- 相關(guān)推薦
高一數(shù)學(xué)說課稿精選15篇
作為一位杰出的教職工,編寫說課稿是必不可少的,說課稿有助于學(xué)生理解并掌握系統(tǒng)的知識。快來參考說課稿是怎么寫的吧!下面是小編整理的高一數(shù)學(xué)說課稿,希望能夠幫助到大家。
高一數(shù)學(xué)說課稿1
一、教材分析:
集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。
二、目標(biāo)分析:
教學(xué)重點、難點
重點:集合的含義與表示方法。
難點:表示法的恰當(dāng)選擇。
教學(xué)目標(biāo)
1、知識與技能
(1)通過實例,了解集合的含義,體會元素與集合的屬于關(guān)系;
(2)知道常用數(shù)集及其專用記號;
(3)了解集合中元素的確定性。互異性。無序性;
(4)會用集合語言表示有關(guān)數(shù)學(xué)對象;
2、過程與方法
(1)讓學(xué)生經(jīng)歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義。
(2)讓學(xué)生歸納整理本節(jié)所學(xué)知識。
3、情感、態(tài)度與價值觀
使學(xué)生感受到學(xué)習(xí)集合的必要性,增強學(xué)習(xí)的積極性。
三、教法分析
1、教學(xué)方法:學(xué)生通過閱讀教材,自主學(xué)習(xí)。思考。交流。討論和概括,從而更好地完成本節(jié)課的教學(xué)目標(biāo)。
2、教學(xué)手段:在教學(xué)中使用投影儀來輔助教學(xué)。
各位領(lǐng)導(dǎo)和教師,大家好!我說課的資料是蘇教版必修1第1章第3節(jié)第一課時《交集、并集》,下頭我想談?wù)勎覍@節(jié)課的教學(xué)構(gòu)想:
一、教材分析:
與傳統(tǒng)的教材處理不一樣,本章在學(xué)生經(jīng)過觀察具體集合得到集合的補集的概念后,上升到數(shù)學(xué)內(nèi)部,將"補"理解為集合間的一種"運算"、在此基礎(chǔ)上,經(jīng)過實例,使學(xué)生感受和掌握集合之間的另外兩種運算—交和并。設(shè)計的思路從具體到理論,再回到具體,螺旋上升。集合作為一種數(shù)學(xué)語言,在后續(xù)的學(xué)習(xí)中是一種重要的工具。所以,在教學(xué)過程中要針對具體問題,引導(dǎo)學(xué)生恰當(dāng)使用自然語言、圖形語言和集合語言來描述相應(yīng)的數(shù)學(xué)資料。有了集合的語言,能夠更清晰的表達我們的思想。所以,集合是整個數(shù)學(xué)的基礎(chǔ),在以后的學(xué)習(xí)中有著極為廣泛的應(yīng)用。
基于以上的分析制定以下的教學(xué)目標(biāo)
二、教學(xué)目標(biāo):
1、理解交集與并集的概念;掌握有關(guān)集合的術(shù)語和符號,并會用它們正確表示一些簡單的集合。能用Venn圖表示集合之間的關(guān)系;掌握兩個集合的交集、并集的求法。
2、經(jīng)過對交集、并集概念的學(xué)習(xí),培養(yǎng)學(xué)生觀察、比較、分析、概括的本事,使學(xué)生認識由具體到抽象的思維過程。
3、經(jīng)過對集合符號語言的學(xué)習(xí),培養(yǎng)學(xué)生符號表達本事,培養(yǎng)嚴謹?shù)膶W(xué)習(xí)作風(fēng),養(yǎng)成良好的學(xué)習(xí)習(xí)慣。
三、教學(xué)重點、難點:
針對以上的分析我把教學(xué)重點放在交集與并集的概念,一些集合的交集和并集的求法上。而把如何引導(dǎo)學(xué)生經(jīng)過觀察、比較、分析、概括出交集與并集的概念作為本節(jié)的教學(xué)難點。
四、教法、學(xué)法:
針對我們師范學(xué)校學(xué)生的特點,我本著低起點、高要求、循序漸進,充分調(diào)動學(xué)生學(xué)習(xí)進取性的原則,采用"五環(huán)節(jié)教學(xué)法"、同時利用多媒體輔助教學(xué)。
高一數(shù)學(xué)說課稿2
一、說教材
(1)說教材的內(nèi)容和地位
本次說課的內(nèi)容是人教版高一數(shù)學(xué)必修一第一單元第一節(jié)《集合》(第一課時)。集合這一課里,首先從初中代數(shù)與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結(jié)合實例對集合的概念作了說明。然后,介紹了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知識安排在高中數(shù)學(xué)的最開始,是因為在高中數(shù)學(xué)中,這些知識與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握以及使用數(shù)學(xué)語言的基礎(chǔ)。從知識結(jié)構(gòu)上來說是為了引入函數(shù)的定義。因此在高中數(shù)學(xué)的模塊中,集合就顯得格外的舉足輕重了。
(2)說教學(xué)目標(biāo)
根據(jù)教材結(jié)構(gòu)和內(nèi)容以及教材地位和作用,考慮到學(xué)生已有的認知結(jié)構(gòu)與心理特征,依據(jù)新課標(biāo)制定如下教學(xué)目標(biāo):
1.知識與技能:掌握集合的基本概念及表示方法。了解“屬于”關(guān)系的意義,掌握集合元素的特征。
2.過程與方法:通過情景設(shè)置提出問題,揭示課題,培養(yǎng)學(xué)生主動探究新知的習(xí)慣,并通過“自主、合作與探究”實現(xiàn)“一切以學(xué)生為中心”的理念。
3.情感態(tài)度與價值觀:感受數(shù)學(xué)的人文價值,提高學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣,由集合的學(xué)習(xí)感受數(shù)學(xué)的簡潔美與和諧統(tǒng)一美。同時通過自主探究領(lǐng)略獲取新知識的喜悅。
(3)說教學(xué)重點和難點
依據(jù)課程標(biāo)準(zhǔn)和學(xué)生實際,我確定本課的教學(xué)重點為教學(xué)重點:集合的基本概念及元素特征。
教學(xué)難點:掌握集合元素的三個特征,體會元素與集合的屬于關(guān)系。
二、說教法和學(xué)法
接下來則是說教法、學(xué)法。
教法與學(xué)法是互相聯(lián)系和統(tǒng)一的,不能孤立去研究。什么樣的教法必帶來相應(yīng)的學(xué)法,以遵循啟發(fā)性原則為出發(fā)點,就本節(jié)課而言,我采用“生活實例與數(shù)學(xué)實例”相結(jié)合,“師生互動與課堂布白”相輔助的方法。通過不同層次的練習(xí)體驗,憑借有趣、實用的教學(xué)手段,突出重點,突破難點。然而,學(xué)生是學(xué)習(xí)的主人,以學(xué)生為主體,創(chuàng)造條件讓學(xué)生參與探究活動,不僅提高了學(xué)生探究能力,更讓學(xué)生獲得學(xué)習(xí)的技能和激發(fā)學(xué)生的學(xué)習(xí)興趣。因此,本次活動采用的學(xué)法有自主探究、觀察發(fā)現(xiàn)、合作交流、歸納總結(jié)等。
總之,不管采取什么教法和學(xué)法,每節(jié)課都應(yīng)不斷研究學(xué)生的學(xué)習(xí)心理機制,不斷優(yōu)化教師本身的教學(xué)行為,自始至終以學(xué)生為主體,為學(xué)生創(chuàng)造和諧的課堂氛圍。
三、說教學(xué)過程
接著我來說一下最重要的部分,本節(jié)課的教學(xué)過程:
這節(jié)課的流程主要分為六個環(huán)節(jié):創(chuàng)設(shè)情境(引入目標(biāo))、自主探究(感知目標(biāo))、討論辨析(理解目標(biāo))、變式訓(xùn)練(鞏固目標(biāo))、課堂小結(jié)(自我評價)、作業(yè)布置(反饋矯正)。
上述六個環(huán)節(jié)由淺入深,層層遞進. 多層次、多角度地加深對概念的理解. 提高學(xué)生學(xué)習(xí)的興趣,以達到良好的教學(xué)效果。
第一環(huán)節(jié):創(chuàng)設(shè)問題情境,引入目標(biāo)
課堂開始我將提出兩個問題:
問題1:班級有20名男生,16名女生,問班級一共多少人?
