)數(shù)學(xué)的科學(xué)價(jià)值和應(yīng)用價(jià)值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。

  根據(jù)上述教學(xué)目標(biāo),本節(jié)課的教學(xué)重點(diǎn)是函數(shù)單調(diào)性的概念形成和初步運(yùn)用.雖然高一學(xué)生已經(jīng)有一定的抽象思維能力,但函數(shù)單調(diào)性概念對(duì)他們來(lái)說(shuō)還是比較抽象的。因此,本節(jié)課的學(xué)習(xí)難點(diǎn)是函數(shù)單調(diào)性的概念形成。

  二、教法學(xué)法

  為了實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),在教法上我采取了

  1、通過(guò)學(xué)生熟悉的實(shí)際生活問(wèn)題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實(shí)的距離,激發(fā)學(xué)生求知欲,調(diào)動(dòng)學(xué)生主體參與的積極性。

  2、在形成概念的過(guò)程中,緊扣概念中的關(guān)鍵語(yǔ)句,通過(guò)學(xué)生的主體參與,正確地形成概念。

  3、在鼓勵(lì)學(xué)生主體參與的同時(shí),不可忽視教師的主導(dǎo)作用,要教會(huì)學(xué)生清晰的思維、嚴(yán)謹(jǐn)?shù)耐评恚㈨樌赝瓿蓵?shū)面表達(dá)。

  在學(xué)法上我重視了:

  1、讓學(xué)生利用圖形直觀啟迪思維,并通過(guò)正、反例的構(gòu)造,來(lái)完成從感性認(rèn)識(shí)到理性思維的質(zhì)的飛躍。

  2、讓學(xué)生從問(wèn)題中質(zhì)疑、嘗試、歸納、總結(jié)、運(yùn)用,培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、研究問(wèn)題和分析解決問(wèn)題的能力。

  三、教學(xué)過(guò)程

  函數(shù)單調(diào)性的概念產(chǎn)生和形成是本節(jié)課的難點(diǎn),為了突破這一難點(diǎn),在教學(xué)設(shè)計(jì)上采用了下列四個(gè)環(huán)節(jié)。

  (一)創(chuàng)設(shè)情境,提出問(wèn)題

  (問(wèn)題情境)(播放中央電視臺(tái)天氣預(yù)報(bào)的音樂(lè))。如圖為某地區(qū)20xx年元旦這一天24小時(shí)內(nèi)的氣溫變化圖,觀察這張氣溫變化圖:

  [教師活動(dòng)]引導(dǎo)學(xué)生觀察圖象,提出問(wèn)題:

  問(wèn)題1:說(shuō)出氣溫在哪些時(shí)段內(nèi)是逐步升高的或下降的?

  問(wèn)題2:怎樣用數(shù)學(xué)語(yǔ)言刻畫(huà)上述時(shí)段內(nèi)“隨著時(shí)間的增大氣溫逐漸升高”這一特征?

  [設(shè)計(jì)意圖]問(wèn)題是數(shù)學(xué)的心臟,問(wèn)題是學(xué)生思維的開(kāi)始,問(wèn)題是學(xué)生興趣的開(kāi)始。這里,通過(guò)兩個(gè)問(wèn)題,引發(fā)學(xué)生的進(jìn)一步學(xué)習(xí)的好奇心。

  (二)探究發(fā)現(xiàn)建構(gòu)概念

  [學(xué)生活動(dòng)]對(duì)于問(wèn)題1,學(xué)生容易給出答案。問(wèn)題2對(duì)學(xué)生來(lái)說(shuō)較為抽象,不易回答。

  [教師活動(dòng)]為了引導(dǎo)學(xué)生解決問(wèn)題2,先讓學(xué)生觀察圖象,通過(guò)具體情形,例如,“t1=8時(shí),f(t1)=1,t2=10時(shí),f(t2)=4”這一情形進(jìn)行描述.引導(dǎo)學(xué)生回答:對(duì)于自變量8<10,對(duì)應(yīng)的函數(shù)值有1<4。舉幾個(gè)例子表述一下。然后給出一個(gè)鋪墊性的問(wèn)題:結(jié)合圖象,請(qǐng)你用自己的語(yǔ)言,描述“在區(qū)間[4,14]上,氣溫隨時(shí)間增大而升高”這一特征。

  在學(xué)生對(duì)于單調(diào)增函數(shù)的特征有一定直觀認(rèn)識(shí)時(shí),進(jìn)一步提出:

  問(wèn)題3:對(duì)于任意的t1、t2∈[4,16]時(shí),當(dāng)t1

  (t1)

  [學(xué)生活動(dòng)]通過(guò)觀察圖象、進(jìn)行實(shí)驗(yàn)(計(jì)算機(jī))、正反對(duì)比,發(fā)現(xiàn)數(shù)量關(guān)系,由具體到抽象,由模糊到清晰逐步歸納、概括、抽象出單調(diào)增函數(shù)概念的本質(zhì)屬性,并嘗試用符號(hào)語(yǔ)言進(jìn)行初步的表述。

  [教師活動(dòng)]為了獲得單調(diào)增函數(shù)概念,對(duì)于不同學(xué)生的表述進(jìn)行分析、歸類,引導(dǎo)學(xué)生得出關(guān)鍵詞“區(qū)間內(nèi)”、“任意”、“當(dāng)時(shí),都有”。告訴他們“把滿足這些條件的函數(shù)稱之為單調(diào)增函數(shù)”,之后由他們集體給出單調(diào)增函數(shù)概念的數(shù)學(xué)表述.提出:

  問(wèn)題4:類比單調(diào)增函數(shù)概念,你能給出單調(diào)減函數(shù)的概念嗎?

  最后完成單調(diào)性和單調(diào)區(qū)間概念的整體表述。

  [設(shè)計(jì)意圖]數(shù)學(xué)概念的形成來(lái)自解決實(shí)際問(wèn)題和數(shù)學(xué)自身發(fā)展的需要。但概念的高度抽象,造成了難懂、難教和難學(xué),這就需要讓學(xué)生置身于符合自身實(shí)際的學(xué)習(xí)活動(dòng)中去,從自己的經(jīng)驗(yàn)和已有的知識(shí)基礎(chǔ)出發(fā),經(jīng)歷“數(shù)學(xué)化”、“再創(chuàng)造”的活動(dòng)過(guò)程。剛升入高一的學(xué)生已經(jīng)具備了一定的幾何形象思維能力,但抽象思維能力不強(qiáng)。從日常的描述性語(yǔ)言概念升華到用數(shù)學(xué)符號(hào)語(yǔ)言精確刻畫(huà)概念是本節(jié)課的難點(diǎn)。

  (三)自我嘗試運(yùn)用概念

  1.為了理解函數(shù)單調(diào)性的概念,及時(shí)地進(jìn)行運(yùn)用是十分必要的。

  [教師活動(dòng)]問(wèn)題5:(1)你能找出氣溫圖中的單調(diào)區(qū)間嗎?(2)你能說(shuō)出你學(xué)過(guò)的函數(shù)的單調(diào)區(qū)間嗎?請(qǐng)舉例說(shuō)明。

  [學(xué)生活動(dòng)]對(duì)于(1),學(xué)生容易看出:氣溫圖中分別有兩個(gè)單調(diào)減區(qū)間和一個(gè)單調(diào)增區(qū)間.對(duì)于(2),學(xué)生容易舉出具體函數(shù)如:f(x)=—2x+2,f(x)=x2+2x—3,f(x)=1/x,并畫(huà)出函數(shù)的草圖,根據(jù)函數(shù)的圖象說(shuō)出函數(shù)的單調(diào)區(qū)間。

  [教師活動(dòng)]利用實(shí)物投影儀,投影出學(xué)生畫(huà)出的草圖和標(biāo)出的單調(diào)區(qū)間,并指出學(xué)生回答問(wèn)題時(shí)可能出現(xiàn)的錯(cuò)誤,如:在敘述函數(shù)的單調(diào)區(qū)間時(shí)寫成并集。

  [設(shè)計(jì)意圖]在學(xué)生已有認(rèn)知結(jié)構(gòu)的基礎(chǔ)上提出新問(wèn)題,使學(xué)生明了,過(guò)去所研究的函數(shù)的相關(guān)特征,就是現(xiàn)在所學(xué)的函數(shù)的單調(diào)性,從而加深對(duì)函數(shù)單調(diào)性概念的理解。

  2.對(duì)于給定圖象的函數(shù),借助于圖象,我們可以直觀地判定函數(shù)的單調(diào)性,也能找到單調(diào)區(qū)間.而對(duì)于一般的函數(shù),我們?cè)鯓尤ヅ卸ê瘮?shù)的單調(diào)性呢?

  [教師活動(dòng)]問(wèn)題6:證明在區(qū)間(0,+∞)上是單調(diào)減函數(shù)。

  [學(xué)生活動(dòng)]學(xué)生相互討論,嘗試自主進(jìn)行函數(shù)單調(diào)性的證明,可能會(huì)出現(xiàn)不知如何比較f(x1)與f(x2)的大小、不會(huì)正確表述、變形不到位或根本不會(huì)變形等困難。

  [教師活動(dòng)]教師深入學(xué)生中,與學(xué)生交流,了解學(xué)生思考問(wèn)題的進(jìn)展過(guò)程,投影學(xué)生的.證明過(guò)程,糾正出現(xiàn)的錯(cuò)誤,規(guī)范書(shū)寫的格式。

  [學(xué)生活動(dòng)]學(xué)生自我歸納證明函數(shù)單調(diào)性的一般方法和操作流程:取值作差變形定號(hào)判斷。

  [設(shè)計(jì)意圖]有效的數(shù)學(xué)學(xué)習(xí)過(guò)程,不能單純的模仿與記憶,數(shù)學(xué)思想的領(lǐng)悟和學(xué)習(xí)過(guò)程更是如此.利用學(xué)生自己提出的問(wèn)題,讓學(xué)生在解題過(guò)程中親身經(jīng)歷和實(shí)踐體驗(yàn),師生互動(dòng)學(xué)習(xí),生生合作交流,共同探究。

  (四)回顧反思深化概念

  [教師活動(dòng)]給出一組題:

  1、定義在R上的單調(diào)函數(shù)f(x)滿足f(2)>f(1),那么函數(shù)f(x)是R上的單調(diào)增函數(shù)還是單調(diào)減函數(shù)?

  2、若定義在R上的單調(diào)減函數(shù)f(x)滿足f(1+a)

  [學(xué)生活動(dòng)]學(xué)生互相討論,探求問(wèn)題的解答和問(wèn)題的解決過(guò)程,并通過(guò)問(wèn)題,歸納總結(jié)本節(jié)課的內(nèi)容和方法。

  [設(shè)計(jì)意圖]通過(guò)學(xué)生的主體參與,使學(xué)生深切體會(huì)到本節(jié)課的主要內(nèi)容和思想方法,從而實(shí)現(xiàn)對(duì)函數(shù)單調(diào)性認(rèn)識(shí)的再次深化。

  [教師活動(dòng)]作業(yè)布置:

  (1)閱讀課本P34-35例2

  (2)書(shū)面作業(yè):

  必做:教材P431、7、11

  選做:二次函數(shù)y=x2+bx+c在[0,+∞)是增函數(shù),滿足條件的實(shí)數(shù)的值唯一嗎?

