高一數學說課稿(通用21篇)
作為一位無私奉獻的人民教師,時常需要用到說課稿,是說課取得成功的前提。那么你有了解過說課稿嗎?下面是小編為大家整理的高一數學說課稿,歡迎大家借鑒與參考,希望對大家有所幫助。
高一數學說課稿 1
一、說教材
1、教材的地位和作用
《集合的概念》是人教版第一章的內容(中職數學)。本節課的主要內容:集合以及集合有關的概念,元素與集合間的關系。初中數學課本中已現了一些數和點的集合,如:自然數的集合、有理數的集合、不等式解的集合等,但學生并不清楚“集合”在數學中的含義,集合是一個基礎性的概念,也是也是中職數學的開篇,是我們后續學習的重要工具,如:用集合的語言表示函數的定義域、值域、方程與不等式的解集,曲線上點的集合等。通過本章節的學習,能讓學生領會到數學語言的簡潔和準確性,幫助學生學會用集合的語言描述客觀,發展學生運用數學語言交流的能力。
2、 教學目標
(1)知識目標:
a、通過實例了解集合的含義,理解集合以及有關概念;
b、初步體會元素與集合的“屬于”關系,掌握元素與集合關系的表示方法。
(2)能力目標:
a、讓學生感知數學知識與實際生活得密切聯系,培養學生解決實際的能力;
b、學會借助實例分析,探究數學問題,發展學生的觀察歸納能力。
(3)情感目標:
a、通過聯系生活,提高學生學習數學的積極性,形成積極的學習態度;
b、通過主動探究,合作交流,感受探索的樂趣和成功的體驗,體會數學的理性和嚴謹。
3、重點和難點
重點:集合的概念,元素與集合的關系。
難點:準確理解集合的.概念。
二、學情分析(說學情)
對于中職生來說,學生的數學基礎相對薄弱,他們還沒具備一定的觀察、分析理解、解決實際問題的能力,在運算能力、思維能力等方面參差不齊,學生學好數學的自信心不強,學習積極性不高,有厭學情緒。
三、說教法
針對學生的實際情況,采用探究式教學法進行教學。首先從學生較熟悉的實例出發,提高學生的注意力和激發學生的學習興趣。在創設情境認知策略上給予適當的點撥和引導,引導學生主動思、交流、討論,提出問題。在此基礎上教師層層深入,啟發學生積極思維,逐步提升學生的數學學習能力。集合概念的形成遵循由感性到理性,由具體到抽象,便于學生的理解和掌握。
四、學習指導(說學法)
教學的矛盾主要方面是學生的學,學是中心,會學是目的,因此在教學中要不斷指導學生學會學習。根據數學的特點這節課主要是教學生動腦思考、多訓練、勤鉆研的研討,這樣做增加了學生主動參與的機會,增強了參與的意識,教學生獲取知識的途徑,思考問題的方法,使學生成為教學的主體,進而才能達到預期的教學目的和效果。
五、教學過程
1、引入新課:
a、創設情境,揭示本課主題,同時對集合的整體性有個初步的感性認識。
b、介紹集合論的創始者康托爾
2、究竟什么是集合?(實例探究)切合學生現有的認知水平, 以學生熟悉的事物(物體),以實際生活為背景進行探究, 為本課教學創造出一種自然和諧的氛圍,充分調動學生的學習熱情接待探究過程學生積極思考、交流、作答,教師針對學生的回答啟發,引導學生尋找實例中的共同特征,培養學生觀察,總結能力范圍由具體到抽象,由感性到理性,為下面水到渠成的介紹集合概念做好鋪墊。
3、集合的概念,本課的重點。結合探究中的實例,讓學生說出集合和元素各是什么?知識的呈現由抽象到具體進一步熟悉元素與集合的概念,讓學生分清實際問題中的集合和元素為后面學習兩者間的關系做好鋪墊。
教師在這一環節做好學習指導,確定的對象組成的整體叫集合,如果對象不確定,就不能確定為集合(舉例)加深對概念的理解。
4、 熟悉鞏固集合的概念通過例題,練習、幫助學生進一步熟悉和理解集合的概念。
5、集合的符號記法,為本節重點做好鋪墊。
6、從實例入行手,探索元素和集合的關系,學生能用文字語言描述,如何用數學語言描述,給出元素與集合關系符號表示,在這個環節教師適當引導學生積極主動參與到知識逐步形成過程,便于學生理解和掌握,落實本課的重點,學習指導:⑴集合元素的確定。⑵理解兩符號的含義。
7、 思考交流本課的重要環節在課堂上給學生提供充分的活動時間和空間。通過自由舉例,能深化概念。同時還能提升學生的分析能力表達自己見解的能力。
8、 從所舉的例子中抽象出數集的概念,并給出常見數集的記法。
9、 學生練習:通過練習,識記常見數集的記法,同時進一步鞏固元素與集合間的關系。
10、知識的實際應用:
問題不難,落實課本能力目標,培養學生運用數學的意識和能力初步培養學生應用集合的眼光觀看世界。
11、課堂小節
以學生小節為主教師幫助為輔,鞏固所學知識,幫助學生認識到要學會梳理所學內容,要學會總結反思,使學生的認識進一步升華,培養學生的鬼納總結能力。
六、評價
教學評價的及時能有效調動課堂氣氛,感染學生的情緒,對課堂教學發揮著積極作用,教學過程遵重學生之間的差異培養學生應用集合的眼光看研究對象,注重過程評價與多元評價將教學評價貫穿于本堂課的每個教學環節。
七、教學反思
1、 通過現實生活中的實例,從特殊到一般,在具體感知基礎上得出集合的描述概念,便于學生理解接受。
2、 啟發探究教學,營造學生的學習氛圍,培養學生自主學習,合作交流的能力。
高一數學說課稿 2
一、教學背景
1、教材分析
《對數函數及其性質》是人教版普通高中課程數學必修1第二章第二節第二部分內容,對數函數是一類特殊的函數,在實際生產過程中運用很廣泛。同時,通過對對數函數及其圖象和性質的研究,既可以從具體的感性認識上來對函數的圖象和性質更好的理解,也可為以后研究冪函數、三角函數等其它函數的圖象和性質起示范和鋪墊作用。
2、學情分析
剛入高一的學生,仍保留著初中生許多學習特點,能力發展正處于形象思維向抽象思維轉折階段,但更注重形象思維。由于函數概念十分抽象,對數函數又以對數運算為基礎,同時,初中函數教學要求降低,導致初中生運算能力有所下降,這雙重問題增加了對數函數教學的難度。但在此之前,學生已經學習了指數函數及其性質,學生已經初步對新函數的研究方法有所了解,為本節的學習奠定了基礎。
基于以上分析,我制定如下教學目標及重、難點:
3、教學目標
知識與技能:
初步掌握對數函數的概念、圖象及性質,并應用性質解決簡單數學問題。
過程與方法:
經歷對數函數性質的探索過程,體會函數思想、分類討論思想和轉化思想在解決具體問題中的應用。
情感態度與價值觀:
培養勇于探索的精神,培養學生的成功意識,合作交流的學習方式,激發學生學習數學、應用數學的興趣。
4、教學重、難點
重點:理解對數函數的概念,掌握對數函數的圖象及性質。
難點:由圖象探究函數性質,應用性質解決具體問題。
二、教學方法及手段
1、教法
根據建構主義的學習理論和新課程標準理念,本節課以自主探究法和講解法為主,以練習法為輔,引導學生自己觀察、歸納、分析,培養學生采用自主探究的方法進行學習,使學生體會學習的樂趣。
2、學法
(1)類比學習:通過指數函數類比學習對數函數。
(2)小組合作學習:將學生分成7個小組,通過小組內討論交流,歸納得出對數函數的圖象和性質。
3、教學手段
采用多媒體輔助教學。
三、教學教程
1、情境引入
通過銀行的復利計算問題,逐步引出對數函數。
設計意圖:情景來源于生活,通過生活中的實例來反應對數函數的重要性,目的在于激發學生學習的興趣,讓每一個學生都主動融入到學習中。
2、新知探索
通過上述模型,讓學生給對數函數下定義。
學生用描點法畫和的圖象,教師再借助于計算機再畫幾個對數函數的`圖象,讓學生觀察并總結出一般情況。
以“你們能根據圖象歸納出對數函數的性質嗎?”設問,引導學生能過圖象的特征得出對應的性質。
例比較下列各組數中兩個值的大小:
(1)log23.4和log28.5;
(2) log0.33.4和log0.38.5;
(3) loga3.4和loga8.5(a>0,且a≠1);
(4) log23.4和log3.42;
(5) log3.42和log0.38.5。
3、鞏固練習
(1)比較大小:
lg6________lg8;ln1.3________
(2)比較正數m,n的大小:
若,則m_____n;若,則m_____n.
4、總結提煉
(1)自主探究新知識的方法;
(2)本節課應用了哪些數學思想。
5、布置作業
(1)閱讀教材P70~P72,梳理對數函數的概念、圖象、性質等知識點;
(2)教材P74—7、8
四、板書設計
2.2.2對數函數及其性質
一、概念例題
二、圖象
三、性質
四、教學反思
高一數學說課稿 3
一、教材分析
1、教材的地位與作用
模擬方法是北師大版必修3第三章概率第3節,也是必修3最后一節,本節內容是在學習了古典概型的基礎上,用模擬方法估計一些用古典概型解決不了的實際問題的概率,使學生初步體會幾何概型的意義;而模擬試驗是培養學生動手能力、小組合作能力、和試驗分析能力的好素材。
2、教學重點與難點
教學重點:借助模擬方法來估計某些事件發生的概率;
幾何概型的概念及應用
體會隨機模擬中的統計思想:用樣本估計總體。
教學難點:設計和操作一些模擬試驗,對從試驗中得出的數據進行統計、分析;
應用隨機數解決各種實際問題。
二、教學目標:
1、知識目標:使學生了解模擬方法估計概率的實際應用,初步體會幾何概型的意義;并能夠運用模擬方法估計概率。
2、能力目標:培養學生實踐能力、協調能力、創新意識和處理數據能力以及應用數學意識。
3、情感目標:鼓勵學生動手試驗,探索、發現規律并解決實際問題,激發學生學習的興趣。
三、過程分析
1、創設良好的學習情境,激發學生學習的欲望
從學生的生活經驗和已有知識背景出發,提出用學過知識不能解決的問題:房間的紗窗破了一個小洞,隨機向紗窗投一粒小石子,估計小石子從小洞穿過的概率。能用古典概型解決嗎?為什么?從而引起認知矛盾,激發學生學習、探究的興趣。
2、以實驗和問題引導學習活動,使學生經歷“數學化”、“再創造”的過程
通過兩個實驗:
(1)取一個矩形,在面積為四分之一的部分畫上陰影,隨機地向矩形中撒一把豆子(我們數100粒),統計落在陰影內的豆子數與落在矩形內的總豆子數,觀察它們有怎樣的比例關系?
(2)反過來,取一個已知長和寬的矩形,隨機地向矩形中撒一把豆子,統計落在陰影內的豆子數與落在矩形內的總豆子數,你能根據豆子數得到什么結論?
讓學生分組合作,利用課前準備的材料進行試驗、討論、分析,使學生主動進入探究狀態,充分調動學生學習積極性,使他們感受到探討數學問題的樂趣,培養學生與他人合作交流的能力以及團隊精神。根據各小組試驗結果,提出問題,引導學生進行猜想,得出結論:
使學生了解結論產生的背景,輕易地理解了這個結論,并培養學生數據分析能力、抽象概括能力。讓他們感覺到數學定理、結論其實離他們很近,增強學生學習的動力和信心。
3、類比遷移,注重數學與實際聯系,發展學生應用意識和能力
(1)求不規則圖形面積
如圖,曲線y=-x2+1與x軸,y軸圍成區域A,
如何求陰影部分面積?
通過把不規則圖形放在規則的、
易求面積的圖形中,利用模擬方法
求不規則圖形面積,在解決問題時
學生提出了借助不同圖形,教師要
引導學生用最佳圖形。讓學生把不熟
悉的問題轉化為熟悉的問題情
境,引導學生利用已有知識解決新
的問題,培養學識知識應用、類比遷移的能力。
本例通過介紹用計算機產生隨機數來模擬,使學生了解現代信息技術的應用,了解另一種模擬方法。
(2)估計圓周率π的值
讓學生設計模擬試驗,估計圓周率π的.值,培養學生應用數學的意識,使學習過程成為學生的再創造過程。達到本課的目標,使學生了解模擬方法估計概率的實際應用,能夠運用模擬方法估計概率。通過設計和操作模擬試驗,對得出數據進行統計、分析,解決本課難點。讓學生體驗數學的發現和創造過程,發展他們的創新意識。同時通過對介紹古代數學家祖沖之,對學生進行愛國主義教育,培養學生愛國情操。
(3)幾何概型概率計算方法
①通過問題:如果正方形面積不變,但形狀改變,所得比例發生變化嗎?
引出幾何概型的概念、特點和計算公式
把試驗的結論上升到理論,使學生的認識有一個從試驗到理論的升華,使學生掌握基本概念,并運用理論解決問題,使學生的認識有一個質的飛躍,
②例:如圖,在墻上掛著一塊邊長為16cm的正方形木板,
上面畫了小、中、大三個同心圓,半徑分別為2cm、4cm、
6cm,某人站在3m處向此板投鏢,設投鏢擊中線上或沒有
投中木板時都不算,可重投。
問:(1)投中大圓內的概率是多少?