問題2:某次運動會上,班級有20人參加田賽,16人參加徑賽,問一共多少人參加比賽?
這里我會讓學(xué)生以小組討論的形式進行討論問題,事實上小組合作的形式是本節(jié)課主要形式。
待學(xué)生討論完畢以后我將作歸納總結(jié):問題2已無法用學(xué)過的知識加以解釋,這是與集合有關(guān)的問題,因此需用集合的語言加以描述(同時我將板書標(biāo)題:集合)。
安排這一過程的意圖是為了從實際問題引入,讓學(xué)生了解數(shù)學(xué)來源于實際。從而激發(fā)學(xué)生參與課堂學(xué)習(xí)的欲望。
很自然地進入到第二環(huán)節(jié):自主探究讓學(xué)生閱讀教材,并思考下列問題:
(1)有那些概念?
(2)有那些符號?
(3)集合中元素的特性是什么?
安排這一過程的意圖是給學(xué)生提供活動空間,讓主體主動建構(gòu)自己的知識結(jié)構(gòu)。培養(yǎng)學(xué)生的探究能力。
讓學(xué)生自主探究之后將進入第三環(huán)節(jié):討論辨析
小組合作探究(1)
讓學(xué)生觀察下列實例
(1)1~20以內(nèi)的所有質(zhì)數(shù);
(2)所有的正方形;
(3)到直線 的距離等于定長 的所有的點;
(4)方程 的所有實數(shù)根;
通過以上實例,辨析概念:
(1)集合含義:一般地,某些指定的對象集在一起就成為一個集合,也簡稱集。而
集合中的每個對象叫做這個集合的元素。
(2)表示方法:集合通常用大括號{ }或大寫的拉丁字母A,B,C?表示,而元素用小
寫的拉丁字母a,b,c?表示。
小組合作探究(2)——集合元素的特征
問題3:任意一組對象是否都能組成一個集合?集合中的元素有什么特征?
問題4:某單位所有的“帥哥”能否構(gòu)成一個集合?由此說明什么?
集合中的元素必須是確定的
問題5:在一個給定的集合中能否有相同的元素?由此說明什么?
集合中的元素是不重復(fù)出現(xiàn)的
問題6:咱班的全體同學(xué)組成一個集合,調(diào)整座位后這個集合有沒有變化?由此說明什么?
集合中的元素是沒有順序的
我如此設(shè)計的意圖是因為:問題是數(shù)學(xué)的心臟,感受問題是學(xué)習(xí)數(shù)學(xué)的根本動力。
小組合作探究(3)——元素與集合的關(guān)系
問題7:設(shè)集合A表示“1~20以內(nèi)的所有質(zhì)數(shù)”,那么3,4,5,6這四個元素哪些在集合A中?哪些不在集合A中?
問題8:如果元素a是集合A中的元素,我們?nèi)绾斡脭?shù)學(xué)化的語言表達?
a屬于集合A,記作a∈A
問題9:如果元素a不是集合A中的元素,我們?nèi)绾斡脭?shù)學(xué)化的語言表達?
a不屬于集合A,記作a?A
小組合作探究(4)——常用數(shù)集及其表示方法
問題10:自然數(shù)集,正整數(shù)集,整數(shù)集,有理數(shù)集,實數(shù)集等一些常用數(shù)集,分別用什么符號表示?
自然數(shù)集(非負整數(shù)集):記作 N
正整數(shù)集:記作 N或 N? 整數(shù)集:記作 Z
有理數(shù)集:記作 Q 實數(shù)集:記作 R
設(shè)計意圖:由于不同的人對同一問題有不同的體驗和理解。讓學(xué)生通過合作交流相互得到啟發(fā),從而不斷完善自己的知識結(jié)構(gòu)。
第四環(huán)節(jié):理論遷移 變式訓(xùn)練
1.下列指定的對象,能構(gòu)成一個集合的是
① 很小的數(shù)
② 不超過30的非負實數(shù)
③ 直角坐標(biāo)平面內(nèi)橫坐標(biāo)與縱坐標(biāo)相等的點
④ π的近似值
⑤ 所有無理數(shù)
A、②③④⑤ B、①②③⑤ C、②③⑤ D、②③④
第五環(huán)節(jié):課堂小結(jié),自我評價
1.這節(jié)課學(xué)習(xí)的主要內(nèi)容是什么?
2.這節(jié)課主要解釋了什么數(shù)學(xué)思想?
設(shè)計意圖:引導(dǎo)學(xué)生對所學(xué)知識、思想方法進行小結(jié),形成知識系統(tǒng).教師用激勵性的語言加一點評,讓學(xué)生的思想敞亮的發(fā)揮出來。
第六環(huán)節(jié):作業(yè)布置,反饋矯正
1.必做題 課本習(xí)題1.1—1、2、3。
2.選做題 已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求實數(shù)a 的值。 設(shè)計意圖:充分考慮到學(xué)生的差異性,讓所有學(xué)生都有成功的情感體驗。
四、板書設(shè)計
好的板書就像一份微型教案,為了讓學(xué)生直觀易懂的看筆記,板書應(yīng)設(shè)計得有條理性、概括性、指導(dǎo)性,所以我設(shè)計的板書如下:
集 合
1.集合的概念 4.范例研究
2.集合元素的特征
(學(xué)生板演)
3.常見集合的表示?
以上,我是從教材、教法和學(xué)法、教學(xué)過程和板書設(shè)計四個方面對本課進行了說明,我的說課到此結(jié)束,謝謝各位評委老師,并請各位評委老師指正!
高一數(shù)學(xué)說課稿3
一、指數(shù)函數(shù)及其性質(zhì)教學(xué)設(shè)計說明
新課標(biāo)指出:學(xué)生是教學(xué)的主體,教師的教應(yīng)本著從學(xué)生的認知規(guī)律出發(fā),以學(xué)生活動為主線,在原有知識的基礎(chǔ)上,建構(gòu)新的知識體系。我將以此為基礎(chǔ)對教學(xué)設(shè)計加以說明。
數(shù)學(xué)本質(zhì):
探究指數(shù)函數(shù)的性質(zhì)從“數(shù)”的角度用解析式不易解決,轉(zhuǎn)而由“形”——圖象突破,體會數(shù)形結(jié)合的思想。通過分類討論,通過研究兩個具體的指數(shù)函數(shù)引導(dǎo)學(xué)生通過觀察圖象發(fā)現(xiàn)指數(shù)函數(shù)的圖象規(guī)律,從而歸納指數(shù)函數(shù)的一般性質(zhì),經(jīng)歷一個由特殊到一般的探究過程。引導(dǎo)學(xué)生探究出指數(shù)函數(shù)的一般性質(zhì),從而對指數(shù)函數(shù)進行較為系統(tǒng)的研究。
二、教材的地位和作用:
本節(jié)課是全日制普通高中標(biāo)準(zhǔn)實驗教課書《數(shù)學(xué)必修1》第二章2.1.2節(jié)的內(nèi)容,研究指數(shù)函數(shù)的定義,圖像及性質(zhì)。是在學(xué)生已經(jīng)較系統(tǒng)地學(xué)習(xí)了函數(shù)的概念,將指數(shù)擴充到實數(shù)范圍之后學(xué)習(xí)的一個重要的基本初等函數(shù)。它既是對函數(shù)的概念進一步深化,又是今后學(xué)習(xí)對數(shù)函數(shù)與冪函數(shù)的基礎(chǔ)。因此,在教材中占有極其重要的地位,起著承上啟下的作用。
此外,《指數(shù)函數(shù)》的知識與我們的日常生產(chǎn)、生活和科學(xué)研究有著緊密的聯(lián)系,尤其體現(xiàn)在細胞_、貸款利率的計算和考古中的年代測算等方面,因此學(xué)習(xí)這部分知識還有著廣泛的現(xiàn)實意義。
三、教學(xué)目標(biāo)分析:
根據(jù)本節(jié)課的內(nèi)容特點以及學(xué)生對抽象的指數(shù)函數(shù)及其圖象缺乏感性認識的實際情況,確定在理解指數(shù)函數(shù)定義的基礎(chǔ)上掌握指數(shù)函數(shù)的圖象和由圖象得出的性質(zhì)為本節(jié)教學(xué)重點。本節(jié)課的難點是指數(shù)函數(shù)圖像和性質(zhì)的發(fā)現(xiàn)過程。
為此,特制定以下的教學(xué)目標(biāo):
1)知識目標(biāo)(直接性目標(biāo)):理解指數(shù)函數(shù)的定義,掌握指數(shù)函數(shù)的圖像、性質(zhì)及其簡單應(yīng)用、能根據(jù)單調(diào)性解決基本的比較大小的問題.