  探究:函數(shù)y=x在定義域內(nèi)是增函數(shù),函數(shù)有兩個(gè)單調(diào)減區(qū)間,由這兩個(gè)基本函數(shù)構(gòu)成的函數(shù)的單調(diào)性如何?請(qǐng)證明你得到的結(jié)論。

  [設(shè)計(jì)意圖]通過(guò)兩方面的作業(yè),使學(xué)生養(yǎng)成先看書(shū),后做作業(yè)的習(xí)慣。基于函數(shù)單調(diào)性內(nèi)容的特點(diǎn)及學(xué)生實(shí)際,對(duì)課后書(shū)面作業(yè)實(shí)施分層設(shè)置,安排基本練習(xí)題、鞏固理解題和深化探究題三層。學(xué)生完成作業(yè)的形式為必做、選做和探究三種,使學(xué)生在完成必修教材基本學(xué)習(xí)任務(wù)的同時(shí),拓展自主發(fā)展的空間,讓每一個(gè)學(xué)生都得到符合自身實(shí)踐的感悟,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進(jìn)學(xué)生自主發(fā)展、合作探究的學(xué)習(xí)氛圍的形成。

  四、教學(xué)評(píng)價(jià)

  學(xué)生學(xué)習(xí)的結(jié)果評(píng)價(jià)當(dāng)然重要,但是更重要的是學(xué)生學(xué)習(xí)的過(guò)程評(píng)價(jià)。教師應(yīng)當(dāng)高度重視學(xué)生學(xué)習(xí)過(guò)程中的參與度、自信心、團(tuán)隊(duì)精神、合作意識(shí)、獨(dú)立思考習(xí)慣的養(yǎng)成、數(shù)學(xué)發(fā)現(xiàn)的能力,以及學(xué)習(xí)的興趣和成就感。學(xué)生熟悉的問(wèn)題情境可以激發(fā)學(xué)生的學(xué)習(xí)興趣,問(wèn)題串的設(shè)計(jì)可以讓更多的學(xué)生主動(dòng)參與,師生對(duì)話可以實(shí)現(xiàn)師生合作,適度的研討可以促進(jìn)生生交流,以及團(tuán)隊(duì)精神,知識(shí)的生成和問(wèn)題的解決可以讓學(xué)生感受到成功的喜悅,縝密的思考可以培養(yǎng)學(xué)生獨(dú)立思考的習(xí)慣。讓學(xué)生在教師評(píng)價(jià)、學(xué)生評(píng)價(jià)以及自我評(píng)價(jià)的過(guò)程中體驗(yàn)知識(shí)的積累、探索能力的長(zhǎng)進(jìn)和思維品質(zhì)的提高,為學(xué)生的可持續(xù)發(fā)展打下基礎(chǔ)。

高中數(shù)學(xué)說(shuō)課稿7

  今天我說(shuō)課的題目是《函數(shù)的單調(diào)性》,下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個(gè)問(wèn)題,從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、教學(xué)過(guò)程五方面逐一加以分析和說(shuō)明。

  一、說(shuō)教材

  1、教材的地位和作用

  本節(jié)內(nèi)容選自北師大版高中數(shù)學(xué)必修1,第二章第3節(jié)。函數(shù)是高中數(shù)學(xué)的課程,它是描述事物運(yùn)動(dòng)變化的模型,而函數(shù)的單調(diào)性是函數(shù)的一大特征,它為我們之后的學(xué)習(xí)奠定重要基礎(chǔ)。

  2、學(xué)情分析

  本節(jié)課的學(xué)生是高一學(xué)生,他們?cè)诔踔须A段,通過(guò)一次函數(shù)、二次函數(shù)、反比例函數(shù)的學(xué)習(xí)已經(jīng)對(duì)函數(shù)的增減性有了初步的感性認(rèn)識(shí)。在高中階段,用符號(hào)語(yǔ)言刻畫(huà)圖形語(yǔ)言,用定量分析解釋定性結(jié)果,有利于培養(yǎng)學(xué)生的理性思維,為后續(xù)函數(shù)的學(xué)習(xí)作準(zhǔn)備,也為利用倒數(shù)研究單調(diào)性的相關(guān)知識(shí)奠定了基礎(chǔ)。

  教學(xué)目標(biāo)分析

  基于以上對(duì)教材和學(xué)情的分析以及新課標(biāo)教學(xué)理念,我將教學(xué)目標(biāo)分為以下三個(gè)部分:

  1、知識(shí)與技能(1)理解函數(shù)的單調(diào)性和單調(diào)函數(shù)的意義;

  (2)會(huì)判斷和證明簡(jiǎn)單函數(shù)的單調(diào)性。

  2、過(guò)程與方法

  (1)培養(yǎng)從概念出發(fā),進(jìn)一步研究性質(zhì)的意識(shí)及能力;

  (2)體會(huì)數(shù)形結(jié)合、分類討論的數(shù)學(xué)思想。

  3、情感態(tài)度與價(jià)值觀

  由合適的例子引發(fā)學(xué)生探求數(shù)學(xué)知識(shí)的欲望,突出學(xué)生的主觀能動(dòng)性,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

  三、教學(xué)重難點(diǎn)分析

  通過(guò)以上對(duì)教材和學(xué)生的分析以及教學(xué)目標(biāo),我將本節(jié)課的重難點(diǎn)

  重點(diǎn):

  函數(shù)單調(diào)性的概念,判斷和證明簡(jiǎn)單函數(shù)的單調(diào)性。

  難點(diǎn):

  1、函數(shù)單調(diào)性概念的認(rèn)知

  (1)自然語(yǔ)言到符號(hào)語(yǔ)言的轉(zhuǎn)化;

  (2)常量到變量的轉(zhuǎn)化。

  2、應(yīng)用定義證明單調(diào)性的代數(shù)推理論證。

  四、教法與學(xué)法分析

  1、教法分析

  基于以上對(duì)教材、學(xué)情的分析以及新課標(biāo)的教學(xué)理念,本節(jié)課我采用啟發(fā)式教學(xué)、多媒體輔助教學(xué)和討論法。學(xué)生可以在多媒體中感受到數(shù)學(xué)在生活中的應(yīng)用,啟發(fā)式教學(xué)和討論法發(fā)散學(xué)生思維,培養(yǎng)學(xué)生善于思考的能力。

  2、學(xué)法分析

  新課改理念告訴我們,學(xué)生不僅要學(xué)知識(shí),更重要的是要學(xué)會(huì)怎樣學(xué)習(xí),為終生學(xué)習(xí)奠定扎實(shí)的基礎(chǔ)。所以本節(jié)課我將引導(dǎo)學(xué)生通過(guò)合作交流、自主探索的方法理解函數(shù)的單調(diào)性及特征。

  五、教學(xué)過(guò)程

  為了更好的實(shí)現(xiàn)本課的三維目標(biāo),并突破重難點(diǎn),我設(shè)計(jì)以下五個(gè)環(huán)節(jié)來(lái)進(jìn)行我的教學(xué)。

  (一)知識(shí)導(dǎo)入

  溫故而知新,我將先從之前學(xué)習(xí)的知識(shí)引入,給出一些函數(shù),比如y=x、y=-x、y=|x|,讓學(xué)生作出這些函數(shù)的圖像,然后讓學(xué)生討論這些函數(shù)圖像是上升的還是下降的,由此引入到我的`新課。在這個(gè)過(guò)程中不僅可以檢查學(xué)生掌握基本初等函數(shù)圖像的情況,而且符合學(xué)生的認(rèn)知結(jié)構(gòu),通過(guò)學(xué)生自主探究,從知識(shí)產(chǎn)生、發(fā)展的過(guò)程中構(gòu)建新概念,有利于激發(fā)學(xué)生的思維和學(xué)習(xí)的積極主動(dòng)性。

  (二)講授新課

  1.問(wèn)題:分別做出函數(shù)y=x2,y=x+2的圖像,指出上面的函數(shù)圖象在哪個(gè)區(qū)間是上升的,在哪個(gè)區(qū)間是下降的?

  通過(guò)學(xué)生熟悉的圖像,及時(shí)引導(dǎo)學(xué)生觀察,函數(shù)圖像上A點(diǎn)的運(yùn)動(dòng)情況,引導(dǎo)學(xué)生能用自然語(yǔ)言描述出,隨著x增大時(shí)圖像變化規(guī)律。讓學(xué)生大膽的去說(shuō),老師逐步修正、完善學(xué)生的說(shuō)法,最后給出正確答案。

  2、觀察函數(shù)y=x2隨自變量x變化的情況,設(shè)置啟發(fā)式問(wèn)題:

  (1)在y軸的右側(cè)部分圖象具有什么特點(diǎn)?

  (2)如果在y軸右側(cè)部分取兩個(gè)點(diǎn)(x1,y1),(x2,y2),當(dāng)x1< p="">

  (3)如何用數(shù)學(xué)符號(hào)語(yǔ)言來(lái)描述這個(gè)規(guī)律?

  教師補(bǔ)充:這時(shí)我們就說(shuō)函數(shù)y=x2在(0,+∞)上是增函數(shù)。

  (4)反過(guò)來(lái),如果y=f(x)在(0,+∞)上是增函數(shù),我們能不能得到自變量與函數(shù)值的變化規(guī)律呢?

  類似地分析圖象在y軸的左側(cè)部分。

  通過(guò)對(duì)以上問(wèn)題的分析,從正、反兩方面領(lǐng)會(huì)函數(shù)單調(diào)性。師生共同總結(jié)出單調(diào)增函數(shù)的定義,并解讀定義中的關(guān)鍵詞,如:區(qū)間內(nèi),任意,當(dāng)x1< p="">

  仿照單調(diào)增函數(shù)定義,由學(xué)生說(shuō)出單調(diào)減函數(shù)的定義。

  教師總結(jié)歸納單調(diào)性和單調(diào)區(qū)間的定義。注意強(qiáng)調(diào):函數(shù)的單調(diào)性是函數(shù)在定義域某個(gè)區(qū)間上的局部性質(zhì),也就是說(shuō),一個(gè)函數(shù)在不同的區(qū)間上可以有不同的單調(diào)性。

  (我將給出函數(shù)y=x2,并畫(huà)出這個(gè)函數(shù)的圖像,讓學(xué)生觀察函數(shù)圖像的特點(diǎn),讓他們描述函數(shù)圖像的增減性,慢慢得到函數(shù)單調(diào)性的概念。在這個(gè)過(guò)程中,學(xué)生把對(duì)圖像的感性認(rèn)識(shí)轉(zhuǎn)化為了數(shù)學(xué)關(guān)系,這種從特殊到一般的學(xué)習(xí)過(guò)程有利于學(xué)生對(duì)概念的理解)

  (三)鞏固練習(xí)

  1練習(xí)1:說(shuō)出函數(shù)f(x)=的單調(diào)區(qū)間,并指明在該區(qū)間上的單調(diào)性。x

  練習(xí)2:練習(xí)2:判斷下列說(shuō)法是否正確

  ①定義在R上的函數(shù)f(x)滿足f(2)>f(1),則函數(shù)是R上的增函數(shù)。

  ②定義在R上的函數(shù)f(x)滿足f(2)>f(1),則函數(shù)是R上不是減函數(shù)。

  1③已知函數(shù)y=,因?yàn)閒(-1)< p="">

  1我將給出一些具體的函數(shù),如y=,f(x)=3x+2讓學(xué)生說(shuō)出函數(shù)的單調(diào)區(qū)間,并指明在該區(qū)間x

  上的單調(diào)性。通過(guò)這種練習(xí)的方式,幫助學(xué)生鞏固對(duì)知識(shí)的掌握。

  (四)歸納總結(jié)

  我先讓學(xué)生進(jìn)行小結(jié),函數(shù)單調(diào)性定義,判斷函數(shù)單調(diào)性的方法(圖像、定義),然后教師進(jìn)行補(bǔ)充,在這樣一個(gè)過(guò)程中既有利于學(xué)生鞏固知識(shí),也有利于教師對(duì)學(xué)生的學(xué)習(xí)情況有一定的了解,為下一節(jié)課的教學(xué)過(guò)程做好準(zhǔn)備。

  (五)布置作業(yè)

  必做題:習(xí)題2-3A組第2,4,5題。

  選做題:習(xí)題2-3B組第2題。

  新課程理念告訴我們,不同的人在數(shù)學(xué)上可以獲得不同的發(fā)展,因此要設(shè)計(jì)不同程度要求的習(xí)題。

高中數(shù)學(xué)說(shuō)課稿8

  說(shuō)課:古典概型

  麻城理工學(xué)校謝衛(wèi)華

  (一)教材地位及作用:本節(jié)課是高中數(shù)學(xué)(必修

  3)第三章概率的第二節(jié)古典概型的第一課時(shí),是在

  隨機(jī)事件的概率之后,幾何概型之前,尚未學(xué)習(xí)排列組合的情況下教學(xué)的。古典概型是一種特殊的數(shù)學(xué)模型,也是一種最基本的概率模型,在概率論中占有相當(dāng)重要的地位。學(xué)好古典概型可以為其它概率的學(xué)習(xí)奠定基礎(chǔ),同時(shí)有利于理解概率的概念,有利于計(jì)算一些事件的概率,有利于解釋生活中的一些問(wèn)題。

  根據(jù)本節(jié)課的地位和作用以及新課程標(biāo)準(zhǔn)的具體要求,制訂教學(xué)重點(diǎn):理解古典概型的概念及利用古典概型求解隨機(jī)事件的概率;

  根據(jù)本節(jié)課的內(nèi)容,即尚未學(xué)習(xí)排列組合,以及學(xué)生的心理特點(diǎn)和認(rèn)知水平,制定了教學(xué)難點(diǎn):如何判斷一個(gè)試驗(yàn)是否是古典概型,分清在一個(gè)古典概型中某隨機(jī)事件包含的基本事件的個(gè)數(shù)和試驗(yàn)中基本事件的總數(shù)。

  (二)根據(jù)新課程標(biāo)準(zhǔn),并結(jié)合學(xué)生心理發(fā)展的需求,以及人格、情感、價(jià)值觀的具體要求制訂教學(xué)目標(biāo):