(2)投中小圓和中圓形成的圓環的概率是多少?
配套習題是知識的直接運用,有助于學生鞏固新學的知識,使學生掌握基本知識和技能。
③通過介紹本章開篇中“蒲豐投針”問題,利用計算機動態顯示投針試驗,使學生對此試驗有初步了解,開闊學生視野,體現數學的文化價值,留給學生課后探究的空間。
4、通過實際問題:小明家的晚報在下午5:30~6:30之間的任何一個時間隨機地被送到,小明一家人在下午6:00~7:00之間的任何一個時間隨機地開始晚餐。(1)你認為晚報在晚餐開始之前被送到和在晚餐開始之后被送到哪一種可能性更大?(2)晚報在晚餐開始之前被送到的概率是多少?
引導學生利用轉盤設計試驗,并分組進行試驗,鼓勵學生自主探索與合作交流,培養學生創新意識,并使學生了解模擬形式的多樣化,并通過模擬進一步熟悉試驗的操作,提高動手能力和小組協調能力。通過問題拓展,介紹用理論解決的方法,激起學生再探究的欲望,留給學生課后思考的空間。
4、課堂小結
由學生總結本節課所學習的主要內容,讓學生對所學內容有全面、系統的認識。
四、教法、學法分析
本節課是在采用信息技術和數學知識整合的基礎上從生活實際中提煉數學素材,使學生在熟悉的背景下、在認知沖突中展開學習,通過試驗活動的開展,使學生在試驗、探究活動中獲取原始數據,進而通過數與形的類比,在老師的引導、啟發下感悟出模擬的數學結論,通過結論的運用提升為數學模型并加以應用,它實現了學生在學習過程中對知識的探究、發現的創作經歷,調動了學生學習的積極性和主動性,同學們在親身經歷知識結論的探究中獲得了對數學價值的新認識。
五、評價分析
本課是使學生通過試驗掌握用模擬方法估計概率,主要是用分組合作試驗、探究方法研究數學知識,因此評價時更注重探究和解決問題的全過程,鼓勵學生的探索精神,引導學生對問題的正確分析與思考,關注學生提出問題、參與解決問題的全過程,關注學生的創新精神和實踐能力。
高一數學說課稿 4
一、教材分析
1、教材中的地位與作用:“2.1直線與方程”是蘇教版數學必修2的第二章的內容,是解析幾何的開篇之作。而“2.1.1直線的斜率”這一節是這一章的第一節,是用斜率與傾斜角來刻畫直線方向的,它學習的內容是基礎的,學習方法是重要的。是為今后用代數的方法研究解析幾何問題的的學習奠定基礎,起到了啟下的作用。
2、教學的重點與難點:根據課程標準的要求,本節教學的重點為:直線斜率的本質認識與直線斜率的坐標公式。因為過定點的直線的傾斜程度就是用直線的斜率來刻畫的,斜率的是通過直線上兩點的縱坐標的差與橫坐標的差的比來計算的,反映了用代數的方法來研究幾何問題的核心思想。教學的難點為:直線斜率、傾斜角的定義和本質的理解、斜率與傾斜角之間的關系。因為傾斜角實際上是直線相對x軸的傾斜程度來反映直線的傾斜程度的,它與斜率一樣,都是刻畫直線的傾斜程度,但兩者的角度不同,所以存在一定的聯系,這一聯系正是教學的難點所在。
二、教學目標的確定
由于“2.1.1直線的斜率”是“直線與方程”的第一課時,又是解析幾何的開始部分。從學生原有的認知上分析,確定教學的目標為:
1、知識目標:
(1)理解直線的斜率,掌握過兩點的直線的斜率公式
(2)理解直線的傾斜角的定義,知道直線的傾斜角的范圍
(3)掌握直線的斜率與傾斜角之間的關系
(4)使學生初步感受直線的方向與直線的斜率之間的對應關系,從而體會到要研究直線的方向的變化規律,只要研究直線的斜率的變化的規律
2、能力目標:培養學生的主動探究知識、合作交流的意識,觀測、探究、分析問題、解決問題的能力
3、情感目標:通過課堂教學培養學生的數行結合的美感與嚴謹治學的生活態度
三、教學與學法
1、學法指導:學生原有對直線知識的掌握情況為:在坐標系中能畫出直線的圖形,而高中則要求學生能用幾何量:斜率與傾斜角來刻畫直線的傾斜程度,能用代數的方法研究斜率的問題,所以在學法上要指導學生:觀測生活中的樓梯的坡度;探究坡度的大小與數學中的斜率有關系;領悟斜率的計算公式;理解斜率與傾斜角的關系。
2、教法指導:引導學生學會觀測目標,點撥生活中的量與量關系的數學本質,合理、嚴格的定義直線的傾斜角。正確推倒斜率與傾斜角的關系式。
四、教學過程設計
1、問題情境,提出課題:從生活實例上樓梯出發:有的樓梯陡一些,有的樓梯平一些。
問題1:這種“陡”與“平”可以用坡度來刻畫,即“高度”與“寬度”的比值大小來刻畫,那么直線的傾斜程度又如何來刻畫呢?是從學生的生活發展區出發,調動學生的積極性。類比發現在直角坐標系中直線的傾斜程度可以用縱坐標的增量與橫坐標的增量的比來刻畫。從而引出將要學習的課題――直線的斜率。這樣引入課題顯得比較自然,也符合學生的思維認知規律。
2、自主探究,形成概念:
問題2:刻畫直線的傾斜程度—斜率,那么用什么量來表示這種“坡度”呢?
在直線上任取兩點,如果,那么直線PQ的斜率為(),同時提醒學生要注意:
(1)斜率公式與兩點的順序無關,與所選擇的直線上兩點的位置無關;
(2)它是一個比值,是一個定值;
(3)前提是,當時,即與軸垂直的直線,它的斜率是不存在。
3、解決問題,理解概念
通過對例1的分析與講解目的是幫助學生理解經過兩點的直線的斜率公式,使學生掌握直線斜率的符號與直線的方向之間的對應關系。還可以進一步提出思考:
(1)給出斜率,畫出符合條件的直線;
(2)給出直線讓學生分析直線斜率的特征。對題目作進一步的探討。這樣有利于培養學生的發散思維,促使良好思維習慣的'形成
例2是畫圖問題,使學生進一步理解斜率的幾何意義,在例2的畫圖過程中讓學生感受直線相對x軸的傾斜程度,應該還與一個角有關系。從而引出直線傾斜角的概念
問3:如何定義直線的傾斜角呢?傾斜角概念得出后,教師總結:
(1)直線的傾斜角與斜率一樣,也是刻畫直線的傾斜程度的量,但直線的傾斜角側重與直觀形象,直線的斜率則側重與數量關系;
(2)任何直線都有傾斜角,但不是任何直線都有斜率。
五、鞏固練習,及時反饋
課本練習1、2、3、4。通過練習一方面可以加深學生對定義、公式的理解;另一方面也旨在了解學生對概念的掌握情況,以便調節后面的教學節奏。
六、回顧反思,形成系統
我是引導學生從知識內容和思想方法兩個方面進行小結的。通過小結使學生對本節課的知識結構有一個清晰的認識。在小結時不僅概括所學知識,而且還對所用到的數學方法和涉及的數學思想也進行歸納,這樣既可以使學生完成知識建構,又可以培養其能力。
七、作業布置
所布置的作業都是緊緊圍繞著“直線的斜率”的概念及運用。通過作業來反饋知識掌握效果,鞏固所學知識,強化基本技能的訓練,培養學生良好的學習習慣和品質。
八、關于評價
在授課過程中,我根據學生對課堂提問及例習題的解答情況,及時調節課堂節奏,“易”則可加快,“難”則應放慢速度,并借用富有啟發性的、階梯性的提問對學生進行思維引導。
課后,我將通過批改作業以及與學生談話等方式,來了解學生對“直線的斜率”概念的掌握情況,檢查教學目的的實現程度。同時,對下一步教學工作作出必要的調整和改進。另外,通過對作業的評判和統計課堂練習完成情況,有助于學生認識自我,讓他們獲得成就感,從而增強其自信心,培養學生積極積極的學習態度。
高一數學說課稿 5
說課的內容是《對數函數》,現就教材、教法、學法、教學程序、板書五個方面進行說明。懇請在座的各位專家、老師批評指正。
一、說教材
1、教材的地位、作用及編寫意圖
《對數函數》出現在職業高中數學第一冊第四章第八節。函數是高中數學的核心,對數函數是函數的重要分支,對數函數的知識在數學和其 他許多學科中有著廣泛的應用;學生已經學習了對數、反函數以及指數函數等內容,這為過渡到本節的學習起著鋪墊作用;“對數函數”這節教材,指出對數函數和指數函數互為反函數,反映了兩個變量的相互關系,蘊含了函數與方程的數學思想與數學方法,是以后數學學習中不可缺少的部分,也是高考的必考內容。
2、教學目標的確定及依據。
依據教學大綱和學生獲得知識、培養能力及思想教育等方面的要求:我制定了如下教育教學目標:
(1) 知識目標:理解對數函數的概念、掌握對數函數的圖象和性質。
(2) 能力目標:培養學生自主學習、綜合歸納、數形結合的能力。
(3) 德育目標:培養學生對待知識的科學態度、勇于探索和創新的精神。
(4) 情感目標:在民主、和諧的教學氣氛中,促進師生的情感交流。
3、教學重點、難點及關鍵
重點:對數函數的概念、圖象和性質;
難點:利用指數函數的圖象和性質得到對數函數的圖象和性質;
關鍵:抓住對數函數是指數函數的反函數這一要領。
二、說教法
教學過程是教師和學生共同參與的過程,啟發學生自主性學習,充分調動學生的積極性、主動性;有效地滲透數學思想方法,提高學生素質。根據這樣的原則和所要完成的教學目標,并為激發學生的學習興趣,我采用如下的教學方法:
(1)啟發引導學生思考、分析、實驗、探索、歸納。
(2)采用“從特殊到一般”、“從具體到抽象”的方法。
(3)體現“對比聯系”、“數形結合”及“分類討論”的思想方法。
(4)多媒體演示法。
三、說學法
教給學生方法比教給學生知識更重要,本節課注重調動學生積極思考、主動探索,盡可能地增加學生參與教學活動的'時間和空間,我進行了以下學法指導:
(1)對照比較學習法:學習對數函數,處處與指數函數相對照。
(2)探究式學習法:學生通過分析、探索、得出對數函數的定義。
(3)自主性學習法:通過實驗畫出函數圖象、觀察圖象自得其性質。
(4)反饋練習法:檢驗知識的應用情況,找出未掌握的內容及其差距。
這樣可發揮學生的主觀能動性,有利于提高學生的各種能力。
四、說教學程序
1、復習導入
(1)復習提問:什么是對數?如何求反函數?指數函數的圖象和性質如何?學生回答,并利用課件展示一下指數函數的圖象和性質。
設計意圖:設計的提問既與本節內容有密切關系,又有利于引入新課,為學生理解新知清除了障礙,有意識地培養學生分析問題的能力。
(2)導言:指數函數有沒有反函數?如果有,如何求指數函數的反函數?它的反函數是什么?
設計意圖:這樣的導言可激發學生求知欲,使學生渴望知道問題的答案。
2、認定目標(出示教學目標)
3、導學達標
按"教師為主導,學生為主體,訓練為主線”的原則,安排師生互動活動.
(1)對數函數的概念
引導學生從對數式與指數式的關系及反函數的概念進行分析并推導出,指數函數有反函數,并且y=ax(a>0且a≠1)的反函數是 y=logax,見課件。 把函數y=logax叫做對數函數,其中a>0且a≠1。從而引出對數函數的概念,展示課件。
設計意圖:對數函數的概念比較抽象,利用已經學過的知識逐步分析,這樣引出對數函數的概念過渡自然,學生易于接受。
因為對數函數是指數函數的反函數,讓學生比較它們的定義域、值域、對應法則及圖象間的關系,培養學生參與意識,通過比較充分體現指數函數及對數函數的內在聯系。
(2)對數函數的圖象
提問:同指數函數一樣,在學習了函數的定義之后,我們要畫函數的圖象,應如何畫對數函數的圖象呢?讓學生思考并回答,用描點法畫圖。教師肯定,我們每學習一種新的函數都可以根據函數的解析式,列表、描點畫圖。再考慮一下,我們還可以用什么方法畫出對數函數的圖象呢?
讓學生回答,畫出指數函數關于直線y=x對稱的圖象,就是對數函數的圖象。
教師總結:我們畫對數函數的圖象,既可用描點法,也可用圖象變換法,下邊我們利用兩種方法畫對數函數的圖象。
方法一(描點法)首先列出x,y(y=log2x,y=log x)值的對應表,因為對數函數的定義域為x>0,因此可取x= , , ,1,2,4,8,請計算對應的y值,然后在坐標系內描點、畫出它們的圖象.