2)能力目標(biāo)(發(fā)展性目標(biāo)):通過教學(xué)培養(yǎng)學(xué)生觀察、分析、歸納等思維能力,體會數(shù)形結(jié)合和分類討論思想,增強學(xué)生識圖用圖的能力。
3)情感目標(biāo)(可持續(xù)性目標(biāo)):通過學(xué)習(xí),使學(xué)生學(xué)會認識事物的特殊性與一般性之間的關(guān)系,用聯(lián)系的觀點看問題。體會研究函數(shù)由特殊到一般再到特殊的研究學(xué)習(xí)過程;體驗研究函數(shù)的一般思維方法。引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)中的對稱美、簡潔美。善于探索的思維品質(zhì)。
教學(xué)問題診斷分析:
學(xué)生知識儲備:
通過初中學(xué)段的學(xué)習(xí)和高中對集合、函數(shù)等知識的系統(tǒng)學(xué)習(xí),學(xué)生對函數(shù)和圖象的關(guān)系已經(jīng)構(gòu)建了一定的認知結(jié)構(gòu)。
學(xué)情分析:
由于我所教學(xué)生數(shù)學(xué)的理解能力、運算能力、思維能力等方面有一部分是較好的,但整體是水平參差不齊。高一這個年齡段的學(xué)生思維活躍,求知欲強,能夠勇于表現(xiàn)自我,展現(xiàn)自我,愿意合作交流。但在思維習(xí)慣上與方法上還有待教師引導(dǎo)。
可能存在的問題與策略:
問題1.
學(xué)生能夠從具體的問題中抽象出數(shù)學(xué)的模型但對于指數(shù)函數(shù)的定義中底數(shù)的取值范圍和指數(shù)函數(shù)形式的判斷有困難。
教學(xué)策略:
類比著二次函數(shù),對于底數(shù)的范圍的取值,引導(dǎo)學(xué)生回顧指數(shù)冪中當(dāng)指數(shù)為全體實數(shù)時,底數(shù)怎樣取值才能一直有意義,以問題的形式引發(fā)學(xué)生思考底數(shù)能否取負數(shù)、正數(shù)、0、1?從而得到底數(shù)的范圍。
學(xué)生對:1)y=-3_2)y=31/_3)y=31+_
4)y=(-3)_5)y=3-_=(1/3)_
幾種形式的函數(shù)的判斷,加強對指數(shù)函數(shù)形解析式的理解和辨別:
問題2.
學(xué)生初中階段就接觸過函數(shù),但對于學(xué)生而言,指數(shù)函數(shù)是完全陌生的函數(shù)。學(xué)生列表時,數(shù)值的選取上可能會少取或是數(shù)值的選取不能照顧到全體實數(shù),畫圖時,又容易受以前學(xué)過的函數(shù)圖像的影響,把指數(shù)函數(shù)的圖像畫成已經(jīng)學(xué)過的圖像的形象。
教學(xué)策略:在列表格時自變量的取值以及如何畫出指數(shù)函數(shù)的圖像的問題上,采用啟發(fā)式教學(xué)法,類比學(xué)過的函數(shù)圖形的畫法,引導(dǎo)學(xué)生畫圖,畫完圖后,又利用實物投影儀展示一位同學(xué)的圖像,由全班同學(xué)進行提出意見糾錯來補充畫圖的不足。
另外為了讓學(xué)生增強識圖、用圖的能力可以讓學(xué)生根據(jù)觀察到的指數(shù)函數(shù)的圖像,來畫出底數(shù)不同取值范圍內(nèi)的的草圖,以便于探究性質(zhì)。
問題3.
函數(shù)定義給出后,底數(shù)a如何分類討論的情況學(xué)生難以做到,如果處理不好,這對于指數(shù)函數(shù)質(zhì)探究時的分類討論有很重要的意義。
教學(xué)策略:在定義中對于底數(shù)的取值范圍的討論后,得出了底數(shù)a>0且a≠1。此時,在數(shù)軸上把a的范圍表示出來,這樣學(xué)生很容易從數(shù)軸上的區(qū)間圖看出底數(shù)分為兩類情況進行討論。這樣為指數(shù)函數(shù)質(zhì)探究時的分類討論埋下了伏筆。
問題4.
通過兩個具體的特殊的指數(shù)函數(shù)圖像,來探究得出指數(shù)函數(shù)的性質(zhì)。如何使學(xué)生能經(jīng)歷從特殊到一般的過程,這種由特殊到一般再到特殊的思想的領(lǐng)會,如何完成?
教學(xué)策略:教師利用幾何畫板分別畫出了底數(shù)大于1的和底數(shù)在0到1之間的若干個不同的指數(shù)函數(shù)的圖像,展現(xiàn)不同的底數(shù)的變化時圖像的不同情況,從而讓學(xué)生經(jīng)歷由特殊到一般的過程。
問題5.
指數(shù)函數(shù)是學(xué)生在學(xué)習(xí)了函數(shù)基本概念和性質(zhì)以后接觸到得第一個具體函數(shù),學(xué)生可能找不到研究問題的方法和方向.
教學(xué)策略:在這部分的安排上,我更注意學(xué)生思維習(xí)慣的養(yǎng)成,即應(yīng)從哪些方面,哪些角度去探索一個具體函數(shù)。
問題6.
學(xué)生得到的性質(zhì)特點可能是雜亂的,如何梳理突出主要的性質(zhì)?