  1.知識(shí)與技能

  (1)理解古典概型及其概率計(jì)算公式(2)會(huì)用列舉法計(jì)算一些隨機(jī)事件所含的基本事件數(shù)及事件發(fā)生的概率2.情感態(tài)度與價(jià)值觀

  概率教學(xué)的核心問(wèn)題是讓學(xué)生了解隨機(jī)現(xiàn)象與概率的意義,加強(qiáng)與實(shí)際生活的聯(lián)系,以科學(xué)的態(tài)度評(píng)價(jià)身邊的一些隨機(jī)現(xiàn)象。適當(dāng)?shù)卦黾訉W(xué)生合作學(xué)習(xí)交流的機(jī)會(huì),盡量地讓學(xué)生自己舉出生活和學(xué)習(xí)中與古典概型有關(guān)的實(shí)例。使得學(xué)生在體會(huì)概率意義的同時(shí),感受與他人合作的重要性以及初步形成實(shí)事求是地科學(xué)態(tài)度和鍥而不舍的求學(xué)精神

  (三)教學(xué)方法:根據(jù)本節(jié)課的內(nèi)容和學(xué)生的實(shí)際水平,通過(guò)模擬試驗(yàn)讓學(xué)生理解古典概型的特征,觀

  察類比各個(gè)試驗(yàn),歸納總結(jié)出古典概型的概率計(jì)算公式,體現(xiàn)了化歸的重要思想,掌握列舉法,學(xué)會(huì)運(yùn)用數(shù)形結(jié)合、分類討論的思想解決概率的計(jì)算問(wèn)題。

  (四)教學(xué)過(guò)程:

  一、提出問(wèn)題引入新課:在課前,教師布置任務(wù),以數(shù)學(xué)小組為單位,完成下面兩個(gè)模擬試驗(yàn):試驗(yàn)一:拋擲一枚質(zhì)地均勻的硬幣,分別記錄“正面朝上”和“反面朝上”的次數(shù),要求每個(gè)數(shù)學(xué)小組至少完成20次(最好是整十?dāng)?shù)),最后由科代表匯總;

  試驗(yàn)二:拋擲一枚質(zhì)地均勻的骰子,分別記錄“1點(diǎn)”、“2點(diǎn)”、“3點(diǎn)”、“4點(diǎn)”、“5點(diǎn)”和“6點(diǎn)”的次數(shù),要求每個(gè)數(shù)學(xué)小組至少完成60次(最好是整十?dāng)?shù)),最后由科代表匯總。

  教師最后匯總方法、結(jié)果和感受,并提出問(wèn)題:1.用模擬試驗(yàn)的方法來(lái)求某一隨機(jī)事件的概率好不好?為什么?2.根據(jù)以前的學(xué)習(xí),上述兩個(gè)模擬試驗(yàn)的每個(gè)結(jié)果之間都有什么特點(diǎn)?

  二、思考交流形成概念:學(xué)生觀察對(duì)比得出兩個(gè)模擬試驗(yàn)的相同點(diǎn)和不同點(diǎn),教師給出基本事件的概念,并對(duì)相關(guān)特點(diǎn)加以說(shuō)明,加深新概念的理解。我們把上述試驗(yàn)中的隨機(jī)事件稱為基本事件,它是試驗(yàn)的每一個(gè)可能結(jié)果。

  基本事件有如下的兩個(gè)特點(diǎn):(1)任何兩個(gè)基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和。給出例題1,讓學(xué)生自行解決,從而進(jìn)一步理解基本事件,然后讓學(xué)生先觀察對(duì)比,找出兩個(gè)模擬試驗(yàn)和例1的共同特點(diǎn),再概括總結(jié)得到的結(jié)論,(1)試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個(gè)(有限性);(2)每個(gè)基本事件出現(xiàn)的可能性相等(等可能性)。我們將具有這兩個(gè)特點(diǎn)的概率模型稱為古典概率概型,簡(jiǎn)稱

  古典概型。

  三、觀察分析推導(dǎo)公式:教師提出問(wèn)題:在古典概型下,基本事件出現(xiàn)的概率是多少?隨機(jī)事件出現(xiàn)的概率如何計(jì)算?引導(dǎo)學(xué)生類比分析兩個(gè)模擬試驗(yàn)和例1的概率,先通過(guò)用概率加法公式求出隨機(jī)事件的概率,再對(duì)比概率

  結(jié)果,發(fā)現(xiàn)其中的聯(lián)系。實(shí)驗(yàn)一中,出現(xiàn)正面朝上的概率與反面朝上的概率相等,即

  1“出現(xiàn)正面朝上”所包含的基本事件的個(gè)數(shù),試驗(yàn)二中,出現(xiàn)各個(gè)點(diǎn)的概率相等,即

  P(“出現(xiàn)正面朝上”)==

  2基本事件的總數(shù)3“出現(xiàn)偶數(shù)點(diǎn)”所包含的`基本事件的個(gè)數(shù),根據(jù)上述兩則模擬試驗(yàn),可以概括總結(jié)出,古典

  P(“出現(xiàn)偶數(shù)點(diǎn)”)==

  6基本事件的總數(shù)

  概型計(jì)算任何事件的

  的理解,教師提問(wèn):在使用古典概型的概率公式時(shí),應(yīng)該注意什么?學(xué)生回答,教師歸納:應(yīng)該注意,(1)要判斷該概率模型是不是古典概型;

  (2)要找出隨機(jī)事件A包含的基本事件的個(gè)數(shù)和試驗(yàn)中基本事件的總數(shù)。

  四、例題分析推廣應(yīng)用:通過(guò)例題2及3,鞏固學(xué)生對(duì)已學(xué)知識(shí)的掌握,提高學(xué)生分析問(wèn)題、解決問(wèn)題的能力。讓學(xué)生明確決概率的計(jì)算問(wèn)題的關(guān)鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機(jī)事件A包含的基本事件的個(gè)數(shù)和試驗(yàn)中基本事件的總數(shù)。適時(shí)利用列表數(shù)形結(jié)合和分類討論等思想方法,既能形象直觀地列出基本事件的總數(shù),又能做到列舉的不重不漏。

  五、總結(jié)概括加深理解:學(xué)生小結(jié)歸納,不足的地方老師補(bǔ)充說(shuō)明。使學(xué)生對(duì)本節(jié)課的知識(shí)有一個(gè)系統(tǒng)全面的認(rèn)識(shí),并把學(xué)過(guò)的相關(guān)知識(shí)有機(jī)地串聯(lián)起來(lái),便于記憶和應(yīng)用,也進(jìn)一步升華了這節(jié)課所要表達(dá)的本質(zhì)思想,讓學(xué)生的認(rèn)知更上一層。

  (五)布置作業(yè)P123練習(xí)1、2題(六)板書(shū)設(shè)計(jì)

  3.2.13.2.1古典概型古典概型試驗(yàn)一試驗(yàn)二基本事件

  古典概型概率

  計(jì)算公式

  例3列表

  例1樹(shù)狀圖古典概型

  例2

  以上是我對(duì)《古典概型概型》這節(jié)課的理解和處理方法,歡迎各位專家朋友批評(píng)指正,謝謝!

  說(shuō)課教案:古典概型

  麻城理工學(xué)校謝衛(wèi)華

高中數(shù)學(xué)說(shuō)課稿9

  一、說(shuō)教材

  (1)說(shuō)教材的內(nèi)容和地位

  本次說(shuō)課的內(nèi)容是人教版高一數(shù)學(xué)必修一第一單元第一節(jié)《集合》(第一課時(shí))。集合這一課里,首先從初中代數(shù)與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說(shuō)明。然后,介紹了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知識(shí)安排在高中數(shù)學(xué)的最開(kāi)始,是因?yàn)樵诟咧袛?shù)學(xué)中,這些知識(shí)與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握以及使用數(shù)學(xué)語(yǔ)言的基礎(chǔ)。從知識(shí)結(jié)構(gòu)上來(lái)說(shuō)是為了引入函數(shù)的定義。因此在高中數(shù)學(xué)的模塊中,集合就顯得格外的舉足輕重了。

  (2)說(shuō)教學(xué)目標(biāo)

  根據(jù)教材結(jié)構(gòu)和內(nèi)容以及教材地位和作用,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)與心理特征,依據(jù)新課標(biāo)制定如下教學(xué)目標(biāo):

  1.知識(shí)與技能:掌握集合的基本概念及表示方法。了解"屬于"關(guān)系的意義,掌握集合元素的特征。

  2.過(guò)程與方法:通過(guò)情景設(shè)置提出問(wèn)題,揭示課題,培養(yǎng)學(xué)生主動(dòng)探究新知的習(xí)慣。并通過(guò)"自主、合作與探究"實(shí)現(xiàn)"一切以學(xué)生為中心"的理念。

  3.情感態(tài)度與價(jià)值觀:感受數(shù)學(xué)的人文價(jià)值,提高學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣,由集合的學(xué)習(xí)感受數(shù)學(xué)的簡(jiǎn)潔美與和諧統(tǒng)一美。同時(shí)通過(guò)自主探究領(lǐng)略獲取新知識(shí)的喜悅。

  (3)說(shuō)教學(xué)重點(diǎn)和難點(diǎn)

  依據(jù)課程標(biāo)準(zhǔn)和學(xué)生實(shí)際,我確定本課的教學(xué)重點(diǎn)為

  教學(xué)重點(diǎn):集合的基本概念及元素特征。

  教學(xué)難點(diǎn):掌握集合元素的三個(gè)特征,體會(huì)元素與集合的屬于關(guān)系。

  二、說(shuō)教法和學(xué)法

  接下來(lái)則是說(shuō)教法、學(xué)法

  教法與學(xué)法是互相聯(lián)系和統(tǒng)一的,不能孤立去研究。什么樣的教法必帶來(lái)相應(yīng)的學(xué)法,以遵循啟發(fā)性原則為出發(fā)點(diǎn),就本節(jié)課而言,我采用"生活實(shí)例與數(shù)學(xué)實(shí)例"相結(jié)合,"師生互動(dòng)與課堂布白"相輔助的.方法。通過(guò)不同層次的練習(xí)體驗(yàn),憑借有趣、實(shí)用的教學(xué)手段,突出重點(diǎn),突破難點(diǎn)。然而,學(xué)生是學(xué)習(xí)的主人,以學(xué)生為主體,創(chuàng)造條件讓學(xué)生參與探究活動(dòng),()不僅提高了學(xué)生探究能力,更讓學(xué)生獲得學(xué)習(xí)的技能和激發(fā)學(xué)生的學(xué)習(xí)興趣。因此,本次活動(dòng)采用的學(xué)法有自主探究、觀察發(fā)現(xiàn)、合作交流、歸納總結(jié)等。

  總之,不管采取什么教法和學(xué)法,每節(jié)課都應(yīng)不斷研究學(xué)生的學(xué)習(xí)心理機(jī)制,不斷優(yōu)化教師本身的教學(xué)行為,自始至終以學(xué)生為主體,為學(xué)生創(chuàng)造和諧的課堂氛圍。

  三、說(shuō)教學(xué)過(guò)程

  接著我來(lái)說(shuō)一下最重要的部分,本節(jié)課的教學(xué)過(guò)程:

  這節(jié)課的流程主要分為六個(gè)環(huán)節(jié):創(chuàng)設(shè)情境(引入目標(biāo))、自主探究(感知目標(biāo))、討論辨析(理解目標(biāo))、變式訓(xùn)練(鞏固目標(biāo))、課堂小結(jié)(自我評(píng)價(jià))、作業(yè)布置(反饋矯正)。上述六個(gè)環(huán)節(jié)由淺入深,層層遞進(jìn)。 多層次、多角度地加深對(duì)概念的理解。 提高學(xué)生學(xué)習(xí)的興趣,以達(dá)到良好的教學(xué)效果。

  第一環(huán)節(jié):創(chuàng)設(shè)問(wèn)題情境,引入目標(biāo)

  課堂開(kāi)始我將提出兩個(gè)問(wèn)題:

  問(wèn)題1:班級(jí)有20名男生,16名女生,問(wèn)班級(jí)一共多少人?

  問(wèn)題2:某次運(yùn)動(dòng)會(huì)上,班級(jí)有20人參加田賽,16人參加徑賽,問(wèn)一共多少人參加比賽?