方法二(圖象變換法)因為對數函數和指數函數互為反函數, 圖象關于直線y=x對稱,所以只要畫出y=ax的圖象關于直線y=x對稱的曲線,就可以得到y=logax.的圖象。學生動手做實驗,先描出y=2x的圖象,畫出它關于直線y=x對稱的曲線,它就是y=log2x的圖象;類似的從y=( )x 的圖象畫出y=log x的圖象,再出示課件,教師加以解釋。
設計意圖:用這種對稱變換的方法畫函數的圖象,可以加深和鞏固學生對互為反函數的兩個函數之間的認識,便于將對數函數的圖象和性質與指數函數的圖象和性質對照,但使用描點法畫函數圖象更為方便,兩種方法可同時進行,分析畫法之后,可讓學生自由選擇畫法。
這樣可以充分調動學生自主學習的積極性。
(3)對數函數的性質
在理解對數函數定義的基礎上,掌握對數函數的圖象和性質是本節的重點,關鍵在于抓住對數函數是指數函數的反函數這一要領,講對數函數的性質,可先在同一坐標系內畫出上述兩個對數函數的圖象,根據圖象讓學生列表分析它們的圖象特征和性質,然后出示課件,教師補充。
作了以上分析之后,再分a>1與0<a<1兩種情況列出對數函數圖象和性質表,體現了從“特殊到一般”、“從具體到抽象”的方法。出示課件并進行詳細講解,把對數函數圖象和性質列成一個表以便讓學生對比著記憶。
設計意圖:這種講法既嚴謹又直觀易懂,還能讓學生主動參與教學過程,對培養學生的創新能力有幫助,學生易于接受易于掌握,而且利用表格,可以突破難點。
由于對數函數和指數函數互為反函數,它們的定義域與值域正好互換,為了揭示這兩種函數之間的內在聯系,列出指數函數與對數函數對照表(見課件)
設計意圖:通過比較對照的方法,學生更好地掌握兩個函數的定義、圖象和性質,認識兩個函數的內在聯系,提高學生對函數思想方法的認識和應用意識。
4、鞏固達標(見課件)
這一訓練是為了培養學生利用所學知識解決實際問題的能力,通過這個環節學生可以加深對本節知識的理解和運用,并從講解過程中找出所涉及的知識點,予以總結。充分體現“數形結合”和“分類討論”的思想。
5、反饋練習(見課件)
習題是對學生所學知識的反饋過程,教師可以了解學生對知識掌握的情況。
6、歸納總結(見課件)
引導學生對主要知識進行回顧,使學生對本節有一個整體的把握,因此,從三方面進行總結:對數函數的概念、對數函數的圖象和性質、比較對數值大小的方法。
7、課外作業 :(1)完成P178 A組1、2、3題
(2)當底數a>1與0<a<1時,底數不同,對數函數圖象有什么持點?
五、說板書
板書設計為表格式(見課件),這樣的板書簡明清楚,重點突出,加深學生對圖象和性質的理解和掌握,便于記憶,有利于提高教學效果。
高一數學說課稿 6
一、教材分析:
1、教材的地位與作用。
本節資料是在學生學習了"事件的可能性的基礎上來學習如何預測不確定事件(隨機事件)發生的可能性的大小。"用概率預測隨機發生的可能性大小,在日常生活、自然、科技領域有著廣泛的應用,學習本單元知識,無論是今后繼續深造(高中學習概率的乘法定理)還是參加社會實踐活動都是十分必要的。概率的概念比較抽象,概率的定義學生較難理解。
在教材的處理上,采取小單元教學,本節課安排讓學生了解求隨機事件概率的兩種方法,目的'是讓學生能夠比較系統地理解概率的意義及求概率的方法,為下頭學習求比較復雜的情景的概率打下基礎。
2、重點與難點。
重點:對概率意義的理解,經過多次重復實驗,用頻率預測概率的方法,以及用列舉法求概率的方法。
難點:對概率意義的理解和用列舉法求概率過程中在各種可能性相同條件下某一事件可能發生的總數及總的結果數的分析。
二、目的分析:
知識與技能:掌握用頻率預測概率和用列舉法求概率方法。
過程與方法:組織學生自主探究,合作交流,引導學生觀察試驗和統計的結果,進而進行分析、歸納、總結,了解并感受概率的定義的過程,引導學生從數學的視角觀察客觀世界,用數學的思維思考客觀世界,以數學的語言描述客觀世界。
情感態度價值觀:學生經歷觀察、分析、歸納、確認等數學活動,感受數學活動充滿了探索性與創造性,感受量變與質變的對立統一規律,同時為概率的精準、新穎、獨特的思維方法所震撼,激發學生學習數學的熱情,增強對數學價值觀的認識。
三、教法、學法分析:
引導學生自主探究、合作交流、觀察分析、歸納總結,讓學生經歷知識(概率定義計算公式)的產生和發展過程,讓學生在數學活動中學習數學、掌握數學,并能應用數學解決現實生活中的實際問題,教師是學生學習的組織者、合作者和指導者,精心設計教學情境,有序組織學生活動,讓課堂充滿生機活力,體現"教"為"學"服務這一宗旨。
四、教學過程分析:
1、引導學生探究
精心設計問題一,學生經過對問題一的探究,一方面復習前面學過的"確定事件和不確定事件"的知識,為學好本節資料理清知識障礙,二是讓學生明確為什么要學習概率(如何預測隨機事件可能性發生大小)。引導學生對問題二的探究與觀察實驗數據,使學生了解概率這一重要概念的實際背景,感受并相信隨機事件的發生中存在著統計規律性,感受數學規律的真實的發現過程。
2、歸納概括
學生從試驗中得到的統計數字及概率呈現穩定在某一數值附近這一規律,讓學生明確概率定義的由來。
引導學生重新對問題一和問題二的探究,分析某事件發生的各種可能性在全部可能發生結果中所占比例,得到用列舉法求概率的公式,引導學生進行理性思維,邏輯分析,既培養學生的分析問題能力,又讓學生明確用列舉法求概率這一簡便快捷方法的合理性。
3、舉例應用
⑴引導學生對教材書例題、問題一、問題二中問題的進一步分析與探究,讓學生掌握用列舉法求概率的方法。
⑵引導學生對練習中的問題思考與探究,鞏固對概率公式的應用及加深對概率意義的理解。
4、深化發展
⑴設置3個小題目,引導學生歸納、分析、總結,加深對知識與方法的理解,并學會靈活運用。
⑵讓學生設計活動資料,對知識進行升華和拓展,引導學生創造性地運用知識思考問題和解決問題,從而培養學生的創新意識和創新能力。
高一數學說課稿 7
一、說教材
教材是連接教師和學生的紐帶,在整個教學過程中起著至關重要的作用,所以,先談談我對教材的理解。
正弦函數的性質是選自北師大版高中數學必修四第一章三角函數第五節正弦函數的性質與圖象5.3正弦函數的性質的資料,主要資料便是正弦函數的性質,教材經過作圖、觀察、誘導公式等方法得出正弦函數y=sinx的性質。并且教材突出了正弦函數圖象的重要性,能夠幫忙學生更深刻的認識、理解、記憶正弦函數的性質。
二、說學情
合理把握學情是上好一堂課的基礎,本次課所應對的學生群體具有以下特點。
高中的學生掌握了必須的基礎知識,思維較敏捷,動手能力較強,但理解能力、自主學習能力較缺乏。基于此,本節課注重引導學生動腦思考,更富有啟發性。并且學生的自尊心較強,所以對學生的評價注重先揚后抑,鼓勵學生多多發言,還能夠對學生進行正確引導。
三、說教學目標
根據以上對教材的分析以及對學情的把握,我制定了如下三維目標:
(一)知識與技能
會用正弦函數圖象研究和理解正弦函數的性質,能熟練運用正弦函數的性質解決問題。
(二)過程與方法
經過正弦函數的圖象,探索正弦函數的性質,提升邏輯思考、歸納總結的能力。
(三)情感態度價值觀
經過本節的學習體驗數學的嚴謹性,養成細心觀察、認真分析、嚴謹認真的良好思維習慣和不斷探求新知識的精神。
四、說教學重難點
本著新課程標準,吃透教材,了解學生特點的基礎上我確定了以下重難點
(一)教學重點
由正弦函數的圖象得到正弦函數的性質。
(二)教學難點
正弦函數的周期性和單調性。
五、說教法和學法
此刻的文盲不是不懂字的人,而是沒有掌握學習方法的人。因而在本節課我將采用講授法、探究法、練習法等教學方法,我在教學過程中異常重視對學生的引導,讓學生從機械的學答中向學問轉變,從學會到會學,成為真正學習的主人。
六、說教學過程
在這節課的教學過程中,我注重突出重點,條理清晰,緊湊合理。各項活動的安排也注重互動、交流,限度的調動學生參與課堂的積極性、主動性。
(一)新課導入
首先是導入環節,在這一環節中我將采用復習的導入方法。
我會讓學生回憶正弦函數的概念,以及上節課所學的正弦函數圖象,讓學生根據圖象思考正弦函數有哪些性質從而引出課題——《正弦函數的性質》。
這樣設計能夠讓學生對前面的知識進行充分的回顧,為本節課的順利開展奠定基礎。
(二)新知探索
接下來是新課講授環節,在這一環節我將采用講解法、小組合作探究的方式進行。
讓學生自我經過五點作圖法畫出正弦函數的圖象,并在大屏幕上展示正弦函數的標準圖象。
學生一邊看投影,一邊思考如下問題:
(1)正弦函數的定義域是什么
(2)正弦函數的值域是什么
(3)正弦函數的最值情景如何
(4)正弦函數的周期
(5)正弦函數的奇偶性
(6)正弦函數的遞增區間
給學生十分鐘的時間小組討論,之后小組代表發言,師生共同總結。
1、定義域:y=sinx定義域為R
2、值域:引導學生回憶單位圓中的正弦函數線,發現值域為[—1,1]
3、最值:根據值域的確定得到在何處取得最值以及函數的正負性。
4、周期性:經過觀察圖象引導學生發現正弦函數的圖象是有規律不斷重復出現的,讓學生思考后發現是每隔2π重復出現一次,得出y=sinx的.最小正周期是2π。之后經過誘導公式證明。
5、奇偶性:在剛才經過誘導公式證明后順勢提出公式,總結得到正弦函數是奇函數。
6、單調性:最終讓學生根據剛才所得到的結論自我嘗試總結正弦函數的單調性。
在探究完正弦函數性質后,利用單位圓和正弦函數圖象理解和記憶正弦函數的性質,這樣的安排能夠讓學生及時鞏固正弦函數的性質,并且還能夠結合之前所學的單位圓,三角函數線等知識,讓學生感受到知識間的聯系。
(三)課堂練習
第三環節是鞏固環節,多媒體出示書上例題2:用五點法畫出函數的簡圖,并根據圖象討論它的性質。
經過這樣的練習,既鞏固了學生學過的知識,又進一步培養了學生理解、分析、推理的能力,趣味的知識在學生們的積極主動的探索中顯得更有味道。
(四)小結作業
最終一個環節為小結作業環節,關于課堂小結,我打算讓學生自我來總結。這樣既發揮了學生的主體性,又能夠提高學生的總結概括能力,讓我在第一時間得到學習反饋,及時加以疏導。
在作業布置上,我讓學生思考余弦函數的圖象與性質是什么樣的。
經過比較靈活的題目呈現,能夠讓學生結合本節課的知識進而思考后續的知識。
七、說板書設計
我的板書設計遵循簡介明了突出重點部分,以下是我的板書設計:
(略)
高一數學說課稿 8
1、教材分析
1-1教學內容及包含的知識點
(1)本課內容是高中數學第二冊第七章第三節《兩條直線的位置關系》的最后一個內容
(2)包含知識點:點到直線的距離公式和兩平行線的距離公式
1-2教材所處地位、作用和前后聯系
本節課是兩條直線位置關系的最后一個內容,在此之前,有對兩線位置關系的定性刻畫:平行、垂直,以及對相交兩線的定量刻畫:夾角、交點。在此之后,有圓錐曲線方程,因而本節既是對前面兩線垂直、兩線交點的復習,又是為后面計算點線距離(在直線和圓錐曲線構成的組合圖形中)提供一套工具。
可見,本課有承前啟后的作用。
1-3教學大綱要求
掌握點到直線的距離公式
1-4高考大綱要求及在高考中的顯示形式
掌握點到直線的距離公式。在近年的高考中,通常以直線和圓錐曲線構成的組合圖形為背景,判斷直線和圓錐曲線的位置或構成三角形求高,涉及絕對值,直線垂直,最小值等。
1-5教學目標及確定依據
教學目標
(1)掌握點到直線的距離的概念、公式及公式的推導過程,能用公式來求點線距離和線線距離。
(2)培養學生探究性思維方法和由特殊到一般的研究能力。
(3)認識事物之間相互聯系、互相轉化的辯證法思想,培養學生轉化知識的能力。
(4)滲透人文精神,既注重學生的智慧獲得,又注重學生的情感發展。
確定依據:
中華人民共和國教育部制定的《全日制普通高級中學數學教學大綱》(2002年4月第一版),《基礎教育課程改革綱要(試行)》,《高考考試說明》(2004年)
1-6教學重點、難點、關鍵
(1)重點:點到直線的距離公式
確定依據:由本節在教材中的地位確定
(2)難點:點到直線的距離公式的推導
確定依據:根據定義進行推導,思路自然,但運算繁瑣;用等積法推導,運算較簡單,但思路不自然,學生易被動,主體性得不到體現。
分析“嘗試性題組”解題思路可突破難點
(3)關鍵:實現兩個轉化。一是將點線距離轉化為定點到垂足的距離;二是利用等積法將其轉化為直角三角形中三頂點的距離。
2、教法
2-1發現法:本節課為了培養學生探究性思維目標,在教學過程中,使老師的主導性和學生的主體性有機結合,使學生能夠愉快地自覺學習,通過學生自己練習“嘗試性題組”,引導、啟發學生分析、發現、比較、論證等,從而形成完整的數學模型。
確定依據:
(1)美國教育學家波利亞的教與學三原則:主動學習原則,最佳動機原則,階段漸進性原則。
(2)事物之間相互聯系,相互轉化的辯證法思想。
2-2教具:多媒體和黑板等傳統教具
3、學法
3-1發現法:豐富學生的數學活動,學生經過練習、觀察、分析、探索等步驟,自己發現解決問題的方法,比較論證后得到一般性結論,形成完整的數學模型,再運用所得理論和方法去解決問題。
一句話:還課堂以生命力,還學生以活力。
3-2學情:
(1)知識能力狀況,本節為兩線位置關系的最后一個內容,在這之前學生已經系統的學習了直線方程的各種形式,有對兩線位置關系的定性認識和對兩線相交的定量認識,為本節推證公式涉及到直線方程、兩線垂直、兩線交點作好了知識儲備。同時學生對解析幾何的實質中,用坐標系溝通直線與方程的研究辦法,有了初步認識,數形結合的思想正逐漸趨于成熟。
(2)心理特點:又見“點到直線的距離”(初中已學習定義),學生既熟悉又陌生,既困惑又好奇,探詢動機由此而生。
(3)生活經驗:數學源于生活,生活中的點線距隨處可見,怎樣將實際問題數學化,是每個追求成長、追求發展的學生所渴求的一種研究能力。豐富的課堂數學活動能夠讓他們真正參與,體驗過程,錘煉意志,培養能力。
3-3學具:直尺、三角板
3、教學程序
時,此時又怎樣求點A到直線
的距離呢?