教學(xué)策略:在學(xué)生識圖、用圖、合作探究的過程后,利用兩個表格的填寫,讓學(xué)生感受由圖象特征來得到函數(shù)的性質(zhì)的過程。表格主要呈現(xiàn)五個方面的性質(zhì)與特點。
四、教法分析:
為充分貫徹新課程理念,使教學(xué)過_正成為學(xué)生學(xué)習(xí)過程,讓學(xué)生體驗數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程,本節(jié)課擬采用直觀教學(xué)法、啟發(fā)發(fā)現(xiàn)法、課堂討論法等教學(xué)方法。以多媒體演示為載體,啟發(fā)學(xué)生觀察思考,分析討論為主,教師適當(dāng)引導(dǎo)點撥,以動手操作、合作交流,自主探究的方式來讓學(xué)生始終處在教學(xué)活動的中心。
五、預(yù)期效果分析:
1、教學(xué)環(huán)節(jié)環(huán)環(huán)相扣,層層深入,并充分體現(xiàn)教師與學(xué)生的交流互動,在教師的整體調(diào)控下,學(xué)生通過動手操作,動眼觀察,動腦思考,親身經(jīng)歷了知識的生成和發(fā)展過程,使學(xué)生對知識的理解逐步深入。
2、簡單實例的引入,順利完成了知識的遷移,從得出指數(shù)函數(shù)的模型,符合學(xué)生認知規(guī)律的最近發(fā)展區(qū)。
3、而作業(yè)中完成指數(shù)函數(shù)性質(zhì)的探究報告,彌補課堂時間有限探究和展示的局限性,帶領(lǐng)學(xué)生進入對指數(shù)函數(shù)更進一步的思考和研究之中,從而達到知識在課堂以外的延伸。4、在整個教學(xué)過程中,由于學(xué)生是自覺主動地發(fā)現(xiàn)結(jié)果,對所學(xué)知識應(yīng)該能夠較快接受。因此,我認為可以達到預(yù)定的教學(xué)目標(biāo)。
高一數(shù)學(xué)說課稿4
一、教材分析
1、教材中的地位與作用:“2.1直線與方程”是蘇教版數(shù)學(xué)必修2的第二章的內(nèi)容,是解析幾何的開篇之作。而“2.1.1直線的斜率”這一節(jié)是這一章的第一節(jié),是用斜率與傾斜角來刻畫直線方向的,它學(xué)習(xí)的內(nèi)容是基礎(chǔ)的,學(xué)習(xí)方法是重要的。是為今后用代數(shù)的方法研究解析幾何問題的的學(xué)習(xí)奠定基礎(chǔ),起到了啟下的作用。
2、教學(xué)的重點與難點:根據(jù)課程標(biāo)準(zhǔn)的要求,本節(jié)教學(xué)的重點為:直線斜率的本質(zhì)認識與直線斜率的坐標(biāo)公式。因為過定點的直線的傾斜程度就是用直線的斜率來刻畫的,斜率的是通過直線上兩點的縱坐標(biāo)的差與橫坐標(biāo)的差的比來計算的,反映了用代數(shù)的方法來研究幾何問題的核心思想。教學(xué)的難點為:直線斜率、傾斜角的定義和本質(zhì)的理解、斜率與傾斜角之間的關(guān)系。因為傾斜角實際上是直線相對x軸的傾斜程度來反映直線的傾斜程度的,它與斜率一樣,都是刻畫直線的傾斜程度,但兩者的角度不同,所以存在一定的聯(lián)系,這一聯(lián)系正是教學(xué)的難點所在。
二、教學(xué)目標(biāo)的確定
由于“2.1.1直線的斜率”是“直線與方程”的第一課時,又是解析幾何的開始部分。從學(xué)生原有的認知上分析,確定教學(xué)的目標(biāo)為:
1、知識目標(biāo):
(1)理解直線的斜率,掌握過兩點的直線的斜率公式
(2)理解直線的傾斜角的定義,知道直線的傾斜角的范圍
(3)掌握直線的斜率與傾斜角之間的關(guān)系
(4)使學(xué)生初步感受直線的方向與直線的斜率之間的對應(yīng)關(guān)系,從而體會到要研究直線的方向的變化規(guī)律,只要研究直線的斜率的變化的規(guī)律
2、能力目標(biāo):培養(yǎng)學(xué)生的主動探究知識、合作交流的意識,觀測、探究、分析問題、解決問題的能力
3、情感目標(biāo):通過課堂教學(xué)培養(yǎng)學(xué)生的數(shù)行結(jié)合的美感與嚴謹治學(xué)的生活態(tài)度
三、教學(xué)與學(xué)法
1、學(xué)法指導(dǎo):學(xué)生原有對直線知識的掌握情況為:在坐標(biāo)系中能畫出直線的圖形,而高中則要求學(xué)生能用幾何量:斜率與傾斜角來刻畫直線的傾斜程度,能用代數(shù)的方法研究斜率的問題,所以在學(xué)法上要指導(dǎo)學(xué)生:觀測生活中的樓梯的坡度;探究坡度的大小與數(shù)學(xué)中的斜率有關(guān)系;領(lǐng)悟斜率的計算公式;理解斜率與傾斜角的關(guān)系。
2、教法指導(dǎo):引導(dǎo)學(xué)生學(xué)會觀測目標(biāo),點撥生活中的量與量關(guān)系的數(shù)學(xué)本質(zhì),合理、嚴格的定義直線的傾斜角。正確推倒斜率與傾斜角的關(guān)系式。
四、教學(xué)過程設(shè)計
1、問題情境,提出課題:從生活實例上樓梯出發(fā):有的樓梯陡一些,有的樓梯平一些。
問題1:這種“陡”與“平”可以用坡度來刻畫,即“高度”與“寬度”的比值大小來刻畫,那么直線的傾斜程度又如何來刻畫呢?是從學(xué)生的生活發(fā)展區(qū)出發(fā),調(diào)動學(xué)生的積極性。類比發(fā)現(xiàn)在直角坐標(biāo)系中直線的傾斜程度可以用縱坐標(biāo)的增量與橫坐標(biāo)的增量的比來刻畫。從而引出將要學(xué)習(xí)的課題――直線的斜率。這樣引入課題顯得比較自然,也符合學(xué)生的思維認知規(guī)律。
2、自主探究,形成概念:
問題2:刻畫直線的傾斜程度—斜率,那么用什么量來表示這種“坡度”呢?
在直線上任取兩點,,如果,那么直線PQ的斜率為(),同時提醒學(xué)生要注意:
(1)斜率公式與兩點的順序無關(guān),與所選擇的直線上兩點的位置無關(guān);
(2)它是一個比值,是一個定值;
(3)前提是,當(dāng)時,即與軸垂直的直線,它的斜率是不存在。
3、解決問題,理解概念
通過對例1的分析與講解目的是幫助學(xué)生理解經(jīng)過兩點的直線的斜率公式,使學(xué)生掌握直線斜率的符號與直線的方向之間的對應(yīng)關(guān)系。還可以進一步提出思考:(1)給出斜率,畫出符合條件的直線;(2)給出直線讓學(xué)生分析直線斜率的特征。對題目作進一步的探討。這樣有利于培養(yǎng)學(xué)生的發(fā)散思維,促使良好思維習(xí)慣的形成
例2是畫圖問題,使學(xué)生進一步理解斜率的幾何意義,在例2的畫圖過程中讓學(xué)生感受直線相對x軸的傾斜程度,應(yīng)該還與一個角有關(guān)系。從而引出直線傾斜角的概念
問3:如何定義直線的傾斜角呢?傾斜角概念得出后,教師總結(jié):(1)直線的傾斜角與斜率一樣,也是刻畫直線的傾斜程度的量,但直線的傾斜角側(cè)重與直觀形象,直線的斜率則側(cè)重與數(shù)量關(guān)系;(2)任何直線都有傾斜角,但不是任何直線都有斜率。
五、鞏固練習(xí),及時反饋
課本練習(xí)1、2、3、4。通過練習(xí)一方面可以加深學(xué)生對定義、公式的理解;另一方面也旨在了解學(xué)生對概念的掌握情況,以便調(diào)節(jié)后面的教學(xué)節(jié)奏。
六、回顧反思,形成系統(tǒng)
我是引導(dǎo)學(xué)生從知識內(nèi)容和思想方法兩個方面進行小結(jié)的。通過小結(jié)使學(xué)生對本節(jié)課的知識結(jié)構(gòu)有一個清晰的認識。在小結(jié)時不僅概括所學(xué)知識,而且還對所用到的數(shù)學(xué)方法和涉及的數(shù)學(xué)思想也進行歸納,這樣既可以使學(xué)生完成知識建構(gòu),又可以培養(yǎng)其能力。
七、作業(yè)布置
所布置的作業(yè)都是緊緊圍繞著“直線的斜率”的概念及運用。通過作業(yè)來反饋知識掌握效果,鞏固所學(xué)知識,強化基本技能的訓(xùn)練,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣和品質(zhì)。