  這里我會(huì)讓學(xué)生以小組討論的形式進(jìn)行討論問(wèn)題,事實(shí)上小組合作的形式是本節(jié)課主要形式。

  待學(xué)生討論完畢以后我將作歸納總結(jié):?jiǎn)栴}2已無(wú)法用學(xué)過(guò)的知識(shí)加以解釋,這是與集合有關(guān)的問(wèn)題,因此需用集合的語(yǔ)言加以描述(同時(shí)我將板書(shū)標(biāo)題:集合)。

  安排這一過(guò)程的意圖是為了從實(shí)際問(wèn)題引入,讓學(xué)生了解數(shù)學(xué)來(lái)源于實(shí)際。從而激發(fā)學(xué)生參與課堂學(xué)習(xí)的欲望。

  很自然地進(jìn)入到第二環(huán)節(jié):自主探究

  讓學(xué)生閱讀教材,并思考下列問(wèn)題:

  (1)有那些概念?

  (2)有那些符號(hào)?

  (3)集合中元素的特性是什么?

  安排這一過(guò)程的意圖是給學(xué)生提供活動(dòng)空間,讓主體主動(dòng)建構(gòu)自己的知識(shí)結(jié)構(gòu)。培養(yǎng)學(xué)生的探究能力。

  讓學(xué)生自主探究之后將進(jìn)入第三環(huán)節(jié):討論辨析

  小組合作探究(1)

  讓學(xué)生觀察下列實(shí)例

  (1)1~20以內(nèi)的所有質(zhì)數(shù);

  (2)所有的正方形;

  (3)到直線 的距離等于定長(zhǎng) 的所有的點(diǎn);

  (4)方程 的所有實(shí)數(shù)根;

  通過(guò)以上實(shí)例,辨析概念:

  (1)集合含義:一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡(jiǎn)稱集。而集合中的每個(gè)對(duì)象叫做這個(gè)集合的元素。

  (2)表示方法:集合通常用大括號(hào){ }或大寫的拉丁字母A,B,C…表示,而元素用小寫的拉丁字母a,b,c…表示。

  小組合作探究(2)——集合元素的特征

  問(wèn)題3:任意一組對(duì)象是否都能組成一個(gè)集合?集合中的元素有什么特征?

  問(wèn)題4:某單位所有的"帥哥"能否構(gòu)成一個(gè)集合?由此說(shuō)明什么?

  集合中的元素必須是確定的

  問(wèn)題5:在一個(gè)給定的集合中能否有相同的元素?由此說(shuō)明什么?

  集合中的元素是不重復(fù)出現(xiàn)的

  問(wèn)題6:咱班的全體同學(xué)組成一個(gè)集合,調(diào)整座位后這個(gè)集合有沒(méi)有變化?由此說(shuō)明什么? 集合中的元素是沒(méi)有順序的

  我如此設(shè)計(jì)的意圖是因?yàn)椋簡(jiǎn)栴}是數(shù)學(xué)的心臟,感受問(wèn)題是學(xué)習(xí)數(shù)學(xué)的根本動(dòng)力。

  小組合作探究(3)——元素與集合的關(guān)系

  問(wèn)題7:設(shè)集合A表示"1~20以內(nèi)的所有質(zhì)數(shù)",那么3,4,5,6這四個(gè)元素哪些在集合A中?哪些不在集合A中?

  問(wèn)題8:如果元素a是集合A中的元素,我們?nèi)绾斡脭?shù)學(xué)化的語(yǔ)言表達(dá)?

  a屬于集合A,記作a∈A

  問(wèn)題9:如果元素a不是集合A中的元素,我們?nèi)绾斡脭?shù)學(xué)化的語(yǔ)言表達(dá)?

  a不屬于集合A,記作aA

  小組合作探究(4)——常用數(shù)集及其表示方法

  問(wèn)題10:自然數(shù)集,正整數(shù)集,整數(shù)集,有理數(shù)集,實(shí)數(shù)集等一些常用數(shù)集,分別用什么符號(hào)表示?

  自然數(shù)集(非負(fù)整數(shù)集):記作 N

  正整數(shù)集:

  整數(shù)集:記作 Z

  有理數(shù)集:記作 Q 實(shí)數(shù)集:記作 R

  設(shè)計(jì)意圖:由于不同的人對(duì)同一問(wèn)題有不同的體驗(yàn)和理解。讓學(xué)生通過(guò)合作交流相互得到啟發(fā),從而不斷完善自己的知識(shí)結(jié)構(gòu)。

  第四環(huán)節(jié):理論遷移 變式訓(xùn)練

  1.下列指定的對(duì)象,能構(gòu)成一個(gè)集合的是

  ① 很小的數(shù)

  ② 不超過(guò)30的非負(fù)實(shí)數(shù)

  ③ 直角坐標(biāo)平面內(nèi)橫坐標(biāo)與縱坐標(biāo)相等的點(diǎn)

  ④ π的近似值

  ⑤ 所有無(wú)理數(shù)

  A、②③④⑤ B、①②③⑤ C、②③⑤ D、②③④

  第五環(huán)節(jié):課堂小結(jié),自我評(píng)價(jià)

  1.這節(jié)課學(xué)習(xí)的主要內(nèi)容是什么?

  2.這節(jié)課主要解釋了什么數(shù)學(xué)思想?

  設(shè)計(jì)意圖:引導(dǎo)學(xué)生對(duì)所學(xué)知識(shí)、思想方法進(jìn)行小結(jié),形成知識(shí)系統(tǒng)。教師用激勵(lì)性的語(yǔ)言加一點(diǎn)評(píng),讓學(xué)生的思想敞亮的發(fā)揮出來(lái)。

  第六環(huán)節(jié):作業(yè)布置,反饋矯正

  1.必做題 課本習(xí)題1.1—1、2、3.

  2.選做題 已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求實(shí)數(shù)a 的值。

  設(shè)計(jì)意圖:充分考慮到學(xué)生的差異性,讓所有學(xué)生都有成功的情感體驗(yàn)。

  四、板書(shū)設(shè)計(jì)

  好的板書(shū)就像一份微型教案,為了讓學(xué)生直觀易懂的看筆記,板書(shū)應(yīng)設(shè)計(jì)得有條理性、概括性、指導(dǎo)性,所以我設(shè)計(jì)的板書(shū)如下:

  集 合

  1.集合的概念

  2.集合元素的特征

  (學(xué)生板演)

  3.常見(jiàn)集合的表示

  4.范例研究

高中數(shù)學(xué)說(shuō)課稿10

  一、教材分析

  1.從在教材中的地位與作用來(lái)看

  《等比數(shù)列的前n項(xiàng)和》是數(shù)列這一章中的一個(gè)重要內(nèi)容,它不僅在現(xiàn)實(shí)生活中有著廣泛的實(shí)際應(yīng)用,如儲(chǔ)蓄、分期付款的有關(guān)計(jì)算等等,而且公式推導(dǎo)過(guò)程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng).

  2.從學(xué)生認(rèn)知角度看

  從學(xué)生的思維特點(diǎn)看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項(xiàng)和從公式的形成、特點(diǎn)等方面進(jìn)行類比,這是積極因素,應(yīng)因勢(shì)利導(dǎo).不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項(xiàng)和公式的推導(dǎo)有著本質(zhì)的不同,這對(duì)學(xué)生的思維是一個(gè)突破,另外,對(duì)于q=1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過(guò)程中容易出錯(cuò).

  3.學(xué)情分析

  教學(xué)對(duì)象是剛進(jìn)入高中的學(xué)生,雖然具有一定的分析問(wèn)題和解決問(wèn)題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴(yán)謹(jǐn).

  4.重點(diǎn)、難點(diǎn)

  教學(xué)重點(diǎn):公式的推導(dǎo)、公式的特點(diǎn)和公式的運(yùn)用.

  教學(xué)難點(diǎn):公式的推導(dǎo)方法和公式的靈活運(yùn)用.

  公式推導(dǎo)所使用的“錯(cuò)位相減法”是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊(yùn)含了重要的數(shù)學(xué)思想,所以既是重點(diǎn)也是難點(diǎn).

  二、目標(biāo)分析

  知識(shí)與技能目標(biāo):

  理解并掌握等比數(shù)列前n項(xiàng)和公式的推導(dǎo)過(guò)程、公式的特點(diǎn),在此基礎(chǔ)

  上能初步應(yīng)用公式解決與之有關(guān)的問(wèn)題.

  過(guò)程與方法目標(biāo):

  通過(guò)對(duì)公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)

  化、分類討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力.

  情感與態(tài)度價(jià)值觀:

  通過(guò)對(duì)公式推導(dǎo)方法的探索與發(fā)現(xiàn),優(yōu)化學(xué)生的思維品質(zhì),滲透事物之

  間等價(jià)轉(zhuǎn)化和理論聯(lián)系實(shí)際的辯證唯物主義觀點(diǎn).

  三、過(guò)程分析

  學(xué)生是認(rèn)知的主體,設(shè)計(jì)教學(xué)過(guò)程必須遵循學(xué)生的認(rèn)知規(guī)律,盡可能地讓學(xué)生去經(jīng)歷知識(shí)的形成與發(fā)展過(guò)程,結(jié)合本節(jié)課的特點(diǎn),我設(shè)計(jì)了如下的教學(xué)過(guò)程:

  1.創(chuàng)設(shè)情境,提出問(wèn)題

  在古印度,有個(gè)名叫西薩的人,發(fā)明了國(guó)際象棋,當(dāng)時(shí)的印度國(guó)王大為贊賞,對(duì)他說(shuō):我可以滿足你的任何要求.西薩說(shuō):請(qǐng)給我棋盤的64個(gè)方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格.國(guó)王令宮廷數(shù)學(xué)家計(jì)算,結(jié)果出來(lái)后,國(guó)王大吃一驚.為什么呢?

  設(shè)計(jì)意圖:設(shè)計(jì)這個(gè)情境目的是在引入課題的同時(shí)激發(fā)學(xué)生的興趣,調(diào)動(dòng)學(xué)習(xí)的積極性.故事內(nèi)容緊扣本節(jié)課的主題與重點(diǎn).

  此時(shí)我問(wèn):同學(xué)們,你們知道西薩要的是多少粒小麥嗎?引導(dǎo)學(xué)生寫出麥粒總數(shù).帶著這樣的問(wèn)題,學(xué)生會(huì)動(dòng)手算了起來(lái),他們想到用計(jì)算器依次算出各項(xiàng)的值,然后再求和.這時(shí)我對(duì)他們的這種思路給予肯定.

  設(shè)計(jì)意圖:在實(shí)際教學(xué)中,由于受課堂時(shí)間限制,教師舍不得花時(shí)間讓學(xué)生去做所謂的“無(wú)用功”,急急忙忙地拋出“錯(cuò)位相減法”,這樣做有悖學(xué)生的認(rèn)知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個(gè)教學(xué)關(guān)鍵處學(xué)生難以轉(zhuǎn)過(guò)彎來(lái),因而在教學(xué)中應(yīng)舍得花時(shí)間營(yíng)造知識(shí)形成過(guò)程的氛圍,突破學(xué)生學(xué)習(xí)的'障礙.同時(shí),形成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問(wèn)題的新方法,為后面的教學(xué)埋下伏筆.

  2.師生互動(dòng),探究問(wèn)題

  在肯定他們的思路后,我接著問(wèn):1,2,22,…,263是什么數(shù)列?有何特征?應(yīng)歸結(jié)為什么數(shù)學(xué)問(wèn)題呢?

  探討1:,記為(1)式,注意觀察每一項(xiàng)的特征,有何聯(lián)系?(學(xué)生會(huì)發(fā)現(xiàn),后一項(xiàng)都是前一項(xiàng)的2倍)

  探討2:如果我們把每一項(xiàng)都乘以2,就變成了它的后一項(xiàng),(1)式兩邊同乘以2則有,記為(2)式.比較(1)(2)兩式,你有什么發(fā)現(xiàn)?

  設(shè)計(jì)意圖:留出時(shí)間讓學(xué)生充分地比較,等比數(shù)列前n項(xiàng)和的公式推導(dǎo)關(guān)鍵是變“加”為“減”,在教師看來(lái)這是“天經(jīng)地義”的,但在學(xué)生看來(lái)卻是“不可思議”的,因此教學(xué)中應(yīng)著力在這兒做文章,從而抓住培養(yǎng)學(xué)生的辯證思維能力的良好契機(jī).

  經(jīng)過(guò)比較、研究,學(xué)生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項(xiàng),把兩式相減,相同的項(xiàng)就消去了,得到:.老師指出:這就是錯(cuò)位相減法,并要求學(xué)生縱觀全過(guò)程,反思:為什么(1)式兩邊要同乘以2呢?

  設(shè)計(jì)意圖:經(jīng)過(guò)繁難的計(jì)算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡(jiǎn)潔了!讓學(xué)生在探索過(guò)程中,充分感受到成功的情感體驗(yàn),從而增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心.

  3.類比聯(lián)想,解決問(wèn)題

  這時(shí)我再順勢(shì)引導(dǎo)學(xué)生將結(jié)論一般化,

  這里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對(duì)個(gè)別學(xué)生進(jìn)行指導(dǎo).