生: 定性回答
點明課題,使學生明確學習目標。
創設“不憤不啟,不悱不發”的學習情景。
練習
比較
發現
歸納
討論
的距離為d
(1) A(2,4),
:x = 3, d=_____
(2) A(2,4),
:y = 3,d=_____
(3) A(2,4),
:x – y = 0,d=_____
嘗試性題組告訴學生下手不難,還負責特例檢驗,從而增強學生參與的信心。
請三個同學上黑板板演
師: 請這三位同學分別說說自己的解題思路。
生: 回答
教學機智:應沉淀為三種思路:一,根據定義轉化為定點到垂足的距離;二,利用等積法轉化為直角三角形中三個頂點之間的距離;三,利用直角三角形中的邊角關系。
視回答的情況,老師進行肯定、修正或補充提問:“還有其他不同的思路嗎”。
說解題思路,一是讓學生清晰有條理的表達自己的思考過程,二是其求解過程提示了證明的途徑(根據定義或畫坐標線時正好交出一個直角三角形)
師:很好,剛才我們解決了定點到特殊直線的距離問題,那么,點P(x0,y0)到一般直線:Ax+By+C=0(A,B≠0)的距離又怎樣求?
教學機智:如學生反應不大,則補充提問:上面三個題的解題思路對這個問題有啟示嗎?
生:方案一:根據定義
方案二:根據等積法
設置此問,一是使學生的認知由特殊向一般轉化,發現可能的方法,二是讓學生體驗數學活動充滿著探索和創造,感受數學的生機和樂趣。
師生一起進行比較,鎖定方案二進行推證。
“師生共作”體現新型師生觀,且//時,又怎樣求這兩線的距離?
生:計算得線線距離公式
師:板書點到直線的'距離公式,兩平行線間距離公式
“沒有新知識,新知識均是舊知識的組合”,創設此問可發揮學生的創造性,增加學生的成就感。
反思小結
經驗共享
(六 分 鐘)
師: 通過以上的學習,你有哪些收獲?(知識,能力,情感)。有哪些疑問?誰能答這些疑問?
生: 討論,回答。
對本節課用到的技能,數學思維方法等進行小結,使學生對本節知識有一個整體的認識。
共同進步,各取所長。
練習
(五 分 鐘)
P53 練習 1, 2,3
熟練的用公式來求點線距離和線線距離。
再度延伸
(一 分 鐘)
探索其他推導方法
“帶著問題進課堂,帶著更多的問題出課堂”,讓學生真正學會學習。
4、教學評價
學生完成反思性學習報告,書寫要求:
(1) 整理知識結構
(2) 總結所學到的基本知識,技能和數學思想方法
(3) 總結在學習過程中的經驗,發明發現,學習障礙等,說明產生障礙的原因
(4) 談談你對老師教法的建議和要求。
作用:
(1) 通過反思使學生對所學知識系統化。反思的過程實際上是學生思維內化,知識深化和認知牢固化的一個心理活動過程。
(2) 報告的寫作本身就是一種創造性活動。
(3) 及時了解學生學習過程中的知識缺陷,思維障礙,有利于教師了解學生對自己的教法的滿意度和效果,以便作出及時調整,及時進行補償性教學。
5、板書設計
(略)
6、教學的反思總結
心理歷練,得意之處,困惑之處,知識的傳承發展,如何修正完善等。
高一數學說課稿 9
一、教材分析
集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學思想,在越來越廣泛的領域種得到應用。
本節課主要分為兩個部分,一是理解集合的定義及一些基本特征。二是掌握集合與元素之間的關系。
二、教學目標
1、學習目標
(1)通過實例,了解集合的含義,體會元素與集合之間的關系以及理解“屬于”關系;
(2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;
2、能力目標
(1)能夠把一句話一個事件用集合的方式表示出來。
(2)準確理解集合與及集合內的元素之間的關系。
3、情感目標
通過本節的把實際事件用集合的方式表示出來,從而培養數學敏感性,了 解到數學于生活中。
三、教學重點與難點
重點 集合的基本概念與表示方法;
難點 運用集合的兩種常用表示方法———列舉法與描述法,正確表示一些簡單的集合;
四、教學方法
(1)本課將采用探究式教學,讓學生主動去探索,激發學生的學習興趣。并分層教學,這樣可顧及到全體學生,達到優生得到培養,后進生也有所收獲的效果;
(2)學生在老師的引導下,通過閱讀教材,自主學習、思考、交流、討論和概括,從而完成本節課的教學目標。
五、學習方法
(1)主動學習法:舉出例子,提出問題,讓學生在獲得感性認識的同時,教師層層深入,啟發學生積極思維,主動探索知識,培養學生思維想象 的綜合能力。
(2)反饋補救法:在練習中,注意觀察學生對學習的反饋情況,以實現“培優扶差,滿足不同。”
六、教學思路
具體的思路如下
復習的引入:講一些集合的相關數學及相關數學家的經歷故事!這可以讓學生更加了解數學史從何使學生對數學更加感興趣,有助于上課的效率!因為時間關系這里我就不說相關數學史咯。
一、 引入課題
軍訓前學校通知:8月15日8點,高一年段在體育館集合進行軍訓動員;試問這個通知的對象是全體的高一學生還是個別學生?
在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學習一個新的概念——集合,即是一些研究對象的總體。
二、 正體部分
學生閱讀教材,并思考下列問題:
(1)集合有那些概念?
(2)集合有那些符號?
(3)集合中元素的特性是什么?
(4)如何給集合分類?
(一)集合的有關概念
(1)對象:我們可以感覺到的客觀存在以及我們思想中的事物或抽象符號,都可以稱作對象。
(2)集合:把一些能夠確定的不同的對象看成一個整體,就說這個整體是由這些對象的全體構成的集合。
(3)元素:集合中每個對象叫做這個集合的元素。
集合通常用大寫的拉丁字母表示,如A、B、C元素通常用小寫的拉丁字母表示,如a、b、c。
1、思考:課本P3的思考題,并再列舉一些集合例子和不能構成集合的例子,對學生的例子予以討論、點評,進而講解下面的問題。
2、元素與集合的.關系
(1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A。(舉例)集合A={2,3,4,6,9}a=2 因此我們知道 a∈A
(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作a?A
要注意“∈”的方向,不能把a∈A顛倒過來寫。(舉例)
集合A={3,4,6,9}a=2 因此我們知道a?A
3、集合中元素的特性
(1)確定性:給定一個集合,任何對象是不是這個集合的元素是確定的了。
(2)互異性:集合中的元素一定是不同的。
(3)無序性:集合中的元素沒有固定的順序。
4、集合分類
根據集合所含元素個屬不同,可把集合分為如下幾類:
(1)把不含任何元素的集合叫做空集Ф
(2)含有有限個元素的集合叫做有限集
(3)含有無窮個元素的集合叫做無限集
注:應區分?,{?},{0},0等符號的含義
5、常用數集及其表示方法
(1)非負整數集(自然數集):全體非負整數的集合.記作N
(2)正整數集:非負整數集內排除0的集.記作NX或N+
(3)整數集:全體整數的集合.記作Z
(4)有理數集:全體有理數的集合.記作Q
(5)實數集:全體實數的集合.記作R
注:(1)自然數集包括數0.
(2)非負整數集內排除0的集.記作NX或N+,Q、Z、R等其它數集內排
除0的集,也這樣表示,例如,整數集內排除0的集,表示成ZX
(二)集合的表示方法
我們可以用自然語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。
(1) 列舉法:把集合中的元素一一列舉出來,寫在大括號內。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;
例1、(課本例1)
思考2,引入描述法
說明:集合中的元素具有無序性,所以用列舉法表示集合時不必考慮元素的順序。
(2) 描述法:把集合中的元素的公共屬性描述出來,寫在大括號{}內。 具體方法:在大括號內先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。
如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;
例2、(課本例2)
說明:(課本P5最后一段)
思考3:(課本P6思考) 強調:描述法表示集合應注意集合的代表元素
{(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數},即代表整數集Z。
辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數}。下列寫法{實數集},{R}也是錯誤的。
說明:列舉法與描述法各有優點,應該根據具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。
(三)課堂練習(課本P6練習)
三、 歸納小結與作業
本節課從實例入手,非常自然貼切地引出集合與集合的概念,并且結合實例對集合的概念作了說明,然后介紹了集合的常用表示方法,包括列舉法、描述法。
書面作業:習題1.1,第1- 4題
高一數學說課稿 10
一、說教材
1、從在教材中的地位與作用來看
《等比數列的前n項和》是數列這一章中的一個重要內容,它不僅在現實生活中有著廣泛的實際應用,如儲蓄、分期付款的有關計算等等,而且公式推導過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學生今后學習和工作中必備的數學素養。
2、從學生認知角度看
從學生的思維特點看,很容易把本節內容與等差數列前n項和從公式的形成、特點等方面進行類比,這是積極因素,應因勢利導不利因素是:本節公式的推導與等差數列前n項和公式的推導有著本質的不同,這對學生的思維是一個突破,另外,對于q=1這一特殊情況,學生往往容易忽視,尤其是在后面使用的過程中容易出錯。
3、學情分析
教學對象是剛進入高中的學生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴謹。
4、重點、難點
教學重點:公式的推導、公式的特點和公式的運用。
教學難點:公式的推導方法和公式的靈活運用。
公式推導所使用的“錯位相減法”是高中數學數列求和方法中最常用的方法之一,它蘊含了重要的數學思想,所以既是重點也是難點。
二、說目標
知識與技能目標:
理解并掌握等比數列前n項和公式的推導過程、公式的特點,在此基礎上能初步應用公式解決與之有關的問題。
過程與方法目標:
通過對公式推導方法的探索與發現,向學生滲透特殊到一般、類比與轉化、分類討論等數學思想,培養學生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力。
情感與態度價值觀:
通過對公式推導方法的探索與發現,優化學生的思維品質,滲透事物之間等價轉化和理論聯系實際的辯證唯物主義觀點。
三、說過程
學生是認知的主體,設計教學過程必須遵循學生的認知規律,盡可能地讓學生去經歷知識的形成與發展過程,結合本節課的特點,我設計了如下的教學過程:
1、創設情境,提出問題
在古印度,有個名叫西薩的人,發明了國際象棋,當時的印度國王大為贊賞,對他說:我可以滿足你的任何要求。西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數學家計算,結果出來后,國王大吃一驚,為什么呢?
設計意圖:設計這個情境目的`是在引入課題的同時激發學生的興趣,調動學習的積極性、故事內容緊扣本節課的主題與重點。
此時我問:同學們,你們知道西薩要的是多少粒小麥嗎?引導學生寫出麥粒總數。帶著這樣的問題,學生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和這時我對他們的這種思路給予肯定。
設計意圖:在實際教學中,由于受課堂時間限制,教師舍不得花時間讓學生去做所謂的“無用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學生的認知規律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個教學關鍵處學生難以轉過彎來,因而在教學中應舍得花時間營造知識形成過程的氛圍,突破學生學習的障礙。同時,形成繁難的情境激起了學生的求知欲,迫使學生急于尋求解決問題的新方法,為后面的教學埋下伏筆。
2、師生互動,探究問題
在肯定他們的思路后,我接著問:1,2,22,…,263是什么數列?有何特征?應歸結為什么數學問題呢?
探討1:,記為(1)式,注意觀察每一項的特征,有何聯系?(學生會發現,后一項都是前一項的2倍)
探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式。比較(1)(2)兩式,你有什么發現?
設計意圖:留出時間讓學生充分地比較,等比數列前n項和的公式推導關鍵是變“加”為“減”,在教師看來這是“天經地義”的,但在學生看來卻是“不可思議”的,因此教學中應著力在這兒做文章,從而抓住培養學生的辯證思維能力的良好契機。
經過比較、研究,學生發現:(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:老師指出:這就是錯位相減法,并要求學生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?