八、關(guān)于評價
在授課過程中,我根據(jù)學(xué)生對課堂提問及例習(xí)題的解答情況,及時調(diào)節(jié)課堂節(jié)奏,“易”則可加快,“難”則應(yīng)放慢速度,并借用富有啟發(fā)性的、階梯性的提問對學(xué)生進行思維引導(dǎo)。
課后,我將通過批改作業(yè)以及與學(xué)生談話等方式,來了解學(xué)生對“直線的斜率”概念的掌握情況,檢查教學(xué)目的的實現(xiàn)程度。同時,對下一步教學(xué)工作作出必要的調(diào)整和改進。另外,通過對作業(yè)的評判和統(tǒng)計課堂練習(xí)完成情況,有助于學(xué)生認識自我,讓他們獲得成就感,從而增強其自信心,培養(yǎng)學(xué)生積極進取的學(xué)習(xí)態(tài)度。
高一數(shù)學(xué)說課稿5
各位領(lǐng)導(dǎo) 教師同仁:
我說課的內(nèi)容是正切函數(shù)的性質(zhì)和圖像。
教材理解分析
《1,4.3 正切函數(shù)的性質(zhì)與圖像》是人教社A版必修4第一章第4節(jié)的第3小節(jié)的內(nèi)容。是前面系統(tǒng)的學(xué)習(xí)了正弦與余弦函數(shù)的概念,圖像及其性質(zhì)以后滴內(nèi)容
學(xué)習(xí)目標(biāo)
1、掌握正切函數(shù)的性質(zhì)及其應(yīng)用
2、理解并掌握作正切函數(shù)圖象的方法;
3、體會類比、換元、數(shù)形結(jié)合等思想方法。
學(xué)情分析
由于我們文科平行班基礎(chǔ)不太好加之學(xué)習(xí)函數(shù)的圖像及性質(zhì)又是一個難點,自主學(xué)習(xí)必然會出現(xiàn)困難。加之教學(xué)時間緊,任務(wù)重,前面地學(xué)習(xí)也不是很好。
根據(jù)教材結(jié)構(gòu)和學(xué)情我對具體地教學(xué)過程和設(shè)計作如下說明:
在學(xué)法上大膽采用高效課堂模式,讓學(xué)生探究,大膽去掉非主線知識內(nèi)容,內(nèi)容程序盡量簡潔明了,一課一得,便于學(xué)生掌握。教學(xué)過程共有這樣幾個方面
一、復(fù)習(xí)引入
(1)畫出下列各角的正切線
(2)復(fù)習(xí)相關(guān)誘導(dǎo)公式
二、探究新知
探究一 正切函數(shù)的性質(zhì)
探究二 正切函數(shù)的圖像
三、新知運用
例1 求函數(shù)的定義域、周期和單調(diào)區(qū)間.
四、課堂練習(xí)
1、求函數(shù)y=tan3x的定義域,值域,單調(diào)增區(qū)間。
2、 觀察正切曲線,寫出滿足下列條件x的范圍:
(1) ; (2) ; (3)
五.小結(jié)與課后作業(yè)
高一數(shù)學(xué)說課稿6
一、教材分析
1、教材的地位與作用
模擬方法是北師大版必修3第三章概率第3節(jié),也是必修3最后一節(jié),本節(jié)內(nèi)容是在學(xué)習(xí)了古典概型的基礎(chǔ)上,用模擬方法估計一些用古典概型解決不了的實際問題的概率,使學(xué)生初步體會幾何概型的意義;而模擬試驗是培養(yǎng)學(xué)生動手能力、小組合作能力、和試驗分析能力的好素材。
2、教學(xué)重點與難點
教學(xué)重點:借助模擬方法來估計某些事件發(fā)生的概率;
幾何概型的概念及應(yīng)用
體會隨機模擬中的統(tǒng)計思想:用樣本估計總體。
教學(xué)難點:設(shè)計和操作一些模擬試驗,對從試驗中得出的數(shù)據(jù)進行統(tǒng)計、分析;
應(yīng)用隨機數(shù)解決各種實際問題。
二、教學(xué)目標(biāo):
1、知識目標(biāo):使學(xué)生了解模擬方法估計概率的實際應(yīng)用,初步體會幾何概型的意義;并能夠運用模擬方法估計概率。
2、能力目標(biāo):培養(yǎng)學(xué)生實踐能力、協(xié)調(diào)能力、創(chuàng)新意識和處理數(shù)據(jù)能力以及應(yīng)用數(shù)學(xué)意識。
3、情感目標(biāo):鼓勵學(xué)生動手試驗,探索、發(fā)現(xiàn)規(guī)律并解決實際問題,激發(fā)學(xué)生學(xué)習(xí)的興趣。
三、過程分析
1、創(chuàng)設(shè)良好的學(xué)習(xí)情境,激發(fā)學(xué)生學(xué)習(xí)的欲望
從學(xué)生的生活經(jīng)驗和已有知識背景出發(fā),提出用學(xué)過知識不能解決的問題:房間的紗窗破了一個小洞,隨機向紗窗投一粒小石子,估計小石子從小洞穿過的概率。能用古典概型解決嗎?為什么?從而引起認知矛盾,激發(fā)學(xué)生學(xué)習(xí)、探究的興趣。
2、以實驗和問題引導(dǎo)學(xué)習(xí)活動,使學(xué)生經(jīng)歷“數(shù)學(xué)化”、“再創(chuàng)造”的過程
通過兩個實驗:(1)取一個矩形,在面積為四分之一的部分畫上陰影,隨機地向矩形中撒一把豆子(我們數(shù)100粒),統(tǒng)計落在陰影內(nèi)的豆子數(shù)與落在矩形內(nèi)的總豆子數(shù),觀察它們有怎樣的比例關(guān)系?(2)反過來,取一個已知長和寬的矩形,隨機地向矩形中撒一把豆子,統(tǒng)計落在陰影內(nèi)的豆子數(shù)與落在矩形內(nèi)的總豆子數(shù),你能根據(jù)豆子數(shù)得到什么結(jié)論?
讓學(xué)生分組合作,利用課前準(zhǔn)備的材料進行試驗、討論、分析,使學(xué)生主動進入探究狀態(tài),充分調(diào)動學(xué)生學(xué)習(xí)積極性,使他們感受到探討數(shù)學(xué)問題的樂趣,培養(yǎng)學(xué)生與他人合作交流的能力以及團隊精神。根據(jù)各小組試驗結(jié)果,提出問題,引導(dǎo)學(xué)生進行猜想,得出結(jié)論:
使學(xué)生了解結(jié)論產(chǎn)生的背景,輕易地理解了這個結(jié)論,并培養(yǎng)學(xué)生數(shù)據(jù)分析能力、抽象概括能力。讓他們感覺到數(shù)學(xué)定理、結(jié)論其實離他們很近,增強學(xué)生學(xué)習(xí)的動力和信心。
3、類比遷移,注重數(shù)學(xué)與實際聯(lián)系,發(fā)展學(xué)生應(yīng)用意識和能力
(1)求不規(guī)則圖形面積
如圖,曲線y=-x2+1與x軸,y軸圍成區(qū)域A,
如何求陰影部分面積?
通過把不規(guī)則圖形放在規(guī)則的、
易求面積的圖形中,利用模擬方法
求不規(guī)則圖形面積,在解決問題時
學(xué)生提出了借助不同圖形,教師要
引導(dǎo)學(xué)生用最佳圖形。讓學(xué)生把不熟
悉的問題轉(zhuǎn)化為熟悉的問題情
境,引導(dǎo)學(xué)生利用已有知識解決新
的問題,培養(yǎng)學(xué)識知識應(yīng)用、類比遷移的能力。
本例通過介紹用計算機產(chǎn)生隨機數(shù)來模擬,使學(xué)生了解現(xiàn)代信息技術(shù)的應(yīng)用,了解另一種模擬方法。
(2)估計圓周率π的值
讓學(xué)生設(shè)計模擬試驗,估計圓周率π的值,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識,使學(xué)習(xí)過程成為學(xué)生的再創(chuàng)造過程。達到本課的目標(biāo),使學(xué)生了解模擬方法估計概率的實際應(yīng)用,能夠運用模擬方法估計概率。通過設(shè)計和操作模擬試驗,對得出數(shù)據(jù)進行統(tǒng)計、分析,解決本課難點。讓學(xué)生體驗數(shù)學(xué)的發(fā)現(xiàn)和創(chuàng)造過程,發(fā)展他們的創(chuàng)新意識。同時通過對介紹古代數(shù)學(xué)家祖沖之,對學(xué)生進行愛國主義教育,培養(yǎng)學(xué)生愛國情操。
(3)幾何概型概率計算方法
①通過問題:如果正方形面積不變,但形狀改變,所得比例發(fā)生變化嗎?