  設(shè)計(jì)意圖:在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗(yàn)到學(xué)習(xí)的愉快和成就感.

  對(duì)不對(duì)?這里的q能不能等于1?等比數(shù)列中的公比能不能為

  1q=1時(shí)是什么數(shù)列?此時(shí)sn=?(這里引導(dǎo)學(xué)生對(duì)q進(jìn)行分類討論,得出公式,同時(shí)為后面的例題教學(xué)打下基礎(chǔ).)

  再次追問(wèn):結(jié)合等比數(shù)列的通項(xiàng)公式an=a1qn-1,如何把sn用a1、an、q表示出來(lái)?(引導(dǎo)學(xué)生得出公式的另一形式)

  設(shè)計(jì)意圖:通過(guò)反問(wèn)精講,一方面使學(xué)生加深對(duì)知識(shí)的認(rèn)識(shí),完善知識(shí)結(jié)構(gòu),另一方面使學(xué)生由簡(jiǎn)單地模仿和接受,變?yōu)閷?duì)知識(shí)的主動(dòng)認(rèn)識(shí),從而進(jìn)一步提高分析、類比和綜合的能力.這一環(huán)節(jié)非常重要,盡管時(shí)間有時(shí)比較少,甚至僅僅幾句話,然而卻有畫(huà)龍點(diǎn)睛之妙用.

  4.討論交流,延伸拓展

高中數(shù)學(xué)說(shuō)課稿11

  高三第一階段復(fù)習(xí),也稱“知識(shí)篇”。在這一階段,學(xué)生重溫高一、高二所學(xué)課程,全面復(fù)習(xí)鞏固各個(gè)知識(shí)點(diǎn),熟練掌握基本方法和技能;然后站在全局的高度,對(duì)學(xué)過(guò)的知識(shí)產(chǎn)生全新認(rèn)識(shí)。在高一、高二時(shí),是以知識(shí)點(diǎn)為主線索,依次傳授講解的,由于后面的相關(guān)知識(shí)還沒(méi)有學(xué)到,不能進(jìn)行縱向聯(lián)系,所以,學(xué)的知識(shí)往往是零碎和散亂,而在第一輪復(fù)習(xí)時(shí),以章節(jié)為單位,將那些零碎的、散亂的知識(shí)點(diǎn)串聯(lián)起來(lái),并將他們系統(tǒng)化、綜合化,把各個(gè)知識(shí)點(diǎn)融會(huì)貫通。對(duì)于普通高中的學(xué)生,第一輪復(fù)習(xí)更為重要,我們希望能做高考試題中一些基礎(chǔ)題目,必須側(cè)重基礎(chǔ),加強(qiáng)復(fù)習(xí)的針對(duì)性,講求實(shí)效。

  一、內(nèi)容分析說(shuō)明

  1、本小節(jié)內(nèi)容是初中學(xué)習(xí)的多項(xiàng)式乘法的繼續(xù),它所研究的二項(xiàng)式的乘方的展開(kāi)式,與數(shù)學(xué)的其他部分有密切的聯(lián)系:

  (1)二項(xiàng)展開(kāi)式與多項(xiàng)式乘法有聯(lián)系,本小節(jié)復(fù)習(xí)可對(duì)多項(xiàng)式的變形起到復(fù)習(xí)深化作用。

  (2)二項(xiàng)式定理與概率理論中的二項(xiàng)分布有內(nèi)在聯(lián)系,利用二項(xiàng)式定理可得到一些組合數(shù)的恒等式,因此,本小節(jié)復(fù)習(xí)可加深知識(shí)間縱橫聯(lián)系,形成知識(shí)網(wǎng)絡(luò)。

  (3)二項(xiàng)式定理是解決某些整除性、近似計(jì)算等問(wèn)題的一種方法。

  2、高考中二項(xiàng)式定理的試題幾乎年年有,多數(shù)試題的難度與課本習(xí)題相當(dāng),是容易題和中等難度的

  試題,考察的題型穩(wěn)定,通常以選擇題或填空題出現(xiàn),有時(shí)也與應(yīng)用題結(jié)合在一起求某些數(shù)、式的

  近似值。

  二、學(xué)校情況與學(xué)生分析

  (1)我校是一所鎮(zhèn)普通高中,學(xué)生的基礎(chǔ)不好,記憶力較差,反應(yīng)速度慢,普遍感到數(shù)學(xué)難學(xué)。但大部分學(xué)生想考大學(xué),主觀上有學(xué)好數(shù)學(xué)的愿望。

  (2)授課班是政治、地理班,學(xué)生聽(tīng)課積極性不高,聽(tīng)課率低(60﹪),注意力不能持久,不能連續(xù)從事某項(xiàng)數(shù)學(xué)活動(dòng)。課堂上喜歡輕松詼諧的氣氛,大部分能機(jī)械的模仿,部分學(xué)生好記筆記。

  三、教學(xué)目標(biāo)

  復(fù)習(xí)課二項(xiàng)式定理計(jì)劃安排兩個(gè)課時(shí),本課是第一課時(shí),主要復(fù)習(xí)二項(xiàng)展開(kāi)式和通項(xiàng)。根據(jù)歷年高考對(duì)這部分的考查情況,結(jié)合學(xué)生的特點(diǎn),設(shè)定如下教學(xué)目標(biāo):

  1、知識(shí)目標(biāo):(1)理解并掌握二項(xiàng)式定理,從項(xiàng)數(shù)、指數(shù)、系數(shù)、通項(xiàng)幾個(gè)特征熟記它的展開(kāi)式。

  (2)會(huì)運(yùn)用展開(kāi)式的通項(xiàng)公式求展開(kāi)式的特定項(xiàng)。

  2、能力目標(biāo):(1)教給學(xué)生怎樣記憶數(shù)學(xué)公式,如何提高記憶的持久性和準(zhǔn)確性,從而優(yōu)化記憶品質(zhì)。記憶力是一般數(shù)學(xué)能力,是其它能力的基礎(chǔ)。

  (2)樹(shù)立由一般到特殊的解決問(wèn)題的意識(shí),了解解決問(wèn)題時(shí)運(yùn)用的數(shù)學(xué)思想方法。

  3、情感目標(biāo):通過(guò)對(duì)二項(xiàng)式定理的復(fù)習(xí),使學(xué)生感覺(jué)到能掌握數(shù)學(xué)的部分內(nèi)容,樹(shù)立學(xué)好數(shù)學(xué)的信心。有意識(shí)地讓學(xué)生演練一些歷年高考試題,使學(xué)生體驗(yàn)到成功,在明年的高考中,他們也能得分。

  四、教學(xué)過(guò)程

  1、知識(shí)歸納

  (1)創(chuàng)設(shè)情景:

  ①同學(xué)們,還記得嗎? 、 展開(kāi)式是什么?

  ②學(xué)生一起回憶、老師板書(shū)。

  設(shè)計(jì)意圖:

  ①提出比較容易的問(wèn)題,吸引學(xué)生的注意力,組織教學(xué)。

  ②為學(xué)生能回憶起二項(xiàng)式定理作鋪墊:激活記憶,引起聯(lián)想。

  (2)二項(xiàng)式定理:①設(shè)問(wèn) 展開(kāi)式是什么?待學(xué)生思考后,老師板書(shū)

  = C an+C an-1b1+…+C an-rbr+…+C bn(n∈N__)

  ②老師要求學(xué)生說(shuō)出二項(xiàng)展開(kāi)式的特征并熟記公式:共有 項(xiàng);各項(xiàng)里a的指數(shù)從n起依次減小1,直到0為止;b的指數(shù)從0起依次增加1,直到n為止。每一項(xiàng)里a、b的指數(shù)和均為n。

  ③鞏固練習(xí) 填空

  設(shè)計(jì)意圖:

  ①教給學(xué)生記憶的方法,比較分析公式的特點(diǎn),記規(guī)律。

  ②變用公式,熟悉公式。

  (3) 展開(kāi)式中各項(xiàng)的系數(shù)C , C , C ,… , 稱為二項(xiàng)式系數(shù).

  展開(kāi)式的通項(xiàng)公式Tr+1=C an-rbr , 其中r= 0,1,2,…n表示展開(kāi)式中第r+1項(xiàng).

  2、例題講解

  例1求 的展開(kāi)式的第4項(xiàng)的二項(xiàng)式系數(shù),并求的第4項(xiàng)的系數(shù)。

  講解過(guò)程

  設(shè)問(wèn):這里 ,要求的第4項(xiàng)的有關(guān)系數(shù),如何解決?

  學(xué)生思考計(jì)算,回答問(wèn)題;

  老師指明

  ①當(dāng)項(xiàng)數(shù)是4時(shí), ,此時(shí) ,所以第4項(xiàng)的二項(xiàng)式系數(shù)是 ,②第4項(xiàng)的系數(shù)與的第4項(xiàng)的二項(xiàng)式系數(shù)區(qū)別。

  板書(shū)

  解:展開(kāi)式的第4項(xiàng)

  所以第4項(xiàng)的系數(shù)為 ,二項(xiàng)式系數(shù)為 。

  選題意圖:

  ①利用通項(xiàng)公式求項(xiàng)的系數(shù)和二項(xiàng)式系數(shù);

  ②復(fù)習(xí)指數(shù)冪運(yùn)算。

  例2 求 的展開(kāi)式中不含的 項(xiàng)。

  講解過(guò)程

  設(shè)問(wèn):

  ①不含的 項(xiàng)是什么樣的項(xiàng)?即這一項(xiàng)具有什么性質(zhì)?

  ②問(wèn)題轉(zhuǎn)化為第幾項(xiàng)是常數(shù)項(xiàng),誰(shuí)能看出哪一項(xiàng)是常數(shù)項(xiàng)?

  師生討論 “看不出哪一項(xiàng)是常數(shù)項(xiàng),怎么辦?”

  共同探討思路:利用通項(xiàng)公式,列出項(xiàng)數(shù)的方程,求出項(xiàng)數(shù)。

  老師總結(jié)思路:先設(shè)第 項(xiàng)為不含 的項(xiàng),得 ,利用這一項(xiàng)的指數(shù)是零,得到關(guān)于 的方程,解出 后,代回通項(xiàng)公式,便可得到常數(shù)項(xiàng)。

  板書(shū)

  解:設(shè)展開(kāi)式的第 項(xiàng)為不含 項(xiàng),那么

  令 ,解得 ,所以展開(kāi)式的第9項(xiàng)是不含的 項(xiàng)。

  因此 。

  選題意圖:

  ①鞏固運(yùn)用展開(kāi)式的通項(xiàng)公式求展開(kāi)式的特定項(xiàng),形成基本技能。

  ②判斷第幾項(xiàng)是常數(shù)項(xiàng)運(yùn)用方程的思想;找到這一項(xiàng)的項(xiàng)數(shù)后,實(shí)現(xiàn)了轉(zhuǎn)化,體現(xiàn)轉(zhuǎn)化的數(shù)學(xué)思想。

  例3求 的展開(kāi)式中, 的系數(shù)。

  解題思路:原式局部展開(kāi)后,利用加法原理,可得到展開(kāi)式中的 系數(shù)。

  板書(shū)

  解:由于 ,則 的展開(kāi)式中 的系數(shù)為 的展開(kāi)式中 的系數(shù)之和。

  而 的展開(kāi)式含 的項(xiàng)分別是第5項(xiàng)、第4項(xiàng)和第3項(xiàng),則 的`展開(kāi)式中 的系數(shù)分別是: 。

  所以 的展開(kāi)式中 的系數(shù)為

  例4 如果在( + )n的展開(kāi)式中,前三項(xiàng)系數(shù)成等差數(shù)列,求展開(kāi)式中的有理項(xiàng).

  解:展開(kāi)式中前三項(xiàng)的系數(shù)分別為1, , ,由題意得2× =1+ ,得n=8.

  設(shè)第r+1項(xiàng)為有理項(xiàng),T =C · ·x ,則r是4的倍數(shù),所以r=0,4,8.

  有理項(xiàng)為T1=x4,T5= x,T9= .

  3、課堂練習(xí)

  1.(20__年江蘇,7)(2x+ )4的展開(kāi)式中x3的系數(shù)是

  A.6B.12 C.24 D.48

  解析:(2x+ )4=x2(1+2 )4,在(1+2 )4中,x的系數(shù)為C ·22=24.

  答案:C

  2.(20__年全國(guó)Ⅰ,5)(2x3- )7的展開(kāi)式中常數(shù)項(xiàng)是

  A.14 B.14 C.42 D.-42

  解析:設(shè)(2x3- )7的展開(kāi)式中的第r+1項(xiàng)是T =C (2x3) (- )r=C 2 ·

  (-1)r·x ,當(dāng)- +3(7-r)=0,即r=6時(shí),它為常數(shù)項(xiàng),∴C (-1)6·21=14.