設計意圖:經過繁難的計算之苦后,突然發現上述解法,不禁驚呼:真是太簡潔了!讓學生在探索過程中,充分感受到成功的情感體驗,從而增強學習數學的興趣和學好數學的信心。
3、類比聯想,解決問題
這時我再順勢引導學生將結論一般化,這里,讓學生自主完成,并喊一名學生上黑板,然后對個別學生進行指導。
設計意圖:在教師的指導下,讓學生從特殊到一般,從已知到未知,步步深入,讓學生自己探究公式,從而體驗到學習的愉快和成就感。
對不對?這里的q能不能等于1?等比數列中的公比能不能為1?q=1時是什么數列?此時sn=?(這里引導學生對q進行分類討論,得出公式,同時為后面的例題教學打下基礎。)
再次追問:結合等比數列的通項公式an=a1qn-1,如何把sn用a1、an、q表示出來?(引導學生得出公式的另一形式)
設計意圖:通過反問精講,一方面使學生加深對知識的認識,完善知識結構,另一方面使學生由簡單地模仿和接受,變為對知識的主動認識,從而進一步提高分析、類比和綜合的能力。這一環節非常重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用。
4、討論交流,延伸拓展
高一數學說課稿 11
一、說設計理念
《數學課程標準》指出要讓學生感受生活中處處有數學,用數學知識解決生活中的實際問題。
基于這一理念,我在教學過程中力求聯系學生生活實際和已有的知識經驗,從學生感興趣的素材,設計新穎的導入與例題教學,給數學課富予新的生命力。課堂中力求構建一種自主探究、和諧合作的教學氛圍,讓學生經歷知識的探究過程,培養學生感受生活中的數學和用數學知識解決生活問題的能力,體驗數學的應用價值。
二、教材分析:
(一)教材的地位和作用
有關統計圖的認識,小學階段主要認識條形統計圖、折線統計圖和扇形統計圖。考慮到扇形統計圖在日常生活中的廣泛應用,《標準》把它作為必學內容安排在本單元。本單元是在前面學習了條形統計圖和折線統計圖的特點和作用的基礎上進行教學的。主要通過熟悉的事例使學生體會到扇形統計圖的實用價值。
(二)教學目標
1、聯系生活情境了解扇形統計圖的特點和作用
2、能讀懂扇形統計圖,從中獲取有效的信息。
3、讓學生在觀察、比較、討論和交流中體會扇形統計圖反映的是整體和部分的關系。
(三)教學重點:
1、能讀懂扇形統計圖,理解扇形統計圖的特點和作用,并能從中獲取有效信息。
2、認識折線統計圖,了解折線統計圖的特點。
(四)教學難點:
1、能從扇形統計圖中獲得有用信息,并做出合理推斷。
2、能根據統計圖和數據進行數據變化趨勢的分析。
二、學情分析
本單元的教學是在學生已有統計經驗的基礎上,學習新知的。六年級的學生已經學習了條形統計圖和折線統計圖,知道他們的特點,并具有一定的概括、分析能力,在此基礎上,通過新舊知識對比,自然生成新知識點。
三、設計理念和教法分析
1、本堂課力爭做到由“關注知識”轉向“關注學生”,由“傳授知識”轉向“引導探索”,“教師是組織者、領導者。”將課堂設置問題給學生,讓學生自己獲取信息、分析信息,自主探索、合作交流,參與知識的構建。
2、運用探究法。探究學習的內容以問題的形式出現在教師的.引導下,學生自主探究,讓學生在課堂上多活動、多思考,自主構建知識體系。引導學生獲取信息并合作交流。
四、說學法
《數學課程標準》指出有效的數學學習不能單純的依賴模仿和記憶,動手操作、自主探索與合作交流是學生學習數學的重要方式。教學時,我通過學生感興趣的話題引入,引導學生關注身邊的數學,使學生體會到觀察、概括、想象、遷移等數學學習方法,在師生互動中讓每個學生都動口,動手,動腦。培養學生學習的主動性和積極性。
五、說教學程序
本課分成創設情境,感知特點——分析數據,理解特征——嘗試制圖,看圖分析——實踐應用,全課總結四環節。
六、說教學過程
(一)復習引新
1、復習舊知
提問:我們學習過哪些統計方法?其中條形統計圖和折線統計圖各有什么特點?
2、引入新課
(二)自主探索,學習新知
新知識教學分二步教學:第一步整體感知,看懂統計圖,理解特征,這是本節課的重點。在教學中,以知識遷移的方式建立新舊知識之間的聯系,放手讓學生獨立思考,互相合作,進一步了解統計圖的特征。
第二步實踐應用環節。在教學中,精心地選取了大量的生活素材,使統計知識與生活建立緊密的聯系。根據統計圖回答問題,是讓學生運用到剛才學習到的知識來解決生活中的一些問題,并鞏固剛才所學的知識,為學生自己發現問題、提出問題及自己解決問題提供了較大的空間。同時,讓學生感悟由于數據變化帶來的啟示,并能合理地進行推理與判斷
三、課堂總結
四、布置作業。
五、板書設計:
高一數學說課稿 12
今天我說課的題目是《條件語句》,內容選自于新課程人教A版必修3第一章第二節,課時安排為一個課時。下面我將從教材分析、教學目標分析、教學方法與手段分析、教學過程分析等四大方面來闡述我對這節課的分析和設計:
一、教材分析
1、教材所處的地位和作用
在此之前,學生已學習了算法的概念、程序框圖與算法的基本邏輯結構、輸入語句、輸出語句和賦值語句,這為過渡到本節的學習起著鋪墊作用。這一節課主要的內容為條件語句表示方法、結構以及用法。條件語句與程序圖中的條件結構相對應,它是五種基本算法語句中的一種,通過本節課的學習,學生將更加了解算法語句,并能用更全面的眼光看待前面學過的語句,并為以后的學習作好必要的準備。本節課對學生算法語言能力、有條理的思考與清晰地表達的能力,邏輯思維能力的綜合提升具有重要作用。
2、教學的重點和難點
重點:條件語句的表示方法、結構和用法;用條件語句表示算法。
難點:理解條件語句的表示方法、結構和用法。
二、教學目標分析
1、知識與技能目標:
⑴正確理解條件語句的概念,并掌握其結構。
⑵會應用條件語句編寫程序。
2、過程與方法目標:
⑴通過實例,發展對解決具體問題的過程與步驟進行分析的能力。
⑵通過模仿,操作、探索、經歷設計算法、設計框圖、編寫程序以解決具體問題的過程,發展應用算法的能力。
⑶在解決具體問題的過程中學習條件語句,感受算法的重要意義。
3、情感,態度和價值觀目標
⑴能通過具體實例,感受和體會算法思想在解決具體問題中的意義,進一步體會算法思想的重要性,體驗算法的有效性,增進對數學的了解,形成良好的數學學習情感,增強學習數學的'樂趣。
⑵通過感受和認識現代信息技術在解決數學問題中的重要作用和威力,形成自覺地將數學理論和現代信息技術結合的思想。
⑶在編寫程序解決問題的過程中,逐步養成扎實嚴謹的科學態度。
三、教學方法與手段分析
1、教學方法:根據本節內容邏輯性強,學生不易理解的特點,本節教學采用啟發式教學,輔以觀察法、發現法、練習法、講解法。采用這種方法的原因是學生的邏輯能力不是很強,只能通過對實例的認真領會及一定的練習才能掌握本節知識。
2、教學手段:運用計算機、圖形計算器輔助教學
四、教學過程分析
1、創設情境(約4分鐘)
首先,我要求學生們編寫程序,輸入一元二次方程
的系數,輸出它的實數根。這樣可以把教學內容轉化為具有潛在意義的問題,讓學生產生強烈的問題意識,因為要解決這一問題,根據我們之前所學的三種算法語句是無法解決的,這樣就引出今天我們所要學習的內容。
2、探究新知(約8分鐘)
為了引入概念,我首先給出了一個基本的應用條件語句能夠解決的例題:
例1 編寫一個程序,求實數x的絕對值。
整個過程由師生共同分析完成。老師要引導學生分析、研究例題中的兩個程序,既要讓學生們看到已知的三種語句,更要注意到未知的語句,即條件語句。總結上述例題的程序可得出條件語句的兩種一般格式,接下來由師生共同對這兩種格式進行研究.
3、知識應用(約15分鐘)
此環節有兩個例題
例2 編寫程序,寫出輸入兩個數a和b,將較大的數打印出來
例3 編寫程序,使任意輸入的3個整數按從大到小的順序輸出.
先把解決問題的思路用程序框圖表示出來,然后再根據程序框圖給出的算法步驟,逐步把算法用對應的程序語句表達出來。(程序框圖先由學生討論,再統一,然后利用圖形計算器演示,學生會驚喜的發現:自己也是個編程高手了!這樣可以激發學生們的學習興趣)
4、練習鞏固(約4分鐘)
課本第30頁第3題
練習可鞏固學生對知識的理解,也可在練習中發現問題,使問題得到及時的解決。
5、課堂小結(約5分鐘)
條件語句的步驟、結構及功能、
知識性內容的小結,可把課堂教學傳授的知識盡快化為學生的素質;數學思想方法的小結,可使學生更深刻地理解數學思想方法在解題中的地位和應用
6、布置作業
課本練習第3、4題
[設計意圖]課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度以及實際接受情況,并促使學生進一步鞏固和掌握所學內容。對作業實施分層設置,分必做和選做,利于拓展學生的自主發展的空間。
7、板書設計
1.2.2條件語句
1、條件語句的一般格式
(1)IF-THEN-ELSE語句
格式: 框圖:
(2)IF-THEN語句
格式: 框圖:
2、小結
(1)
(2)
(3)
2、例1 引例
例2 例4
例3
高一數學說課稿 13
今天我要進行說課的課題是高中數學必修一第一章第三節第一課時《函數單調性與最大(小)值》。我將從教材分析;教學目標分析;教法、學法;教學過程;教學評價五個方面來陳述我對本節課的設計方案。懇請在座的專家評委批評指正。
一、教材分析
1、教材的地位和作用
(1)本節課主要對函數單調性的學習;
(2)它是在學習函數概念的基礎上進行學習的,同時又為基本初等函數的學習奠定了基礎,所以他在教材中起著承前啟后的重要作用;(可以看看這一課題的前后章節來寫)
(3)它是歷年高考的熱點、難點問題
2、教材重、難點
重點:函數單調性的定義
難點:函數單調性的證明
重難點突破:在學生已有知識的基礎上,通過認真觀察思考,并通過小組合作探究的辦法來實現重難點突破。(這個必須要有)
二、教學目標
知識目標:
(1)函數單調性的定義
(2)函數單調性的證明
能力目標:培養學生全面分析、抽象和概括的能力,以及了解由簡單到復雜,由特殊到一般的化歸思想
情感目標:培養學生勇于探索的精神和善于合作的意識
三、教法學法分析
1、教法分析
“教必有法而教無定法”,只有方法得當才會有效。新課程標準之處教師是教學的組織者、引導者、合作者,在教學過程要充分調動學生的積極性、主動性。本著這一原則,在教學過程中我主要采用以下教學方法:開放式探究法、啟發式引導法、小組合作討論法、反饋式評價法
2、學法分析
“授人以魚,不如授人以漁”,最有價值的知識是關于方法的.只是。學生作為教學活動的主題,在學習過程中的參與狀態和參與度是影響教學效果最重要的因素。在學法選擇上,我主要采用:自主探究法、觀察發現法、合作交流法、歸納總結法。
四、教學過程
1、以舊引新,導入新知
通過課前小研究讓學生自行繪制出一次函數f(x)=x和二次函數f(x)=x^2的圖像,并觀察函數圖象的特點,總結歸納。通過課上小組討論歸納,引導學生發現,教師總結:一次函數f(x)=x的圖像在定義域是直線上升的,而二次函數f(x)=x^2的圖像是一個曲線,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當添加手勢,這樣看起來更自然)
2、創設問題,探索新知
緊接著提出問題,你能用二次函數f(x)=x^2表達式來描述函數在(-∞,0)的圖像?教師總結,并板書,揭示函數單調性的定義,并注意強調可以利用作差法來判斷這個函數的單調性。
讓學生模仿剛才的表述法來描述二次函數f(x)=x^2在(0,+∞)的圖像,并找個別同學起來作答,規范學生的數學用語。
讓學生自主學習函數單調區間的定義,為接下來例題學習打好基礎。
3、例題講解,學以致用
例1主要是對函數單調區間的鞏固運用,通過觀察函數定義在(—5,5)的圖像來找出函數的單調區間。這一例題主要以學生個別回答為主,學生回答之后通過互評來糾正答案,檢查學生對函數單調區間的掌握。強調單調區間一般寫成半開半閉的形式
例題講解之后可讓學生自行完成課后練習4,以學生集體回答的方式檢驗學生的學習效果。
例2是將函數單調性運用到其他領域,通過函數單調性來證明物理學的波意爾定理。這是歷年高考的熱點跟難點問題,這一例題要采用教師板演的方式,來對例題進行證明,以規范總結證明步驟。一設二差三化簡四比較,注意要把f(x1)-f(x2)化簡成和差積商的形式,再比較與0的大小。
學生在熟悉證明步驟之后,做課后練習3,并以小組為單位找部分同學上臺板演,其他同學在下面自行完成,并通過自評、互評檢查證明步驟。
4、歸納小結
本節課我們主要學習了函數單調性的定義及證明過程,并在教學過程中注重培養學生勇于探索的精神和善于合作的意識。
5、作業布置
為了讓學生學習不同的數學,我將采用分層布置作業的方式:一組 習題1、3A組1、2、3 ,二組 習題1、3A組2、3、B組1、2
6、板書設計
我力求簡潔明了地概括本節課的學習要點,讓學生一目了然。
五、教學評價
本節課是在學生已有知識的基礎上學習的,在教學過程中通過自主探究、合作交流,充分調動學生的積極性跟主動性,及時吸收反饋信息,并通過學生的自評、互評,讓內部動機和外界刺激協調作用,促進其數學素養不斷提高。
以上就是我對本節課的設計,謝謝!