引出幾何概型的概念、特點和計算公式
把試驗的結(jié)論上升到理論,使學(xué)生的認識有一個從試驗到理論的升華,使學(xué)生掌握基本概念,并運用理論解決問題,使學(xué)生的認識有一個質(zhì)的飛躍,
②例:如圖,在墻上掛著一塊邊長為16cm的正方形木板,
上面畫了小、中、大三個同心圓,半徑分別為2cm、4cm、
6cm,某人站在3m處向此板投鏢,設(shè)投鏢擊中線上或沒有
投中木板時都不算,可重投。
問:(1)投中大圓內(nèi)的概率是多少?
(2)投中小圓和中圓形成的圓環(huán)的概率是多少?
配套習(xí)題是知識的直接運用,有助于學(xué)生鞏固新學(xué)的知識,使學(xué)生掌握基本知識和技能。
③通過介紹本章開篇中“蒲豐投針”問題,利用計算機動態(tài)顯示投針試驗,使學(xué)生對此試驗有初步了解,開闊學(xué)生視野,體現(xiàn)數(shù)學(xué)的文化價值,留給學(xué)生課后探究的空間。
4、通過實際問題:小明家的晚報在下午5:30~6:30之間的任何一個時間隨機地被送到,小明一家人在下午6:00~7:00之間的任何一個時間隨機地開始晚餐。(1)你認為晚報在晚餐開始之前被送到和在晚餐開始之后被送到哪一種可能性更大?(2)晚報在晚餐開始之前被送到的概率是多少?
引導(dǎo)學(xué)生利用轉(zhuǎn)盤設(shè)計試驗,并分組進行試驗,鼓勵學(xué)生自主探索與合作交流,培養(yǎng)學(xué)生創(chuàng)新意識,并使學(xué)生了解模擬形式的多樣化,并通過模擬進一步熟悉試驗的操作,提高動手能力和小組協(xié)調(diào)能力。通過問題拓展,介紹用理論解決的方法,激起學(xué)生再探究的欲望,留給學(xué)生課后思考的空間。
4、課堂小結(jié)
由學(xué)生總結(jié)本節(jié)課所學(xué)習(xí)的主要內(nèi)容,讓學(xué)生對所學(xué)內(nèi)容有全面、系統(tǒng)的認識。
四、教法、學(xué)法分析
本節(jié)課是在采用信息技術(shù)和數(shù)學(xué)知識整合的基礎(chǔ)上從生活實際中提煉數(shù)學(xué)素材,使學(xué)生在熟悉的背景下、在認知沖突中展開學(xué)習(xí),通過試驗活動的開展,使學(xué)生在試驗、探究活動中獲取原始數(shù)據(jù),進而通過數(shù)與形的類比,在老師的引導(dǎo)、啟發(fā)下感悟出模擬的數(shù)學(xué)結(jié)論,通過結(jié)論的運用提升為數(shù)學(xué)模型并加以應(yīng)用,它實現(xiàn)了學(xué)生在學(xué)習(xí)過程中對知識的探究、發(fā)現(xiàn)的創(chuàng)作經(jīng)歷,調(diào)動了學(xué)生學(xué)習(xí)的積極性和主動性,同學(xué)們在親身經(jīng)歷知識結(jié)論的探究中獲得了對數(shù)學(xué)價值的新認識。
五、評價分析
本課是使學(xué)生通過試驗掌握用模擬方法估計概率,主要是用分組合作試驗、探究方法研究數(shù)學(xué)知識,因此評價時更注重探究和解決問題的全過程,鼓勵學(xué)生的探索精神,引導(dǎo)學(xué)生對問題的正確分析與思考,關(guān)注學(xué)生提出問題、參與解決問題的全過程,關(guān)注學(xué)生的創(chuàng)新精神和實踐能力。
高一數(shù)學(xué)說課稿7
說課的內(nèi)容是《對數(shù)函數(shù)》,現(xiàn)就教材、教法、學(xué)法、教學(xué)程序、板書五個方面進行說明。懇請在座的各位專家、老師批評指正。
一、說教材
1、教材的地位、作用及編寫意圖
《對數(shù)函數(shù)》出現(xiàn)在職業(yè)高中數(shù)學(xué)第一冊第四章第八節(jié)。函數(shù)是高中數(shù)學(xué)的核心,對數(shù)函數(shù)是函數(shù)的重要分支,對數(shù)函數(shù)的知識在數(shù)學(xué)和其 他許多學(xué)科中有著廣泛的應(yīng)用;學(xué)生已經(jīng)學(xué)習(xí)了對數(shù)、反函數(shù)以及指數(shù)函數(shù)等內(nèi)容,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用;“對數(shù)函數(shù)”這節(jié)教材,指出對數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),反映了兩個變量的相互關(guān)系,蘊含了函數(shù)與方程的數(shù)學(xué)思想與數(shù)學(xué)方法,是以后數(shù)學(xué)學(xué)習(xí)中不可缺少的部分,也是高考的必考內(nèi)容。
2、教學(xué)目標(biāo)的確定及依據(jù)。
依據(jù)教學(xué)大綱和學(xué)生獲得知識、培養(yǎng)能力及思想教育等方面的要求:我制定了如下教育教學(xué)目標(biāo):
(1) 知識目標(biāo):理解對數(shù)函數(shù)的概念、掌握對數(shù)函數(shù)的圖象和性質(zhì)。
(2) 能力目標(biāo):培養(yǎng)學(xué)生自主學(xué)習(xí)、綜合歸納、數(shù)形結(jié)合的能力。
(3) 德育目標(biāo):培養(yǎng)學(xué)生對待知識的科學(xué)態(tài)度、勇于探索和創(chuàng)新的精神。
(4) 情感目標(biāo):在民主、和諧的教學(xué)氣氛中,促進師生的情感交流。
3、教學(xué)重點、難點及關(guān)鍵
重點:對數(shù)函數(shù)的概念、圖象和性質(zhì);
難點:利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì);
關(guān)鍵:抓住對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù)這一要領(lǐng)。
二、說教法
教學(xué)過程是教師和學(xué)生共同參與的過程,啟發(fā)學(xué)生自主性學(xué)習(xí),充分調(diào)動學(xué)生的積極性、主動性;有效地滲透數(shù)學(xué)思想方法,提高學(xué)生素質(zhì)。根據(jù)這樣的原則和所要完成的教學(xué)目標(biāo),并為激發(fā)學(xué)生的學(xué)習(xí)興趣,我采用如下的教學(xué)方法:
(1)啟發(fā)引導(dǎo)學(xué)生思考、分析、實驗、探索、歸納。
(2)采用“從特殊到一般”、“從具體到抽象”的方法。
(3)體現(xiàn)“對比聯(lián)系”、“數(shù)形結(jié)合”及“分類討論”的思想方法。
(4)多媒體演示法。
三、說學(xué)法
教給學(xué)生方法比教給學(xué)生知識更重要,本節(jié)課注重調(diào)動學(xué)生積極思考、主動探索,盡可能地增加學(xué)生參與教學(xué)活動的時間和空間,我進行了以下學(xué)法指導(dǎo):
(1)對照比較學(xué)習(xí)法:學(xué)習(xí)對數(shù)函數(shù),處處與指數(shù)函數(shù)相對照。
(2)探究式學(xué)習(xí)法:學(xué)生通過分析、探索、得出對數(shù)函數(shù)的定義。
(3)自主性學(xué)習(xí)法:通過實驗畫出函數(shù)圖象、觀察圖象自得其性質(zhì)。
(4)反饋練習(xí)法:檢驗知識的應(yīng)用情況,找出未掌握的內(nèi)容及其差距。
這樣可發(fā)揮學(xué)生的主觀能動性,有利于提高學(xué)生的各種能力。
四、說教學(xué)程序
1、復(fù)習(xí)導(dǎo)入
(1)復(fù)習(xí)提問:什么是對數(shù)?如何求反函數(shù)?指數(shù)函數(shù)的圖象和性質(zhì)如何?學(xué)生回答,并利用課件展示一下指數(shù)函數(shù)的圖象和性質(zhì)。
設(shè)計意圖:設(shè)計的提問既與本節(jié)內(nèi)容有密切關(guān)系,又有利于引入新課,為學(xué)生理解新知清除了障礙,有意識地培養(yǎng)學(xué)生分析問題的能力。
(2)導(dǎo)言:指數(shù)函數(shù)有沒有反函數(shù)?如果有,如何求指數(shù)函數(shù)的反函數(shù)?它的反函數(shù)是什么?