  答案:A

  3.(20__年湖北,文14)已知(x +x )n的展開(kāi)式中各項(xiàng)系數(shù)的和是128,則展開(kāi)式中x5的系數(shù)是_____________.(以數(shù)字作答)

  解析:∵(x +x )n的展開(kāi)式中各項(xiàng)系數(shù)和為128,∴令x=1,即得所有項(xiàng)系數(shù)和為2n=128.

  ∴n=7.設(shè)該二項(xiàng)展開(kāi)式中的r+1項(xiàng)為T =C (x ) ·(x )r=C ·x ,令 =5即r=3時(shí),x5項(xiàng)的系數(shù)為C =35.

  答案:35

  五、課堂教學(xué)設(shè)計(jì)說(shuō)明

  1、這是一堂復(fù)習(xí)課,通過(guò)對(duì)例題的研究、討論,鞏固二項(xiàng)式定理通項(xiàng)公式,加深對(duì)項(xiàng)的系數(shù)、項(xiàng)的二項(xiàng)式系數(shù)等有關(guān)概念的理解和認(rèn)識(shí),形成求二項(xiàng)式展開(kāi)式某些指定項(xiàng)的基本技能,同時(shí),要培養(yǎng)學(xué)生的運(yùn)算能力,邏輯思維能力,強(qiáng)化方程的思想和轉(zhuǎn)化的思想。

  2、在例題的選配上,我設(shè)計(jì)了一定梯度。第一層次是給出二項(xiàng)式,求指定的項(xiàng),即項(xiàng)數(shù)已知,只需直接代入通項(xiàng)公式即可(例1);第二層次(例2)則需要自己創(chuàng)造代入的條件,先判斷哪一項(xiàng)為所求,即先求項(xiàng)數(shù),利用通項(xiàng)公式中指數(shù)的關(guān)系求出,此后轉(zhuǎn)化為第一層次的問(wèn)題。第三層次突出數(shù)學(xué)思想的滲透,例3需要變形才能求某一項(xiàng)的系數(shù),恒等變形是實(shí)現(xiàn)轉(zhuǎn)化的手段。在求每個(gè)局部展開(kāi)式的某項(xiàng)系數(shù)時(shí),又有分類討論思想的指導(dǎo)。而例4的設(shè)計(jì)是想增加題目的綜合性,求的n過(guò)程中,運(yùn)用等差數(shù)列、組合數(shù)n等知識(shí),求出后,有化歸為前面的問(wèn)題。

  六、個(gè)人見(jiàn)解

高中數(shù)學(xué)說(shuō)課稿12

各位專家:

  您好!我叫陸威,來(lái)自江蘇省宿遷中學(xué),今天我說(shuō)課的課題是“橢圓的標(biāo)準(zhǔn)方程”,下面我從教材分析、教法設(shè)計(jì)、學(xué)法設(shè)計(jì)、學(xué)情分析、教學(xué)程序、板書(shū)設(shè)計(jì)和評(píng)價(jià)設(shè)計(jì)等七個(gè)方面向各位闡述我對(duì)本節(jié)課的構(gòu)思與設(shè)計(jì)。

  一、教材分析

1、地位及作用

  圓錐曲線是一個(gè)重要的幾何模型,有許多幾何性質(zhì),這些性質(zhì)在日常生活、生產(chǎn)和科學(xué)技術(shù)中有著廣泛的應(yīng)用。同時(shí),圓錐曲線也是體現(xiàn)數(shù)形結(jié)合思想的重要素材。

  推導(dǎo)橢圓的標(biāo)準(zhǔn)方程的方法對(duì)雙曲線、拋物線方程的推導(dǎo)具有直接的類比作用,為學(xué)習(xí)雙曲線、拋物線內(nèi)容提供了基本模式和理論基礎(chǔ)。因此本節(jié)課具有承前啟后的作用,是本章的重點(diǎn)內(nèi)容。

  2、教學(xué)內(nèi)容與教材處理

  橢圓的標(biāo)準(zhǔn)方程共兩課時(shí),第一課時(shí)所研究的是橢圓標(biāo)準(zhǔn)方程的建立及其簡(jiǎn)單運(yùn)用,涉及的數(shù)學(xué)方法有觀察、比較、歸納、猜想、推理驗(yàn)證等,我將以課堂教學(xué)的組織者、引導(dǎo)者、合作者的身份,組織學(xué)生動(dòng)手實(shí)驗(yàn)、歸納猜想、推理驗(yàn)證,引導(dǎo)學(xué)生逐個(gè)突破難點(diǎn),自主完成問(wèn)題,使學(xué)生通過(guò)各種數(shù)學(xué)活動(dòng),掌握各種數(shù)學(xué)基本技能,初步學(xué)會(huì)從數(shù)學(xué)角度去觀察事物和思考問(wèn)題,產(chǎn)生學(xué)習(xí)數(shù)學(xué)的愿望和興趣。

  3、教學(xué)目標(biāo)

  根據(jù)教學(xué)大綱和學(xué)生已有的認(rèn)知基礎(chǔ),我將本節(jié)課的教學(xué)目標(biāo)確定如下:

  1、知識(shí)目標(biāo)

  ①建立直角坐標(biāo)系,根據(jù)橢圓的定義建立橢圓的標(biāo)準(zhǔn)方程,

  ②能根據(jù)已知條件求橢圓的標(biāo)準(zhǔn)方程,

  ③進(jìn)一步感受曲線方程的概念,了解建立曲線方程的基本方法,體會(huì)數(shù)形結(jié)合的數(shù)學(xué)思想。

  2、能力目標(biāo)

  ①讓學(xué)生感知數(shù)學(xué)知識(shí)與實(shí)際生活的密切聯(lián)系,培養(yǎng)解決實(shí)際問(wèn)題的能力,

  ②培養(yǎng)學(xué)生的觀察能力、歸納能力、探索發(fā)現(xiàn)能力,

  ③提高運(yùn)用坐標(biāo)法解決幾何問(wèn)題的能力及運(yùn)算能力。

  3、情感目標(biāo)

  ①親身經(jīng)歷橢圓標(biāo)準(zhǔn)方程的獲得過(guò)程,感受數(shù)學(xué)美的熏陶,

  ②通過(guò)主動(dòng)探索,合作交流,感受探索的樂(lè)趣和成功的體驗(yàn),體會(huì)數(shù)學(xué)的理性和嚴(yán)謹(jǐn),

  ③養(yǎng)成實(shí)事求是的科學(xué)態(tài)度和鍥而不舍的鉆研精神,形成學(xué)習(xí)數(shù)學(xué)知識(shí)的積極態(tài)度。

  4、重點(diǎn)難點(diǎn)

  基于以上分析,我將本課的教學(xué)重點(diǎn)、難點(diǎn)確定為:

  ①重點(diǎn):感受建立曲線方程的基本過(guò)程,掌握橢圓的`標(biāo)準(zhǔn)方程及其推導(dǎo)方法,

  ②難點(diǎn):橢圓的標(biāo)準(zhǔn)方程的推導(dǎo)。

  二、教法設(shè)計(jì)

  在教法上,主要采用探究性教學(xué)法和啟發(fā)式教學(xué)法。以啟發(fā)、引導(dǎo)為主,采用設(shè)疑的形式,逐步讓學(xué)生進(jìn)行探究性的學(xué)習(xí)。探究性學(xué)習(xí)就是充分利用了青少年學(xué)生富有創(chuàng)造性和好奇心,敢想敢為,對(duì)新事物具有濃厚的興趣的特點(diǎn)。讓學(xué)生根據(jù)教學(xué)目標(biāo)的要求和題目中的已知條件,自覺(jué)主動(dòng)地創(chuàng)造性地去分析問(wèn)題、討論問(wèn)題、解決問(wèn)題。

  三、學(xué)法設(shè)計(jì)

  通過(guò)創(chuàng)設(shè)情境,充分調(diào)動(dòng)學(xué)生已有的學(xué)習(xí)經(jīng)驗(yàn),讓學(xué)生經(jīng)歷“觀察——猜想——證明——應(yīng)用”的過(guò)程,發(fā)現(xiàn)新的知識(shí),把學(xué)生的潛意識(shí)狀態(tài)的好奇心變?yōu)樽杂X(jué)求知的創(chuàng)新意識(shí)。又通過(guò)實(shí)際操作,使剛產(chǎn)生的數(shù)學(xué)知識(shí)得到完善,提高了學(xué)生動(dòng)手動(dòng)腦的能力和增強(qiáng)了研究探索的綜合素質(zhì)。

  四、學(xué)情分析

  1、能力分析

  ①學(xué)生已初步掌握用坐標(biāo)法研究直線和圓的方程,

  ②對(duì)含有兩個(gè)根式方程的化簡(jiǎn)能力薄弱。

  2、認(rèn)知分析

  ①學(xué)生已初步熟悉求曲線方程的基本步驟,

  ②學(xué)生已經(jīng)掌握直線和圓的方程及圓錐曲線的概念,對(duì)曲線的方程的概念有一定的了解,

  ③學(xué)生已經(jīng)初步掌握研究直線和圓的基本方法。

  3、情感分析

  學(xué)生具有積極的學(xué)習(xí)態(tài)度,強(qiáng)烈的探究欲望,能主動(dòng)參與研究。

  五、教學(xué)程序

  從建構(gòu)主義的角度來(lái)看,數(shù)學(xué)學(xué)習(xí)是指學(xué)生自己建構(gòu)數(shù)學(xué)知識(shí)的活動(dòng),在數(shù)學(xué)活動(dòng)過(guò)程中,學(xué)生與教材及教師產(chǎn)生交互作用,形成了數(shù)學(xué)知識(shí)、技能和能力,發(fā)展了情感態(tài)度和思維品質(zhì)。基于這一理論,我把這一節(jié)課的教學(xué)程序分成六個(gè)步驟來(lái)進(jìn)行。

高中數(shù)學(xué)說(shuō)課稿13

  大家好,今天我向大家說(shuō)課的題目是《正弦定理》。下面我將從以下幾個(gè)方面介紹我這堂課的教學(xué)設(shè)計(jì)。

  一、教材分析

  本節(jié)知識(shí)是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問(wèn)題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時(shí)常考一些解答題。因此,正弦定理和余弦定理的知識(shí)非常重要。

  根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識(shí)水平,制定如下教學(xué)目標(biāo):

  認(rèn)知目標(biāo):通過(guò)創(chuàng)設(shè)問(wèn)題情境,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,掌握正弦定理的內(nèi)容及其證明方法,使學(xué)生會(huì)運(yùn)用正弦定理解決兩類基本的解三角形問(wèn)題。

  能力目標(biāo):引導(dǎo)學(xué)生通過(guò)觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和觀察與邏輯思維能力,能體會(huì)用向量作為數(shù)形結(jié)合的工具,將幾何問(wèn)題轉(zhuǎn)化為代數(shù)問(wèn)題。

  情感目標(biāo):面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,通過(guò)學(xué)生之間、師生之間的交流、合作和評(píng)價(jià),調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,激發(fā)學(xué)生學(xué)習(xí)的興趣。

  教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。 教學(xué)難點(diǎn):已知兩邊和其中一邊的對(duì)角解三角形時(shí)判斷解的個(gè)數(shù)。

  二、教法

  根據(jù)教材的內(nèi)容和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認(rèn)識(shí)規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過(guò)程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究?jī)?nèi)容,以生活實(shí)際為參照對(duì)象,讓學(xué)生的思維由問(wèn)題開(kāi)始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。

  三、學(xué)法

  指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識(shí)應(yīng)用于對(duì)任意三角形性質(zhì)的探究。讓學(xué)生在問(wèn)題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動(dòng)手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強(qiáng)了鍥而不舍的求學(xué)精神。

  四、教學(xué)過(guò)程

  (一)創(chuàng)設(shè)情境(3分鐘)

  “興趣是最好的.老師”,如果一節(jié)課有個(gè)好的開(kāi)頭,那就意味著成功了一半,本節(jié)課由一個(gè)實(shí)際問(wèn)題引入,“工人師傅的一個(gè)三角形模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長(zhǎng)為1m,想修好這個(gè)零件,但他不知道AC和BC的長(zhǎng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題。

  (二)猜想—推理—證明(15分鐘)

  激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。 提問(wèn):那結(jié)論對(duì)任意三角形都適用嗎?(讓學(xué)生分小組討論,并得出猜想)

  在三角形中,角與所對(duì)的邊滿足關(guān)系

  注意:1.強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。

  2.鼓勵(lì)學(xué)生通過(guò)作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。

  3.提示學(xué)生思考哪些知識(shí)能把長(zhǎng)度和三角函數(shù)聯(lián)系起來(lái),繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