高一數學說課稿 14
一、 教材分析
是在學習了基礎上進一步研究 并為后面學習 做準備,在整個高中數學中起著承上啟下的作用,因此本節內容十分重要。
根據新課標要求和學生實際水平我制定以下教學目標
1、 知識能力目標:使學生理解掌握
2、 過程方法目標:通過觀察歸納抽象概括使學生構建領悟 數學思想,培養 能力
3、 情感態度價值觀目標:通過學習體驗數學的科學價值和應用價值,培養善于
觀察勇于思考的學習習慣和嚴謹 的科學態度
根據教學目標、本節特點和學生實際情況本節重點是 ,由于學生對 缺少感性認識,所以本節課的重點是
二、教法學法
根據教師主導地位和學生主體地位相統一的規律,我采用引導發現法為本節課的主要教學方法并借助多媒體為輔助手段。在教師點撥下,學生自主探索、合作交流來尋求解決問題的.方法。
三、 教學過程
1、由……引入:
把教學內容轉化為具有潛在意義的問題,讓學生產生強烈的問題意識,使學生的整個學習過程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過程。 在實際情況下進行學習,可以使學生利用已有知識與經驗,同化和索引出當前學習的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問題情境中。
對于本題:……
2、由實例得出本課新的知識點是:……
3、講解例題。
我們在講解例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規律進行概括,有利于發展學生的思維能力。在題中:
4、能力訓練。
課后練習……
使學生能鞏固羨慕自覺運用所學知識與解題思想方法。
5、總結結論,強化認識。
知識性內容的小結,可把課堂教學傳授的知識盡快化為學生的素質;數學思想方法的小結,可使學生更深刻地理解數學思想方法在解題中的地位和應用,并且逐漸培養學生的良好的個性品質目標。
6、變式延伸,進行重構。
重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯、累積、加工,從而達到舉一反三的效果。
四、教學評價
學生學習的學習結果評價當然重要,但是更重要的是學生學習的過程評價,教師應當高度重視學生學習過程中的參與度、自信心、團隊精神合作意識數學能力的發現,以及學習的興趣和成就感。
高一數學說課稿 15
首先,我對本節教材進行一些分析:
一、教材分析(說教材):
1、教材所處的地位和作用:
本節內容在全書和章節中的作用是:這為過渡到本節的學習起著鋪墊作用。本節內容是在 中,占據 的地位。以及為其他學科和今后的學習打下基礎。
2、教育教學目標:
根據上述教材分析,考慮到學生已有的認知結構心理特征,制定如下教學目標:
(1)知識目標:
(2)能力目標:通過教學初步培養學生分析問題,解決實際問題,讀圖分析,收集處理信息,團結協作,語言表達能力以及通過師生雙邊活動,初步培養學生運用知識的能力,培養學生加強理論聯系實際的能力,
(3)情感目標:通過 的教學引導學生從現實的生活經歷與體驗出發,激發學生學習興趣。
3、重點,難點以及確定依據:
本著課程標準,在吃透教材基礎上,我確立了如下的教學重點、難點
重點: 通過 突出重點
難點: 通過 突破難點
關鍵:
下面,為了講清重難上點,使學生能達到本節課設定的目標,再從教法和學法上談談:
二、教學策略(說教法)
1、 教學手段:
如何突出重點,突破難點,從而實現教學目標。在教學過程中擬計劃進行如下操作:教學方法。基于本節課的特點: 應著重采用 的教學方法。
2、教學方法及其理論依據:堅持“以學生為主體,以教師為主導”的原則,根據學生的心理發展規律,采用學生參與程度高的學導式討論教學法。在學生看書,討論的基礎上,在老師啟發引導下,運用問題解決式教法,師生交談法,圖像信號法,問答式,課堂討論法。在采用問答法時,特別注重不同難度的問題,提問不同層次的學生,面向全體,使基礎差的學生也能有表現機會,培養其自信心,激發其學習熱情。有效的開發各層次學生的潛在智能,力求使學生能在原有的基礎上得到發展。同時通過課堂練習和課后作業,啟發學生從書本知識回到社會實踐。提供給學生與其生活和周圍世界密切相關的數學知識,學習基礎性的知識和技能,在教學中積極培養學生學習興趣和動機,明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發來自學生主體的最有力的動力。
3、學情分析:(說學法)
我們常說:“現代的文盲不是不識字的人,而是沒有掌握學習方法的人”,因而在教學中要特別重視學法的指導。
(1) 學生特點分析:中學生心理學研究指出,高中階段是(查同中學生心發展情況)抓住學
生特點,積極采用形象生動,形式多樣的`教學方法和學生廣泛的積極主動參與的學習方式,定能激發學生興趣,有效地培養學生能力,促進學生個性發展。生理上表少年好動,注意力易分散
(2) 知識障礙上:知識掌握上,學生原有的知識 ,許多學生出現知識遺忘,所以應全面系統的去講述;學生學習本節課的知識障礙, 知識 學生不易理解,所以教學中老師應予以簡單明白,深入淺出的分析。
(3) 動機和興趣上:明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發來自學生主體的最有力的動力
最后我來具體談談這一堂課的教學過程:
4、教學程序及設想:
(1)由 引入:把教學內容轉化為具有潛在意義的問題,讓學生產生強烈的問題意識,使學生的整個學習過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實際情況下學習可以使學生利用已有的知識與經驗,同化和索引出當肖學習的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問題情境中。
(2)由實例得出本課新的知識點
(3)講解例題。在講例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規律進行概括,有利于學生的思維能力。
(4)能力訓練。課后練習使學生能鞏固羨慕自覺運用所學知識與解題思想方法。
(5)總結結論,強化認識。知識性的內容小結,可把課堂教學傳授的知識盡快化為學生的素質,數學思想方法的小結,可使學生更深刻地理解數學思想方法在解題中的地位和應用,并且逐步培養學生良好的個性品質目標。
(6)變式延伸,進行重構,重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯,累積,加工,從而達到舉一反三的效果。
(7)板書
(8)布置作業。 針對學生素質的差異進行分層訓練,既使學生掌握基礎知識,又使學有余力的學生有所提高,
教學程序:
課堂結構:復習提問,導入講授課,課堂練習,鞏固新課,布置作業等五部分
高一數學說課稿 16
一、教材分析
1、教材內容
本節課是蘇教版第二章《函數概念和基本初等函數Ⅰ》§2.1.3函數簡單性質的第一課時,該課時主要學習增函數、減函數的定義,以及應用定義解決一些簡單問題。
2、教材所處地位、作用
函數的性質是研究函數的基石,函數的單調性是首先研究的一個性質。通過對本節課的學習,讓學生領會函數單調性的概念、掌握證明函數單調性的步驟,并能運用單調性知識解決一些簡單的實際問題。通過上述活動,加深對函數本質的認識。函數的單調性既是學生學過的函數概念的延續和拓展,又是后續研究指數函數、對數函數、三角函數的單調性的基礎。此外在比較數的大小、函數的定性分析以及相關的數學綜合問題中也有廣泛的應用,它是整個高中數學中起著承上啟下作用的核心知識之一。從方法論的角度分析,本節教學過程中還滲透了探索發現、數形結合、歸納轉化等數學思想方法。
3、教學目標
(1)知識與技能:使學生理解函數單調性的概念,掌握判別函數單調性
的方法;
(2)過程與方法:從實際生活問題出發,引導學生自主探索函數單調性的概念,應用圖象和單調性的定義解決函數單調性問題,讓學生領會數形結合的數學思想方法,培養學生發現問題、分析問題、解決問題的能力。
(3)情感態度價值觀:讓學生體驗數學的科學功能、符號功能和工具功能,培養學生直覺觀察、探索發現、科學論證的良好的數學思維品質。
4、重點與難點
教學重點:
(1)函數單調性的概念;
(2)運用函數單調性的定義判斷一些函數的單調性。
教學難點:
(1)函數單調性的知識形成;
(2)利用函數圖象、單調性的定義判斷和證明函數的單調性。
二、教法分析與學法指導
本節課是一節較為抽象的數學概念課,因此,教法上要注意:
1、通過學生熟悉的實際生活問題引入課題,為概念學習創設情境,拉近數學與現實的距離,激發了學生求知欲,調動了學生主體參與的積極性。
2、在運用定義解題的過程中,緊扣定義中的關鍵語句,通過學生的主體參與,逐個完成對各個難點的突破,以獲得各類問題的.解決。
3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用。具體體現在設問、講評和規范書寫等方面,要教會學生清晰的思維、嚴謹的推理,并成功地完成書面表達。
4、采用投影儀、多媒體等現代教學手段,增大教學容量和直觀性。
在學法上:
1、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養學生發現問題、研究問題和解決問題的能力。
2、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的一個飛躍。
三、 教學過程
教學
環節
教 學 過 程
設 計 意 圖
問題
情境
(播放中央電視臺天氣預報的音樂)
滿足在定義域上的單調性的討論。
2、重視學生發現的過程。如:充分暴露學生將函數圖象(形)的特征轉化為函數值(數)的特征的思維過程;充分暴露在正、反兩個方面探討活動中,學生認知結構升華、發現的過程。
3、重視學生的動手實踐過程。通過對定義的解讀、鞏固,讓學生動手去實踐運用定義。
4、重視課堂問題的設計。通過對問題的設計,引導學生解決問題。
高一數學說課稿 17
一、教材分析
1、教材所處的地位和作用
奇偶性是人教A版第一章集合與函數概念的第3節函數的基本性質的第2小節。
奇偶性是函數的一條重要性質,教材從學生熟悉的及入手,從特殊到一般,從具體到抽象,注重信息技術的應用,比較系統地介紹了函數的奇偶性。從知識結構看,它既是函數概念的拓展和深化,又是后續研究指數函數、對數函數、冪函數、三角函數的基礎。所以,本節課起著承上啟下的重要作用。
2、學情分析
從學生的認知基礎看,學生在初中已經學習了軸對稱圖形和中心對稱圖形,并且有了必須數量的簡單函數的儲備。同時,剛剛學習了函數單調性,已經積累了研究函數的基本方法與初步經驗。
從學生的思維發展看,高一學生思維能力正在由形象經驗型向抽象理論型轉變,能夠用假設、推理來思考和解決問題、
3、教學目標
基于以上對教材和學生的分析,以及新課標理念,我設計了這樣的教學目標:
【知識與技能】
1)能確定一些簡單函數的奇偶性。
2)能運用函數奇偶性的代數特征和幾何意義解決一些簡單的問題。
【過程與方法】
經歷奇偶性概念的構成過程,提高觀察抽象能力以及從特殊到一般的歸納概括能力。
【情感、態度與價值觀】
經過自主探索,體會數形結合的思想,感受數學的對稱美。
從課堂反應看,基本上到達了預期效果。
4、教學重點和難點
重點:函數奇偶性的概念和幾何意義。
幾年的教學實踐證明,雖然函數奇偶性這一節知識點并不是很難理解,但知識點掌握不全面的學生容易出現下頭的錯誤。他們往往流于表面形式,只根據奇偶性的定義檢驗成立即可,而忽視了研究函數定義域的問題。所以,在介紹奇、偶函數的定義時,必須要揭示定義的隱含條件,從正反兩方面講清定義的內涵和外延。所以,我把函數的奇偶性概念設計為本節課的重點。在這個問題上我除了注意概念的講解,還特意安排了一道例題,來加強本節課重點問題的講解。
難點:奇偶性概念的數學化提煉過程。
由于,學生看待問題還是靜止的、片面的,抽象概括能力比較薄弱,這對建構奇偶性的概念造成了必須的困難。所以我把奇偶性概念的數學化提煉過程設計為本節課的難點。
二、教法與學法分析
1、教法
根據本節教材資料和編排特點,為了更有效地突出重點,突破難點,按照學生的認知規律,遵循教師為主導,學生為主體,訓練為主線的指導思想,采用以引導發現法為主,直觀演示法、類比法為輔。教學中,精心設計一個又一個帶有啟發性和思考性的`問題,創設問題情景,誘導學生思考,使學生始終處于主動探索問題的積極狀態,從而培養思維能力。從課堂反應看,基本上到達了預期效果。
2、學法
讓學生在觀察一歸納一檢驗一應用的學習過程中,自主參與知識的發生、發展、構成的過程,從而使學生掌握知識。
三、教學過程
具體的教學過程是師生互動交流的過程,共分六個環節:設疑導入、觀圖激趣;指導觀察、構成概念;學生探索、領會定義;知識應用,鞏固提高;總結反饋;分層作業,學以致用。下頭我對這六個環節進行說明。
(一)設疑導入、觀圖激趣
由于本節資料相對獨立,專題性較強,所以我采用了開門見山導入方式,直接點明要學的資料,使學生的思維迅速定向,到達開始就明確目標突出重點的效果。
用多媒體展示一組圖片,使學生感受到生活中的對稱美。再讓學生觀察幾個特殊函數圖象。經過讓學生觀察圖片導入新課,既激發了學生濃厚的學習興趣,又為學習新知識作好鋪墊。
(二)指導觀察、構成概念
在這一環節中共設計了2個探究活動。
探究1、2數學中對稱的形式也很多,這節課我們就以函數和=︱x︱以及和為例展開探究。這個探究主要是經過學生的自主探究來實現的,由于有圖片的鋪墊,絕大多數學生很快就說出函數圖象關于Y軸(原點)對稱。之后學生填表,從數值角度研究圖象的這種特征,體此刻自變量與函數值之間有何規律引導學生先把它們具體化,再用數學符號表示。借助課件演示(令比較得出等式,再令,得到)讓學生發現兩個函數的對稱性反應到函數值上具有的特性,然后經過解析式給出嚴格證明,進一步說明這個特性對定義域內任意一個都成立。最終給出偶函數(奇函數)定義(板書)。
在這個過程中,學生把對圖形規律的感性認識,轉化成數量的規律性,從而上升到了理性認識,切實經歷了一次從特殊歸納出一般的過程體驗。
(三)學生探索、領會定義
探究3下列函數圖象具有奇偶性嗎?