設(shè)計意圖:這樣的導(dǎo)言可激發(fā)學(xué)生求知欲,使學(xué)生渴望知道問題的答案。
2、認定目標(biāo)(出示教學(xué)目標(biāo))
3、導(dǎo)學(xué)達標(biāo)
按"教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線”的原則,安排師生互動活動.
(1)對數(shù)函數(shù)的概念
引導(dǎo)學(xué)生從對數(shù)式與指數(shù)式的關(guān)系及反函數(shù)的概念進行分析并推導(dǎo)出,指數(shù)函數(shù)有反函數(shù),并且y=ax(a>0且a≠1)的反函數(shù)是 y=logax,見課件。 把函數(shù)y=logax叫做對數(shù)函數(shù),其中a>0且a≠1。從而引出對數(shù)函數(shù)的概念,展示課件。
設(shè)計意圖:對數(shù)函數(shù)的概念比較抽象,利用已經(jīng)學(xué)過的知識逐步分析,這樣引出對數(shù)函數(shù)的概念過渡自然,學(xué)生易于接受。
因為對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),讓學(xué)生比較它們的定義域、值域、對應(yīng)法則及圖象間的關(guān)系,培養(yǎng)學(xué)生參與意識,通過比較充分體現(xiàn)指數(shù)函數(shù)及對數(shù)函數(shù)的內(nèi)在聯(lián)系。
(2)對數(shù)函數(shù)的圖象
提問:同指數(shù)函數(shù)一樣,在學(xué)習(xí)了函數(shù)的定義之后,我們要畫函數(shù)的圖象,應(yīng)如何畫對數(shù)函數(shù)的圖象呢?讓學(xué)生思考并回答,用描點法畫圖。教師肯定,我們每學(xué)習(xí)一種新的函數(shù)都可以根據(jù)函數(shù)的解析式,列表、描點畫圖。再考慮一下,我們還可以用什么方法畫出對數(shù)函數(shù)的圖象呢?
讓學(xué)生回答,畫出指數(shù)函數(shù)關(guān)于直線y=x對稱的圖象,就是對數(shù)函數(shù)的圖象。
教師總結(jié):我們畫對數(shù)函數(shù)的圖象,既可用描點法,也可用圖象變換法,下邊我們利用兩種方法畫對數(shù)函數(shù)的圖象。
方法一(描點法)首先列出x,y(y=log2x,y=log x)值的對應(yīng)表,因為對數(shù)函數(shù)的定義域為x>0,因此可取x= , , ,1,2,4,8,請計算對應(yīng)的y值,然后在坐標(biāo)系內(nèi)描點、畫出它們的圖象.
方法二(圖象變換法)因為對數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù), 圖象關(guān)于直線y=x對稱,所以只要畫出y=ax的圖象關(guān)于直線y=x對稱的曲線,就可以得到y(tǒng)=logax.的圖象。學(xué)生動手做實驗,先描出y=2x的圖象,畫出它關(guān)于直線y=x對稱的曲線,它就是y=log2x的圖象;類似的從y=( )x 的圖象畫出y=log x的圖象,再出示課件,教師加以解釋。
設(shè)計意圖:用這種對稱變換的方法畫函數(shù)的圖象,可以加深和鞏固學(xué)生對互為反函數(shù)的兩個函數(shù)之間的認識,便于將對數(shù)函數(shù)的圖象和性質(zhì)與指數(shù)函數(shù)的圖象和性質(zhì)對照,但使用描點法畫函數(shù)圖象更為方便,兩種方法可同時進行,分析畫法之后,可讓學(xué)生自由選擇畫法。
這樣可以充分調(diào)動學(xué)生自主學(xué)習(xí)的積極性。
(3)對數(shù)函數(shù)的性質(zhì)
在理解對數(shù)函數(shù)定義的基礎(chǔ)上,掌握對數(shù)函數(shù)的圖象和性質(zhì)是本節(jié)的重點,關(guān)鍵在于抓住對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù)這一要領(lǐng),講對數(shù)函數(shù)的性質(zhì),可先在同一坐標(biāo)系內(nèi)畫出上述兩個對數(shù)函數(shù)的圖象,根據(jù)圖象讓學(xué)生列表分析它們的圖象特征和性質(zhì),然后出示課件,教師補充。
作了以上分析之后,再分a>1與0<a<1兩種情況列出對數(shù)函數(shù)圖象和性質(zhì)表,體現(xiàn)了從“特殊到一般”、“從具體到抽象”的方法。出示課件并進行詳細講解,把對數(shù)函數(shù)圖象和性質(zhì)列成一個表以便讓學(xué)生對比著記憶。
設(shè)計意圖:這種講法既嚴謹又直觀易懂,還能讓學(xué)生主動參與教學(xué)過程,對培養(yǎng)學(xué)生的創(chuàng)新能力有幫助,學(xué)生易于接受易于掌握,而且利用表格,可以突破難點。
由于對數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),它們的定義域與值域正好互換,為了揭示這兩種函數(shù)之間的內(nèi)在聯(lián)系,列出指數(shù)函數(shù)與對數(shù)函數(shù)對照表(見課件)
設(shè)計意圖:通過比較對照的方法,學(xué)生更好地掌握兩個函數(shù)的定義、圖象和性質(zhì),認識兩個函數(shù)的內(nèi)在聯(lián)系,提高學(xué)生對函數(shù)思想方法的認識和應(yīng)用意識。
4、鞏固達標(biāo)(見課件)
這一訓(xùn)練是為了培養(yǎng)學(xué)生利用所學(xué)知識解決實際問題的能力,通過這個環(huán)節(jié)學(xué)生可以加深對本節(jié)知識的理解和運用,并從講解過程中找出所涉及的知識點,予以總結(jié)。充分體現(xiàn)“數(shù)形結(jié)合”和“分類討論”的思想。
5、反饋練習(xí)(見課件)
習(xí)題是對學(xué)生所學(xué)知識的反饋過程,教師可以了解學(xué)生對知識掌握的情況。
6、歸納總結(jié)(見課件)
引導(dǎo)學(xué)生對主要知識進行回顧,使學(xué)生對本節(jié)有一個整體的把握,因此,從三方面進行總結(jié):對數(shù)函數(shù)的概念、對數(shù)函數(shù)的圖象和性質(zhì)、比較對數(shù)值大小的方法。
7、課外作業(yè) :(1)完成P178 A組1、2、3題
(2)當(dāng)?shù)讛?shù)a>1與0<a<1時,底數(shù)不同,對數(shù)函數(shù)圖象有什么持點?