  (三)總結(jié)--應(yīng)用(3分鐘)

  1.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問(wèn)題。

  2.運(yùn)用正弦定理求解本節(jié)課引入的三角形零件邊長(zhǎng)的問(wèn)題。自己參與實(shí)際問(wèn)題的解決,能激發(fā)學(xué)生知識(shí)后用于實(shí)際的價(jià)值觀。

  (四)講解例題(8分鐘)

  1.例1. 在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

  例1簡(jiǎn)單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對(duì)邊,都可利用正弦定理來(lái)解三角形。

  2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

  例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中

  一邊的對(duì)角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。

  (五)課堂練習(xí)(8分鐘)

  1.在△ABC中,已知下列條件,解三角形. (1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm

  2. 在△ABC中,已知下列條件,解三角形. (1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115°

  學(xué)生板演,老師巡視,及時(shí)發(fā)現(xiàn)問(wèn)題,并解答。

  (六)小結(jié)反思(3分鐘)

  1.它表述了三角形的邊與對(duì)角的正弦值的關(guān)系。

  2.定理證明分別從直角、銳角、鈍角出發(fā),運(yùn)用分類討論的思想。

  3.會(huì)用向量作為數(shù)形結(jié)合的工具,將幾何問(wèn)題轉(zhuǎn)化為代數(shù)問(wèn)題。

  五、教學(xué)反思

  從實(shí)際問(wèn)題出發(fā),通過(guò)猜想、實(shí)驗(yàn)、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。我們研究問(wèn)題的突出特點(diǎn)是從特殊到一般,我們不僅收獲著結(jié)論,而且整個(gè)探索過(guò)程我們也掌握了研究問(wèn)題的一般方法。在強(qiáng)調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動(dòng)學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動(dòng)的教學(xué)。

高中數(shù)學(xué)說(shuō)課稿14

  數(shù)學(xué):人教A版必修3第二章第三節(jié)《變量之間的相關(guān)關(guān)系》說(shuō)課稿各位老師:

  大家好!我叫***,來(lái)自**。我說(shuō)課的題目是《變量之間的相關(guān)關(guān)系》,內(nèi)容選自于高中教材新課程人教A版必修3第二章第三節(jié),課時(shí)安排為三個(gè)課時(shí),本節(jié)課內(nèi)容為第一課時(shí)。下面我將從教材分析、教學(xué)目標(biāo)分析、教學(xué)方法與手段分析、教學(xué)過(guò)程分析四大方面來(lái)闡述我對(duì)這節(jié)課的分析和設(shè)計(jì):

  一、教材分析

  1.教材所處的地位和作用

  本章我們所要學(xué)習(xí)的主要內(nèi)容就是統(tǒng)計(jì),在前面的章節(jié)中我們已經(jīng)對(duì)統(tǒng)計(jì)的相關(guān)知識(shí)作了大致的了解。本節(jié)課我們要繼續(xù)探討的是變量之間的相關(guān)關(guān)系,它為接下來(lái)要學(xué)習(xí)的兩個(gè)變量的線性相關(guān)打下基礎(chǔ)。這是一個(gè)與現(xiàn)實(shí)實(shí)際生活聯(lián)系很緊密的知識(shí),在教師的引導(dǎo)下,可使學(xué)生認(rèn)識(shí)到在現(xiàn)實(shí)世界中存在不能用函數(shù)模型描述的變量關(guān)系,從而體會(huì)研究變量之間的相關(guān)關(guān)系的重要性.

  2.教學(xué)的重點(diǎn)和難點(diǎn)

  重點(diǎn):①通過(guò)收集現(xiàn)實(shí)問(wèn)題中兩個(gè)有關(guān)聯(lián)變量的數(shù)據(jù)直觀認(rèn)識(shí)變量間的相關(guān)關(guān)系;

  ②利用散點(diǎn)圖直觀認(rèn)識(shí)兩個(gè)變量之間的線性關(guān)系;

  難點(diǎn):①變量之間相關(guān)關(guān)系的理解;②作散點(diǎn)圖和理解兩個(gè)變量的正相關(guān)和負(fù)相關(guān)

  二、教學(xué)目標(biāo)分析

  1.知識(shí)與技能目標(biāo)

  通過(guò)收集現(xiàn)實(shí)問(wèn)題中兩個(gè)有關(guān)聯(lián)變量的數(shù)據(jù)認(rèn)識(shí)變量間的相關(guān)關(guān)系

  2、過(guò)程與方法目標(biāo):

  明確事物間的相互聯(lián)系.認(rèn)識(shí)現(xiàn)實(shí)生活中變量間除了存在確定的關(guān)系外,仍存在大量的非確定性的相關(guān)關(guān)系,并利用散點(diǎn)圖直觀體會(huì)這種相關(guān)關(guān)系.

  3、情感態(tài)度與價(jià)值觀目標(biāo):

  通過(guò)對(duì)事物之間相關(guān)關(guān)系的了解,讓學(xué)生們認(rèn)識(shí)到現(xiàn)實(shí)中任何事物都是相互聯(lián)系的辯證法思想。

  三、教學(xué)方法與手段分析

  1.教學(xué)方法:結(jié)合本節(jié)課的教學(xué)內(nèi)容和學(xué)生的認(rèn)知水平,在教法上,我采用“問(wèn)答探究”式的教學(xué)方法,層層深入。充分發(fā)揮教師的主導(dǎo)作用,讓學(xué)生真正成為教學(xué)活動(dòng)的主體。

  2。教學(xué)手段:通過(guò)多媒體輔助教學(xué),充分調(diào)動(dòng)學(xué)生參與課堂教學(xué)的主動(dòng)性與積極性。

  四、教學(xué)過(guò)程分析

  ㈠問(wèn)題引出:

  請(qǐng)同學(xué)們?nèi)鐚?shí)填寫下表(在空格中打“√”)

  然后回答如下問(wèn)題:①“你的數(shù)學(xué)成績(jī)對(duì)你的物理成績(jī)有無(wú)影響?”②“如果你的數(shù)學(xué)成績(jī)好,那么你的'物理成績(jī)也不會(huì)太差,如果你的數(shù)學(xué)成績(jī)差,那么你的物理成績(jī)也不會(huì)太好。”對(duì)你來(lái)說(shuō),是這樣嗎?同意這種說(shuō)法的同學(xué)請(qǐng)舉手。

  根據(jù)同學(xué)們回答的結(jié)果,讓學(xué)生討論:我們可以發(fā)現(xiàn)自己的數(shù)學(xué)成績(jī)和物理成績(jī)存在某種關(guān)系。(似乎就是數(shù)學(xué)好的,物理也好;數(shù)學(xué)差的,物理也差,但又不全對(duì)。)教師總結(jié)如下:

  物理成績(jī)和數(shù)學(xué)成績(jī)是兩個(gè)變量,從經(jīng)驗(yàn)看,由于物理學(xué)習(xí)要用到比較多的數(shù)學(xué)知識(shí)和數(shù)學(xué)方法。數(shù)學(xué)成績(jī)的高低對(duì)物理成績(jī)的高低是有一定影響的。但決非唯一因素,還

  有其它因素,如圖所示(幻燈片給出):

  因此,不能通過(guò)一個(gè)人的數(shù)學(xué)成績(jī)是多少就準(zhǔn)確地?cái)喽ㄋ奈锢沓煽?jī)能達(dá)到多少。但這兩個(gè)變量是有一定關(guān)系的,它們之間是一種不確定性的關(guān)系。如何通過(guò)數(shù)學(xué)成績(jī)的結(jié)果對(duì)物理成績(jī)進(jìn)行合理估計(jì)有非常重要的現(xiàn)實(shí)意義。

  「設(shè)計(jì)意圖」通過(guò)對(duì)身邊事例的分析,引出我們今天將要學(xué)習(xí)的主要內(nèi)容,由此可以激起學(xué)

  生們的學(xué)習(xí)興趣,為接下來(lái)的學(xué)習(xí)打下良好的基礎(chǔ)。

  ㈡探究新知

  ⒈概念形成

  教師提問(wèn):“像剛才這種情況在現(xiàn)實(shí)生活中是否還有?”學(xué)生們思考之后,請(qǐng)幾位同學(xué)就提出的問(wèn)題作出回答。老師就舉出的例子,引導(dǎo)學(xué)生作出分析,然后由老師總結(jié)得出相關(guān)關(guān)系的概念。[兩個(gè)變量之間的關(guān)系可能是確定的關(guān)系(如:函數(shù)關(guān)系),或非確定性關(guān)系。當(dāng)自變量取值一定時(shí),因變量也確定,則為確定關(guān)系;當(dāng)自變量取值一定時(shí),因變量帶有隨機(jī)性,這種變量之間的關(guān)系稱為相關(guān)關(guān)系。相關(guān)關(guān)系是一種非確定性關(guān)系。]

  「設(shè)計(jì)意圖」從現(xiàn)實(shí)生活入手,抓住學(xué)生們的注意力,引導(dǎo)學(xué)生分析得出概念,讓學(xué)生真正參與到概念的形成過(guò)程中來(lái)。

  ⒉探究線性相關(guān)關(guān)系和其他相關(guān)關(guān)系

  「課件展示」

  例1在一次對(duì)人體脂肪和年齡關(guān)系的研究中,研究人員獲得了一組樣本數(shù)據(jù):

  問(wèn)題:針對(duì)于上述數(shù)據(jù)所提供的信息,你認(rèn)為人體的脂肪含量與年齡之間有怎樣的關(guān)系?

  [教師特別向?qū)W生強(qiáng)調(diào)在研究?jī)蓚(gè)變量之間是否存在某種關(guān)系時(shí),必須從散點(diǎn)圖入手(向?qū)W生介紹什么是散點(diǎn)圖)。并且引導(dǎo)學(xué)生從散點(diǎn)圖上可以得出如下規(guī)律:(幻燈片給出)

  ①如果所有的樣本點(diǎn)都落在某一函數(shù)曲線上,那么變量之間具有函數(shù)關(guān)系(確定性關(guān)系);②如果所有的樣本點(diǎn)都落在某一函數(shù)曲線的附近,那么變量之間具有相關(guān)關(guān)系(不確定性關(guān)系);③如果所有的樣本點(diǎn)都落在某一直線附近,那么變量之間具有線性相關(guān)關(guān)系(不確定性關(guān)系)。

  「設(shè)計(jì)意圖」通過(guò)對(duì)這個(gè)典型事例的分析,向?qū)W生們介紹什么是散點(diǎn)圖,并總結(jié)出如何從散點(diǎn)圖上判斷變量之間關(guān)系的規(guī)律。

  下面我們用TI圖形計(jì)算器作出這兩個(gè)變量的散點(diǎn)圖。

  學(xué)生實(shí)驗(yàn):先把數(shù)據(jù)中成對(duì)出現(xiàn)的兩個(gè)數(shù)分別作為橫坐標(biāo)、縱坐標(biāo),把數(shù)據(jù)輸入到表格當(dāng)中(第一列橫坐標(biāo)、第二列縱坐標(biāo));然后,用TI圖形計(jì)算器作散點(diǎn)圖:

  [引導(dǎo)學(xué)生觀察作出的散點(diǎn)圖,體會(huì)現(xiàn)實(shí)生活中兩個(gè)變量之間的關(guān)系存在著不確定性。散點(diǎn)圖中的散點(diǎn)并不在一條直線上,只是分布在一條直線的周圍,即為線性相關(guān)關(guān)系。]

  「設(shè)計(jì)意圖」通過(guò)實(shí)驗(yàn)讓學(xué)生們感受散點(diǎn)圖的主要形成過(guò)程,并由此引出線性相關(guān)關(guān)系。為后面回歸直線和回歸直線方程的學(xué)習(xí)做好鋪墊。

  「課件展示」四組數(shù)據(jù),請(qǐng)學(xué)生作出散點(diǎn)圖,并觀察每組數(shù)據(jù)的特點(diǎn)。

  根據(jù)四組數(shù)據(jù),學(xué)生作出四個(gè)散點(diǎn)圖。

  通過(guò)學(xué)生討論、交流、用TI圖形計(jì)算器展示、對(duì)比自己作出的散點(diǎn)圖,我們引出線性相關(guān)關(guān)系,正負(fù)相關(guān)關(guān)系的概念。

  「設(shè)計(jì)意圖」及時(shí)鞏固知識(shí),學(xué)生通過(guò)親自動(dòng)手作散點(diǎn)圖,并交流討論,進(jìn)一步加深對(duì)散點(diǎn)圖的理解,并由此引出正負(fù)相關(guān)關(guān)系的概念,突破難點(diǎn)。

  ㈢例題講解,深化認(rèn)識(shí)

  「課件展示」

  例2一般說(shuō)來(lái),一個(gè)人的身高越高,他的人就越大,相應(yīng)地,他的右手一拃長(zhǎng)就越長(zhǎng),因此,人的身高與右手一拃長(zhǎng)之間存在著一定的關(guān)系。為了對(duì)這個(gè)問(wèn)題進(jìn)行調(diào)查,我們收集了北京市某中學(xué)20xx年高三年級(jí)96名學(xué)生的身高與右手一拃長(zhǎng)的數(shù)據(jù)如下表。

  (1)根據(jù)上表中的數(shù)據(jù),制成散點(diǎn)圖。你能從散點(diǎn)圖中發(fā)現(xiàn)身高與右手一拃長(zhǎng)之間的近似關(guān)系嗎?