設計意圖:深化對奇偶性概念的理解。強調:函數具有奇偶性的前提條件是——定義域關于原點對稱。(突破了本節課的難點)
(四)知識應用,鞏固提高
在這一環節我設計了4道題
例1確定下列函數的奇偶性
選例1的第(1)及(3)小題板書來示范解題步驟,其他小題讓學生在下頭完成。
例1設計意圖是歸納出確定奇偶性的步驟:
(1)先求定義域,看是否關于原點對稱;
(2)再確定f(-x)=-f(x)還是f(-x)=f(x)。
例2確定下列函數的奇偶性:
例3確定下列函數的奇偶性:
例2、3設計意圖是探究一個函數奇偶性的可能情景有幾種類型?
例4(1)確定函數的奇偶性。
(2)如圖給出函數圖象的一部分,你能根據函數的奇偶性畫出它在y軸左邊的圖象嗎?
例4設計意圖加強函數奇偶性的幾何意義的應用。
在這個過程中,我重點關注了學生的推理過程的表述。經過這些問題的解決,學生對函數的奇偶性認識、理解和應用都能提升很大一個高度,到達當堂消化吸收的效果。
(五)總結反饋
在以上課堂實錄中充分展示了教法、學法中的互動模式,問題貫穿于探究過程的始終,切實體現了啟發式、問題式教學法的特色。
在本節課的最終對知識點進行了簡單回顧,并引導學生總結出本節課應積累的解題經驗。知識在于積累,而學習數學更在于知識的應用經驗的積累。所以提高知識的應用能力、增強錯誤的預見能力是提高數學綜合能力的很重要的策略。
(六)分層作業,學以致用
必做題:課本第36頁練習第1-2題。
選做題:課本第39頁習題1、3A組第6題。
思考題:課本第39頁習題1、3B組第3題。
設計意圖:面向全體學生,注重個人差異,加強作業的針對性,對學生進行分層作業,既使學生掌握基礎知識,又使學有余力的學生有所提高,進一步到達不一樣的人在數學上得到不一樣的發展。
高一數學說課稿 18
一、教材分析
本節知識是必修五第一章《解三角形》的第一節資料,與初中學習的三角形的邊和角的基本關系有密切的聯系與判定三角形的全等也有密切聯系,在日常生活和工業生產中也時常有解三角形的問題,并且解三角形和三角函數聯系在高考當中也時常考一些解答題。所以,正弦定理和余弦定理的知識十分重要。
根據上述教材資料分析,研究到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:
認知目標:在創設的問題情境中,引導學生發現正弦定理的資料,推證正弦定理及簡單運用正弦定理與三角形的內角和定理解斜三角形的兩類問題。
能力目標:引導學生經過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養學生的創新意識和觀察與邏輯思維能力,能體會用向量作為數形結合的工具,將幾何問題轉化為代數問題。
情感目標:面向全體學生,創造平等的教學氛圍,經過學生之間、師生之間的交流、合作和評價,調動學生的主動性和積極性,給學生成功的體驗,激發學生學習的興趣。
教學重點:正弦定理的資料,正弦定理的.證明及基本應用。
教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時確定解的個數。
二、教法
根據教材的資料和編排的特點,為是更有效地突出重點,空破難點,以學業生的發展為本,遵照學生的認識規律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想,采用探究式課堂教學模式,即在教學過程中,在教師的啟發引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發現”為基本探究資料,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。突破重點的手段:抓住學生情感的興奮點,激發他們的興趣,鼓勵學生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進。另外,抓知識選擇的切入點,從學生原有的認知水平和所需的知識特點入手,教師在學生主體下給以適當的提示和指導。突破難點的方法:抓住學生的能力線聯系方法與技能使學生較易證明正弦定理,另外經過例題和練習來突破難點
三、學法:
指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、團體等多種解難釋疑的嘗試活動,將自我所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結合,體現學生的主體地位,增強學生由特殊到一般的數學思維能力,構成了實事求是的科學態度,增強了鍥而不舍的求學精神。
四、教學過程
第一:創設情景,大概用2分鐘
第二:實踐探究,構成概念,大約用25分鐘
第三:應用概念,拓展反思,大約用13分鐘
(一)創設情境,布疑激趣
“興趣是最好的教師”,如果一節課有個好的開頭,那就意味著成功了一半,本節課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不明白AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發學生幫忙別人的熱情和學習的興趣,從而進入今日的學習課題。
(二)探尋特例,提出猜想
1、激發學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發現正弦定理。
2、那結論對任意三角形都適用嗎?指導學生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。
3、讓學生總結實驗結果,得出猜想:
在三角形中,角與所對的邊滿足關系
這為下一步證明樹立信心,不斷的使學生對結論的認識從感性逐步上升到理性。
(三)邏輯推理,證明猜想
1、強調將猜想轉化為定理,需要嚴格的理論證明。
2、鼓勵學生經過作高轉化為熟悉的直角三角形進行證明。
3、提示學生思考哪些知識能把長度和三角函數聯系起來,繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學思想。
4、思考是否還有其他的方法來證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來證明
(四)歸納總結,簡單應用
1、讓學生用文字敘述正弦定理,引導學生發現定理具有對稱和諧美,提升對數學美的享受。
2、正弦定理的資料,討論能夠解決哪幾類有關三角形的問題。
3、運用正弦定理求解本節課引入的三角形零件邊長的問題。自我參與實際問題的解決,能激發學生知識后用于實際的價值觀。
(五)講解例題,鞏固定理
1、例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。
例1簡單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。
2、例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。
例2較難,使學生明確,利用正弦定理求角有兩種可能。要求學生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學生。
(六)課堂練習,提高鞏固
1、在△ABC中,已知下列條件,解三角形。
(1)A=45°,C=30°,c=10cm
(2)A=60°,B=45°,c=20cm
2、在△ABC中,已知下列條件,解三角形。
(1)a=20cm,b=11cm,B=30°
(2)c=54cm,b=39cm,C=115°
學生板演,教師巡視,及時發現問題,并解答。
(七)小結反思,提高認識
經過以上的研究過程,同學們主要學到了那些知識和方法?你對此有何體會?
1、用向量證明了正弦定理,體現了數形結合的數學思想。
2、它表述了三角形的邊與對角的正弦值的關系。
3、定理證明分別從直角、銳角、鈍角出發,運用分類討論的思想。
(從實際問題出發,經過猜想、實驗、歸納等思維方法,最終得到了推導出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅僅收獲著結論,并且整個探索過程我們也掌握了研究問題的一般方法。在強調研究性學習方法,注重學生的主體地位,調動學生積極性,使數學教學成為數學活動的教學。)
(八)任務后延,自主探究
如果已知一個三角形的兩邊及其夾角,要求第三邊,怎樣辦?發現正弦定理不適用了,那么自然過渡到下一節資料,余弦定理。布置作業,預習下一節資料。
高一數學說課稿 19
一、教材分析
1.教材中的地位及作用
本節課是學生在已掌握雙曲線的定義及標準方程之后,在此基礎上,反過來利用雙曲線的標準方程研究其幾何性質。它是教學大綱要求學生必須掌握的內容,也是高考的一個考點,是深入研究雙曲線,靈活運用雙曲線的定義、方程、性質解題的基礎,更能使學生理解、體會解析幾何這門學科的研究方法,培養學生的解析幾何觀念,提高學生的數學素質。
2.教學目標的確定及依據
平面解析幾何研究的主要問題之一就是:通過方程,研究平面曲線的性質。教學參考書中明確要求:學生要掌握圓錐曲線的性質,初步掌握根據曲線的方程,研究曲線的幾何性質的方法和步驟。根據這些教學原則和要求,以及學生的學習現狀,我制定了本節課的教學目標。
(1)知識目標:①使學生能運用雙曲線的標準方程討論雙曲線的范圍、對稱性、頂點、離心率、漸近線等幾何性質;
②掌握雙曲線標準方程中
的幾何意義,理解雙曲線的漸近線的概念及證明;
③能運用雙曲線的幾何性質解決雙曲線的一些基本問題。
(2)能力目標:①在與橢圓的性質的類比中獲得雙曲線的性質,培養學生的觀察能力,想象能力,數形結合能力,分析、歸納能力和邏輯推理能力,以及類比的學習方法;
②使學生進一步掌握利用方程研究曲線性質的基本方法,加深對直角坐標系中曲線與方程的概念的理解。
(3)德育目標:培養學生對待知識的科學態度和探索精神,而且能夠運用運動的,變化的觀點分析理解事物。
3.重點、難點的確定及依據
對圓錐曲線來說,漸近線是雙曲線特有的性質,而學生對漸近線的發現與證明方法接受、理解和掌握有一定的困難。因此,在教學過程中我把漸近線的發現作為重點,充分暴露思維過程,培養學生的創造性思維,通過誘導、分析,巧妙地應用極限思想導出了雙曲線的漸近線方程。這樣處理將數學思想滲透于其中,學生也易接受。因此,我把漸近線的證明作為本節課的難點,根據本節的教學內容和教學大綱以及高考的要求,結合學生現有的實際水平和認知能力,我把漸近線和離心率這兩個性質作為本節課的重點。
4.教學方法
這節課內容是通過雙曲線方程推導、研究雙曲線的性質,本節內容類似于“橢圓的簡單的幾何性質”,教學中可以與其類比講解,讓學生自己進行探究,得到類似的結論。在教學中,學生自己能得到的結論應該讓學生自己得到,凡是難度不大,經過學習學生自己能解決的問題,應該讓學生自己解決,這樣有利于調動學生學習的積極性,激發他們的學習積極性,同時也有利于學習建立信心,使他們的主動性得到充分發揮,從中提高學生的'思維能力和解決問題的能力。
漸近線是雙曲線特有的性質,我們常利用它作出雙曲線的草圖,而學生對漸近線的發現與證明方法接受、理解和掌握有一定的困難。因此,在教學過程中著重培養學生的創造性思維,通過誘導、分析,從已有知識出發,層層設(釋)疑,激活已知,啟迪思維,調動學生自身探索的內驅力,進一步清晰概念(或圖形)特征,培養思維的深刻性。
例題的選備,可將此題作一題多變(變條件,變結論),訓練學生一題多解,開拓其解題思路,使他們在做題中總結規律、發展思維、提高知識的應用能力和發現問題、解決問題能力。
二、教學程序
(一).設計思路
(二).教學流程
1.復習引入
我們已經學習過橢圓的標準方程和雙曲線的標準方程,以及橢圓的簡單的幾何性質,請同學們來回顧這些知識點,對學習的舊知識加以復習鞏固,同時為新知識的學習做準備,利用多媒體工具的先進性,結合圖像來演示。
2.觀察、類比
這節課內容是通過雙曲線方程推導、研究雙曲線的性質,本節內容類似于“橢圓的簡單的幾何性質”,教學中可以與其類比講解,讓學生自己進行探究,首先觀察雙曲線的形狀,試著按照橢圓的幾何性質,歸納總結出雙曲線的幾何性質。一般學生能用類似于推導橢圓的幾何性質的方法得出雙曲線的范圍、對稱性、頂點、離心率,對知識的理解不能浮于表面只會看圖,也要會從方程的角度來解釋,抓住方程的本質。用多媒體演示,加強學生對雙曲線的簡單幾何性質范圍、對稱性、頂點(實軸、虛軸)、離心率(不深入的講解)的鞏固。之后,比較雙曲線的這四個性質和橢圓的性質有何聯系及區別,這樣可以加強新舊知識的聯系,借助于類比方法,引起學生學習的興趣,激發求知欲。
3.雙曲線的漸近線的發現、證明
(1)發現
由橢圓的幾何性質,我們能較準確地畫出橢圓的圖形。那么,由雙曲線的幾何性質,能否較準確地畫出雙曲線
的圖形為引例,讓學生動筆實踐,通過列表描點,就能把雙曲線的頂點及附近的點較準確地畫出來,但雙曲線向遠處如何伸展就不是很清楚。從而說明想要準確的畫出雙曲線的圖形只有那四個性質是不行的。
從學生曾經學習過的反比例函數入手,而且可以比較精確的畫出反比例函數
的圖像,它的圖像是雙曲線,當雙曲線伸向遠處時,它與x、y軸無限接近,此時x、y軸是的漸近線,為后面引出漸近線的概念埋下伏筆。從而讓學生猜想雙曲線有何特征?有沒有漸近線?由于雙曲線的對稱性,我們只須研究它的圖形在第一象限的情況即可。在研究雙曲線的范圍時,由雙曲線的標準方程,可解出,當x無限增大時,y也隨之增大,不容易發現它們之間的微妙關系。但是如果將式子變形為,我們就會發現:當x無限增大,逐漸減小、無限接近于0,而就逐漸增大、無限接近于1();若將變形為,即說明此時雙曲線在第一象限,當x無限增大時,其上的點與坐標原點之間連線的斜率比1小,但與斜率為1的直線無限接近,且此點永遠在直線的下方。其它象限向遠處無限伸展的變化趨勢就可以利用對稱性得到,從而可知雙曲線的圖形在遠處與直線無限接近,此時我們就稱直線叫做雙曲線的漸近線。這樣從已有知識出發,層層設(釋)疑,激活已知,啟迪思維,調動學生自身探索的內驅力,進一步清晰概念(或圖形)特征,培養思維的深刻性。
利用由特殊到一般的規律,就可以引導學生探尋雙曲線
(a>0,b>0)的漸近線,讓學生同樣利用類比的方法,將其變形為,由于雙曲線的對稱性,我們可以只研究第一象限向遠處的變化趨勢,繼續變形為,可發現當x無限增大時,逐漸減小、無限接近于0,逐漸增大、無限接近于,即說明對于雙曲線在第一象限遠處的點與坐標原點之間連線的斜率比小,與斜率為的直線無限接近,且此點永遠在直線下方。其它象限向遠處無限伸展的變化趨勢可以利用對稱性得到,從而可知雙曲線(a>0,b>0)的圖形在遠處與直線無限接近,直線叫做雙曲線(a>0,b>0)的漸近線。我就是這樣將漸近線的發現作為重點,充分暴露思維過程,培養學生的創造性思維,通過誘導、分析,巧妙地應用極限思想導出了雙曲線的漸近線方程。這樣處理將數學思想滲透于其中,學生也易接受。
(2)證明
如何證明直線
是雙曲線(a>0,b>0)的漸近線呢?
啟發思考①:首先,逐步接近,轉換成什么樣的數學語言?(x→∞,d→0)
啟發思考②:顯然有四處逐步接近,是否每一處都進行證明?
啟發思考③:鎖定第一象限后,具體地怎樣利用x表示d
(工具是什么:點到直線的距離公式)
啟發思考④:讓學生設點,而d的表達式較復雜,能否將問題進行轉化?
分析:要證明直線
是雙曲線(a>0,b>0)的漸近線,即要證明隨著x的增大,直線和曲線越來越靠攏。也即要證曲線上的點到直線的距離
|MQ|越來越短,因此把問題轉化為計算|MQ|。但因|MQ|不好直接求得,因此又可以把問題轉化為求|MN|。
啟發思考⑤:這樣證明后,還須交代什么?
(在其他象限,同理可證,或由對稱性可知有相似情況)
引導學生層層深入的進行探究,從而更深刻的理解雙曲線的漸近線的發現及證明過程。
(3)深化
再來研究實軸在y軸上的雙曲線
(a>0,b>0)的漸近線方程就會變得容易很多,此時可利用類比的方法或者利用對稱性得到焦點在y軸上的雙曲線的漸近線方程即為。
這樣,我們就完滿地解決了畫雙曲線遠處趨向問題,從而可比較精確的畫出雙曲線。但是如果仔細觀察漸近線實質就是雙曲線過實軸端點、虛軸端點,作平行與坐標軸的直線
所成的矩形的兩條對角線,數形結合,來加強對雙曲線的漸近線的理解。
4.離心率的幾何意義
橢圓的離心率反映橢圓的扁平程度,雙曲線離心率有何幾何意義呢?不難得到:
,這是剛剛學生在類比橢圓的幾何性質時就可以得到的簡單結論。通過對離心率的研究,同樣也可以使學生進一步加深對漸近線的理解。
由等式
,可得:,不難發現:e越小(越接近于1),就越接近于0,雙曲線開口越小;e越大,就越大,雙曲線開口越大。所以,雙曲線的離心率反映的是雙曲線的開口大小。通過對這些性質的探究,就可以更好的理解雙曲線圖形與這些基本量之間的關系,更加準確的作出雙曲線的圖形。
5.例題分析
為突出本節內容,使學生盡快掌握剛才所學的知識。我選配了這樣的例題:
例1.求雙曲線9x2-16y2=144的實半軸長和虛半軸長、頂點和焦點坐標、漸近線方程、離心率。選題目的在于拿到一個雙曲線的方程之后若不是標準式,要先將所給的雙曲線方程化為標準方程,后根據標準方程分別求出有關量。本題求漸近線的方程的方法:(1)直接根據漸近線方程寫出;(2)利用雙曲線的圖形中的矩形框架的對角線得到。加強對于雙曲線的漸近線的應用和理解。
變1:求雙曲線9y2-16x2=144的實半軸長和虛半軸長、頂點和焦點坐標、漸近線方程、離心率。選題目的:和上題相同先將所給的雙曲線方程化為標準方程,后根據標準方程分別求出有關量;但求漸近線時可直接求出,也可以利用對稱性來求解。
關鍵在于對比:雙曲線的形狀不變,但在坐標系中的位置改變,它的那些性質改變,那些性質不變?試歸納雙曲線的幾何性質。(小結列表)
變2:已知雙曲線的漸近線方程是
,且經過點(,3),求雙曲線的標準方程。
選題目的
:在已知雙曲線的漸近線的前提下,如何利用已知信息求解雙曲線的方程。方法1:分焦點在x軸,焦點在y軸分別求解;方法2:確定點所在的區域,定方程的形式,然后求a、b。深化知識,加強應用,使知識系統化。
例題的選備,可將此題作一題多變(變條件,變結論),訓練學生一題多解,開拓其解題思路,使他們在做題中總結規律、發展思維、提高知識的應用能力和發現問題、解決問題能力。
6.課堂練習
課本P113練習1.2,讓學生自己練習,熟悉并運用雙曲線的幾何性質解題,加強應用性。
7.課堂小結
(1)通過本節學習,要求學生熟悉并掌握雙曲線的幾何性質,尤其是雙曲線的漸近線方程及其“漸近”性質的證明,并能簡單應用雙曲線的幾何性質;
(2)雙曲線的幾何性質總結(學生填表歸納)。
8.課后作業
課本P113習題
思考:雙曲線與其漸近線的方程之間有何內在的變化規律?
以上就是我對于《雙曲線的簡單幾何性質》的教學設計,希望老師們給與批評與指正!我會不斷努力,力爭開拓創新,不斷進步。
高一數學說課稿 20
一、本節課內容的數學本質
本節課的主要任務是探究二分法基本原理,給出用二分法求方程近似解的基本步驟,使學生學會借助計算器用二分法求給定精確度的方程的近似解。通過探究讓學生體驗從特殊到一般的認識過程,滲透逐步逼近和無限逼近思想(極限思想),體會“近似是普遍的、精確則是特殊的”辯證唯物主義觀點。引導學生用聯系的觀點理解有關內容,通過求方程的近似解感受函數、方程、不等式以及算法等內容的有機結合,使學生體會知識之間的聯系。
所以本節課的本質是讓學生體會函數與方程的思想、近似的思想、逼近的思想和初步感受程序化地處理問題的算法思想。
二、本節課內容的地位、作用
“二分法”的理論依據是“函數零點的存在性(定理)”,本節課是上節學習內容《方程的根與函數的零點》的自然延伸;是數學必修3算法教學的一個前奏和準備;同時滲透數形結合思想、近似思想、逼近思想和算法思想等。
三、學生情況分析
學生已初步理解了函數圖象與方程的根之間的關系,具備一定的用數形結合思想解決問題的能力,這為理解函數零點附近的函數值符號提供了知識準備。但學生僅是比較熟悉一元二次方程解與函數零點的關系,對于高次方程、超越方程與對應函數零點之間的聯系的認識比較模糊,計算器的使用不夠熟練,這些都給學生學習本節內容造成一定困難。
四、教學目標定位
根據教材內容和學生的實際情況,本節課的教學目標設定如下:
通過具體實例理解二分法的概念及其適用條件,了解二分法是求方程近似解的.一種方法,會用二分法求某些具體方程的近似解,從中體會函數與方程之間的聯系,體會程序化解決問題的思想。
借助計算器用二分法求方程的近似解,讓學生充分體驗近似的思想、逼近的思想和程序化地處理問題的思想及其重要作用,并為下一步學習算法做知識準備。
通過探究、展示、交流,養成良好的學習品質,增強合作意識。
通過具體問題體會逼近過程,感受精確與近似的相對統一。
五、教學診斷分析
“二分法”的思想方法簡便而又應用廣泛,所需的數學知識較少,算法流程比較簡潔,便于編寫計算機程序;利用計算器和多媒體輔助教學,直觀明了;學生在生活中也有相關體驗,所以易于被學生理解和掌握。 但“二分法”不能用于求方程偶次重根的近似解,精確度概念不易理解。
六、教學方法和特點
本節課采用的是問題驅動、啟發探究的教學方法。
通過分組合作、互動探究、搭建平臺、分散難點的學習指導方法把問題逐步推進、拾級而上,并輔以多媒體教學手段,使學生自主探究二分法的原理。
本節課特點主要有以下幾方面:
1、以問題驅動教學,激發學生的求知欲,體現了以學生為主的教學理念。
2、注重與現實生活中案例相結合,讓學生體會數學來源于現實生活又可以解決現實生活中的問題。
以李詠主持的幸運52猜商品價格來創設情境,不僅激發學生學習興趣,學生也在猜測的過程中體會二分法思想。
3、注重學生參與知識的形成過程,使他們“聽”有所思,“學”有所獲。
本節課中的每一個問題都是在師生交流中產生,在學生合作探究中解決,使學生經歷了完整的學習過程,培養合作交流意識。
4、恰當地利用現代信息技術,幫助學生揭示數學本質。
本節課中利用計算器進行了多次計算,逐步縮小實數解所在范圍,精確度的確定就顯得非常自然,突破了教學上的難點,提高了探究活動的有效性。整個課件都以PowerPoint為制作平臺,演示Excel
程序求方程的近似解,界畫活潑,充分體現了信息技術與數學課程有機整合。
七、預期效果分析
以方程的根與函數的零點知識作基礎,通過對求方程近似解的探究討論,使學生主動參與數學實踐活動;采用多媒體技術,大容量信息的呈現和生動形象的演示,激發學生學習興趣、激活學生思維,掌握二分法的本質,完成教學目標。
另外盡管使用了科學計算器,但求一個方程的近似解也是很費時的,學生容易出現計算錯誤和產生急躁情緒;況且問題探究式教學跟學生的學習程度有很大關系,各小組的探究時間存在差異,教師要適時指導。
高一數學說課稿 21
一、背景分析
1、學習任務分析
本節課是必修1第1章第2節的內容,是函數這一章的起始課,它上承集合,下引性質,與方程、不等式、數列、三角函數、解析幾何、導數等內容聯系密切,是學好后繼知識的基礎和工具,所以本節課在數學教學中的地位和作用是至關重要的。
2、學情分析
學生在初中已經學習了函數的概念,初步具備了學習函數概念的基本能力,但函數的概念從初中的變量學說到高中階段的對應說很抽象,不易理解。
另外,通過對集合的學習,學生基本適應了有效教學的.課堂模式,初步具備了小組合作、自主探究的學習能力。
基于以上的分析,我認為本節課的教學重點為:函數的概念以及構成函數的三要素;
教學難點為:函數概念的形成及理解。
二、教學目標設計
根據《課程標準》對本節課的學習要求,結合本班學生的情況,故而確立本節課的教學目標。
1、知識與技能(方面)
通過豐富的實例,讓學生
①了解函數是非空數集到非空數集的一個對應;
②了解構成函數的三要素;
③理解函數概念的本質;
④理解f(x)與f(a)(a為常數)的區別與聯系;
⑤會求一些簡單函數的定義域。
2、過程與方法(方面)
在教學過程中,結合生活中的實例,通過師生互動、生生互動培養學生分析推理、歸納總結和表達問題的能力,在函數概念的構建過程中體會類比、歸納、猜想等數學思想方法。
3、情感、態度與價值觀(方面)
讓學生充分體驗函數概念的形成過程,參與函數定義域的求解過程以及函數的求值過程,使學生感受到數學的抽象美與簡潔美。
三、課堂結構設計
為充分調動學生的學習積極性,變被動學習為主動愉快的探究,我使用有效教學的課堂模式,課前學生通過結構化預習,完成問題生成單,課中采用師生互動、小組討論、學生展寫、展講例題,教師點評的方式完成問題解決單,課后完成問題拓展單,課堂結構包含:
復習舊知,引出課題(約2分鐘)
創設情境,形成概念(約5分鐘)
剖析概念(約12分鐘)
例題分析,鞏固知識
小組討論,展寫例題(約8分鐘)
小組展講,教師點評(約10分鐘)
總結反思,知識升華(約2分鐘)
(最后)布置作業,拓展練習
四、教學媒體設計
教學中利用投影與黑板相結合的形式,利用投影直觀、生動地展示實例,并能增加課堂容量;利用黑板列舉本節重要內容,使學生對所學內容有一整體認識,并讓學生利用黑板展寫、展講例題,有問題及時發現及時解決。
【高一數學說課稿】相關文章:
高一數學說課稿01-14
高一數學說課稿12-28
高一數學優秀說課稿12-30
人教版高一數學優秀說課稿02-17
高一數學交集并集說課稿07-06
高一數學說課稿(15篇)12-28
高一數學說課稿15篇12-28
高一數學優秀說課稿(3篇)01-06
高一數學優秀說課稿3篇01-06
高一數學說課稿精選15篇12-28