  (2)如果近似成線性關(guān)系,請(qǐng)畫(huà)出一條直線來(lái)近似地表示這種線性關(guān)系。

  (3)如果一個(gè)學(xué)生的身高是188cm,你能估計(jì)他的一拃大概有多長(zhǎng)嗎?

  「設(shè)計(jì)意圖」這個(gè)例子很容易激起學(xué)生們的學(xué)習(xí)興趣,由此可達(dá)到更好的教學(xué)效果。通過(guò)對(duì)這道題的解答,使對(duì)前面知識(shí)的認(rèn)識(shí)更加牢固。

  ㈣反思小結(jié)、培養(yǎng)能力

  ⑴變量間相關(guān)關(guān)系、線性關(guān)系和正負(fù)相關(guān)關(guān)系

  ⑵如何做散點(diǎn)圖

  「設(shè)計(jì)意圖」小節(jié)是一堂課的概括和總結(jié),有利于優(yōu)化學(xué)生的認(rèn)知結(jié)構(gòu),把課堂教學(xué)傳授的知識(shí)較快轉(zhuǎn)化為學(xué)生的素質(zhì),也更進(jìn)一步培養(yǎng)學(xué)生的歸納概括能力

  ㈤課后作業(yè),自主學(xué)習(xí)

  習(xí)題2.31、2

  [設(shè)計(jì)意圖]課后作業(yè)的布置是為了檢驗(yàn)學(xué)生對(duì)本節(jié)課內(nèi)容的理解和運(yùn)用程度,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內(nèi)容。

高中數(shù)學(xué)說(shuō)課稿15

  各位老師:

  今天我說(shuō)課的題目是《輸入、輸出語(yǔ)句和賦值語(yǔ)句》,內(nèi)容選自于新課程人教A版必修3第一章第二節(jié),課時(shí)安排為一個(gè)課時(shí)。下面我將從教材分析、教學(xué)目標(biāo)分析、教學(xué)方法與手段分析、教學(xué)過(guò)程分析等四大方面來(lái)闡述我對(duì)這節(jié)課的分析和設(shè)計(jì):

  一、教材分析

  1.教材所處的地位和作用

  我們用自然語(yǔ)言或程序框圖描述的算法,但是計(jì)算機(jī)是無(wú)法“看得懂,聽(tīng)得見(jiàn)”的。因此還需要將算法用計(jì)算機(jī)能夠理解的程序設(shè)計(jì)語(yǔ)言翻譯成計(jì)算機(jī)程序。程序設(shè)計(jì)語(yǔ)言有很多種。為了實(shí)現(xiàn)算法中的三種基本的邏輯結(jié)構(gòu):順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu),各種程序設(shè)計(jì)語(yǔ)言中都包含下列基本的算法語(yǔ)句:輸入語(yǔ)句、輸出語(yǔ)句、賦值語(yǔ)句、條件語(yǔ)句和循環(huán)語(yǔ)句.。而我們今天所要學(xué)習(xí)的是前三種算法語(yǔ)句,它們基本上是對(duì)應(yīng)于算法中的順序結(jié)構(gòu)的。

  2.教學(xué)的重點(diǎn)和難點(diǎn)

  重點(diǎn):正確理解輸入語(yǔ)句、輸出語(yǔ)句、賦值語(yǔ)句的作用。

  難點(diǎn):準(zhǔn)確寫出輸入語(yǔ)句、輸出語(yǔ)句、賦值語(yǔ)句。

  二、教學(xué)目標(biāo)分析

  1.知識(shí)與技能目標(biāo):

  (1)正確理解輸入語(yǔ)句、輸出語(yǔ)句、賦值語(yǔ)句的結(jié)構(gòu)。

  (2)會(huì)寫一些簡(jiǎn)單的程序。

  (3)掌握賦值語(yǔ)句中的“=”的作用。

  2.過(guò)程與方法目標(biāo):

  (1)讓學(xué)生充分地感知、體驗(yàn)應(yīng)用計(jì)算機(jī)解決數(shù)學(xué)問(wèn)題的方法;并能初步操作、模仿。

  (2)通過(guò)模仿,操作,探索的過(guò)程,體會(huì)算法的基本思想和基本語(yǔ)句的用途,提高學(xué)生應(yīng)用數(shù)學(xué)軟件的能力.

  3.情感,態(tài)度和價(jià)值觀目標(biāo)

  (1) 通過(guò)對(duì)三種語(yǔ)句的了解和實(shí)現(xiàn),發(fā)展有條理的思考,表達(dá)的能力,提高邏輯思維能力.

  (2) 學(xué)習(xí)算法語(yǔ)句,幫助學(xué)生利用計(jì)算機(jī)軟件實(shí)現(xiàn)算法,活躍思維,提高學(xué)生的數(shù)學(xué)素養(yǎng).

  (3) 結(jié)合計(jì)算機(jī)軟件的應(yīng)用, 增強(qiáng)應(yīng)用數(shù)學(xué)的意識(shí),在計(jì)算機(jī)上實(shí)現(xiàn)算法讓學(xué)生體會(huì)成功喜悅.

  三、教學(xué)方法與手段分析

  1.教學(xué)方法:引導(dǎo)與合作交流相結(jié)合,學(xué)生在體會(huì)三種語(yǔ)句結(jié)構(gòu)格式的過(guò)程中,讓學(xué)生積極參與,討論交流,充分挖掘三種算法語(yǔ)句的格式特點(diǎn)及意義,在分析具體問(wèn)題的過(guò)程中總結(jié)三種算法語(yǔ)句的思想與特征.

  2.教學(xué)手段:運(yùn)用計(jì)算機(jī)、圖形計(jì)算器輔助教學(xué)

  四、教學(xué)過(guò)程分析

  1. 創(chuàng)設(shè)情境(約5分鐘)

  在課的開(kāi)始,我要求學(xué)生們舉出一些在日常生活中所應(yīng)用到的有關(guān)計(jì)算機(jī)的例子,如:聽(tīng)MP3,看電影,玩游戲,打字排版,畫(huà)卡通畫(huà),處理數(shù)據(jù)等等,并告訴他們?cè)诂F(xiàn)代社會(huì)里,計(jì)算機(jī)已經(jīng)成為人們?nèi)粘I詈凸ぷ鞑豢扇鄙俚墓ぞ撸缓蠼又鴨?wèn)他們知不知道計(jì)算機(jī)到底是怎樣工作的?通過(guò)這個(gè)問(wèn)題引出我們今天所要學(xué)習(xí)的內(nèi)容。(板出課題)

  在這個(gè)過(guò)程中,我讓學(xué)生們將課本學(xué)習(xí)的內(nèi)容與現(xiàn)實(shí)生活聯(lián)系在了一起,這樣能夠激起他們對(duì)接下來(lái)的所要學(xué)習(xí)內(nèi)容的興趣,為整節(jié)課的學(xué)習(xí)打下一個(gè)良好的基礎(chǔ)。

  2.探究新知(約15分鐘)

  這里我先給出一個(gè)題目:用描點(diǎn)法作出函數(shù)

  的圖象,用描點(diǎn)法作函數(shù)的圖象時(shí),需要先求出自變量與函數(shù)的對(duì)應(yīng)值。編寫程序,分別計(jì)算當(dāng)

  時(shí)的函數(shù)值。(程序由我在課前準(zhǔn)備好,教學(xué)中直接調(diào)用運(yùn)行)

  程序:INPUT“x=”;x 輸入語(yǔ)句

  y=x^3+3*x^2-24*x+30 賦值語(yǔ)句

  PRINT x 輸出語(yǔ)句

  PRINT y 輸出語(yǔ)句

  END

  (學(xué)生們先看,再跟著做,先不必深究該程序如何得來(lái),只要模仿編寫程序,通過(guò)運(yùn)行自己編寫的程序發(fā)現(xiàn)問(wèn)題所在,進(jìn)一步提高學(xué)生的模仿能力)

  之后,我向?qū)W生們提問(wèn):在這個(gè)程序中,他們覺(jué)得哪些是輸入語(yǔ)句、輸出語(yǔ)句和賦值語(yǔ)句?(同學(xué)們互相交流、議論、猜想、概括出結(jié)論。提示:“input”和“print”的中文意思,還要請(qǐng)學(xué)生們注意到在賦值語(yǔ)句中的賦值號(hào)“=”與數(shù)學(xué)中的.等號(hào)意義不同。)

  此過(guò)程由老師引導(dǎo),學(xué)生們自己討論并總結(jié)出什么是輸入語(yǔ)句、輸出語(yǔ)句和賦值語(yǔ)句,這樣比老師直接地將知識(shí)傳授給他們,學(xué)習(xí)的效果更佳,同時(shí)也鍛煉了學(xué)生們思考問(wèn)題的能力和概括能力,激發(fā)學(xué)習(xí)興趣。

  然后給出一個(gè)思考題:在1.1.2中程序框圖中的輸入框,輸出框的內(nèi)容怎樣用輸入語(yǔ)句、輸出語(yǔ)句來(lái)表達(dá)?(學(xué)生討論、交流想法,然后請(qǐng)學(xué)生作答)這樣可以及時(shí)應(yīng)用剛剛學(xué)習(xí)的內(nèi)容,并可以將前后所學(xué)知識(shí)聯(lián)系起來(lái)。

  3.例題精析(約12分鐘)

  在本環(huán)節(jié)中我為學(xué)生們準(zhǔn)備了三道例題,這三道例題均選自課本的例2、例3和例4,學(xué)生通過(guò)這幾道例題的講解,結(jié)合計(jì)算機(jī)程序上機(jī)運(yùn)用,可以掌握在程序設(shè)計(jì)語(yǔ)言中的前三種算法語(yǔ)句,體會(huì)到他們?cè)诔绦蛑械囊饬x和作用。

  4.課堂精練(約4分鐘)

  P15 練習(xí) 1.

  提問(wèn):如果要求輸入一個(gè)攝氏溫度,輸出其相應(yīng)的華氏溫度,又該如何設(shè)計(jì)程序?(學(xué)生課后思考,討論完成)通過(guò)提問(wèn)啟發(fā)學(xué)生們思考,發(fā)散思維。

  5.課堂小結(jié)(約5分鐘)

  ⑴輸入語(yǔ)句、輸出語(yǔ)句和賦值語(yǔ)句的結(jié)構(gòu)特點(diǎn)及聯(lián)系

  ⑵應(yīng)用輸入語(yǔ)句,輸出語(yǔ)句,賦值語(yǔ)句編寫一些簡(jiǎn)單的程序解決數(shù)學(xué)問(wèn)題

  ⑶ 賦值語(yǔ)句中“=”的作用及應(yīng)用

  ⑷編程一般的步驟:先寫出算法,再進(jìn)行編程。

  6.布置作業(yè)

  P23 習(xí)題1.2 A組 1(2)、2

  [設(shè)計(jì)意圖]課后作業(yè)的布置是為了檢驗(yàn)學(xué)生對(duì)本節(jié)課內(nèi)容的理解和運(yùn)用程度以及實(shí)際接受情況,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內(nèi)容。

  7.板書(shū)設(shè)計(jì)

【高中數(shù)學(xué)說(shuō)課稿】相關(guān)文章:

高中數(shù)學(xué)橢圓說(shuō)課稿06-15

高中數(shù)學(xué)說(shuō)課稿06-12

高中數(shù)學(xué)說(shuō)課稿11-14

高中數(shù)學(xué)向量說(shuō)課稿09-09

高中數(shù)學(xué)說(shuō)課稿范文06-27

關(guān)于高中數(shù)學(xué)說(shuō)課稿11-29

【推薦】高中數(shù)學(xué)說(shuō)課稿01-06

高中數(shù)學(xué)說(shuō)課稿【推薦】01-06

高中數(shù)學(xué)說(shuō)課稿【熱】01-07

高中數(shù)學(xué)說(shuō)課稿【薦】01-07