五、說板書
板書設(shè)計為表格式(見課件),這樣的板書簡明清楚,重點突出,加深學(xué)生對圖象和性質(zhì)的理解和掌握,便于記憶,有利于提高教學(xué)效果。
高一數(shù)學(xué)說課稿8
尊敬的各位評委、各位老師大家好!我說課的題目是《函數(shù)的單調(diào)性》,我將從四個方面來闡述我對這節(jié)課的設(shè)計。
一、教材分析
函數(shù)的單調(diào)性是函數(shù)的重要性質(zhì)。從知識的網(wǎng)絡(luò)結(jié)構(gòu)上看,函數(shù)的單調(diào)性既是函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)的單調(diào)性等內(nèi)容的基礎(chǔ),在研究各種具體函數(shù)的性質(zhì)和應(yīng)用、解決各種問題中都有著廣泛的應(yīng)用。函數(shù)單調(diào)性概念的建立過程中蘊涵諸多數(shù)學(xué)思想方法,對于進一步探索、研究函數(shù)的其他性質(zhì)有很強的啟發(fā)與示范作用。
根據(jù)函數(shù)單調(diào)性在整個教材內(nèi)容中的地位與作用,本節(jié)課教學(xué)應(yīng)實現(xiàn)如下教學(xué)目標(biāo):
知識與技能使學(xué)生理解函數(shù)單調(diào)性的概念,初步掌握判別函數(shù)單調(diào)性的方法;
過程與方法引導(dǎo)學(xué)生通過觀察、歸納、抽象、概括,自主建構(gòu)單調(diào)增函數(shù)、單調(diào)減函數(shù)等概念;能運用函數(shù)單調(diào)性概念解決簡單的問題;使學(xué)生領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力。
情感態(tài)度與價值觀在函數(shù)單調(diào)性的學(xué)習(xí)過程中,使學(xué)生體驗數(shù)學(xué)的科學(xué)價值和應(yīng)用價值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴謹?shù)目茖W(xué)態(tài)度。
根據(jù)上述教學(xué)目標(biāo),本節(jié)課的教學(xué)重點是函數(shù)單調(diào)性的概念形成和初步運用。雖然高一學(xué)生已經(jīng)有一定的抽象思維能力,但函數(shù)單調(diào)性概念對他們來說還是比較抽象的。因此,本節(jié)課的學(xué)習(xí)難點是函數(shù)單調(diào)性的概念形成。
二、教法學(xué)法
為了實現(xiàn)本節(jié)課的教學(xué)目標(biāo),在教法上我采取了:
1、通過學(xué)生熟悉的實際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實的距離,激發(fā)學(xué)生求知欲,調(diào)動學(xué)生主體參與的積極性。
2、在形成概念的過程中,緊扣概念中的關(guān)鍵語句,通過學(xué)生的主體參與,正確地形成概念。
3、在鼓勵學(xué)生主體參與的同時,不可忽視教師的主導(dǎo)作用,要教會學(xué)生清晰的思維、嚴謹?shù)耐评恚㈨樌赝瓿蓵姹磉_。
在學(xué)法上我重視了:
1、讓學(xué)生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認識到理性思維的質(zhì)的飛躍。
2、讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力。
三、教學(xué)過程
函數(shù)單調(diào)性的概念產(chǎn)生和形成是本節(jié)課的難點,為了突破這一難點,在教學(xué)設(shè)計上采用了下列四個環(huán)節(jié)。
(一)創(chuàng)設(shè)情境,提出問題
(問題情境)(播放中央電視臺天氣預(yù)報的音樂)。如圖為某地區(qū)20xx年元旦這一天24小時內(nèi)的氣溫變化圖,觀察這張氣溫變化圖:
高一數(shù)學(xué)說課稿9
各位評委大家好,我要說課的內(nèi)容是人教版必修一1.1節(jié)《集合的含義與表示》,本次說課包括五部分:說教材、說教法、說學(xué)法、說教學(xué)程序和說板書。
說教材
1、教材分析:
集合是現(xiàn)代數(shù)學(xué)的基本語言,可以簡潔、準(zhǔn)確地表達數(shù)學(xué)內(nèi)容。 本節(jié)是讓學(xué)生學(xué)會用集合的語言來描述對象,章末我們會用集合和對應(yīng)的語言來描述函數(shù)的概念,可見它是今后數(shù)學(xué)學(xué)習(xí)的基礎(chǔ),也是培養(yǎng)學(xué)生抽象概括能力的重要素材。
2、教材目標(biāo):
根據(jù)素質(zhì)教育的要求和新課改的精神,我確定教學(xué)目標(biāo)如下:
①知識與技能:(1)了解集合的含義與集合中元素的特征
(2) 熟記常用數(shù)集符號
(3) 能用列舉、描述法表示具體集合
②過程與方法: 讓學(xué)生經(jīng)歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義. 讓學(xué)生通過觀察、歸納、總結(jié)的過程,提高抽象概括能力。
③ 情感態(tài)度與價值觀:使學(xué)生感受到學(xué)習(xí)集合的必要性,增強學(xué)習(xí)的積極性.
3、教學(xué)重點、難點
教學(xué)重點: 集合的基本概念與表示方法;
教學(xué)難點: 運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合; 說教法
1.學(xué)情分析
《集合的含義及表示》這一課時是學(xué)生進入高中階段學(xué)習(xí)、接觸到高中數(shù)學(xué)的第一堂課,它直接影響到了學(xué)生對高中階段數(shù)學(xué)學(xué)習(xí)的認識;如果我們教學(xué)上過于草率,學(xué)生很容易對數(shù)學(xué)失去學(xué)習(xí)興趣。再者,這是高中數(shù)學(xué)課程的第一章的第一課時,是整個高中數(shù)學(xué)的奠基部分,所以我們不僅要正確地傳授知識,更要把握好教學(xué)的難度。如果傳授得過于簡單,那么學(xué)生容易麻痹大意,對今后的學(xué)習(xí)埋下隱患;如果講得太深,那么學(xué)生會有畏難心理,也會對今后的學(xué)習(xí)造成影響。
2. 方法選擇
在教學(xué)中注意啟發(fā)引導(dǎo),通過預(yù)習(xí)學(xué)案的形式把知識問題化,通過實例引導(dǎo)學(xué)生觀察歸納,上課組織學(xué)生分組討論,讓他們經(jīng)歷觀察、猜測、推理、交流、反思的理性思維的基本過程,切實改變學(xué)生的學(xué)習(xí)方法。
說學(xué)法
讓學(xué)生通過課前結(jié)合學(xué)案,閱讀教材,自主預(yù)習(xí),課上交流、討論、概括,課后復(fù)習(xí)鞏固三個環(huán)節(jié),更好地完成本節(jié)課的教學(xué)目標(biāo)。值得提出的是:集合作為一種數(shù)學(xué)語言,最好的學(xué)習(xí)方法是使用,所以應(yīng)該多做轉(zhuǎn)換練習(xí),
說教學(xué)程序
(一) 創(chuàng)設(shè)情境,揭示課題
軍訓(xùn)前學(xué)校通知:*月*日*點,高一年段在體育館集合進行軍訓(xùn)動員;試問這個通知的對象是全體的高一學(xué)生還是個別學(xué)生?
在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學(xué)習(xí)一個新的概念——集合(宣布課題),即是一些研究對象的總體。
通過學(xué)生熟悉的實際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實的距離,激發(fā)了學(xué)生求知欲,調(diào)動了學(xué)生主動參與的積極性。讓學(xué)生在課堂的一開始就感受到數(shù)學(xué)就在我們身邊,讓學(xué)生學(xué)會用數(shù)學(xué)的眼光去關(guān)注生活。
(二)研探新知,建構(gòu)概念
讓學(xué)生閱讀課本P2內(nèi)容,讓小組思考討論,代表發(fā)言,師生共同補充答案它們的共同特征:它們都是指定的一組對象。這時我借此引入集合的概念,把一些元素組成的總體叫做集合,簡稱集,通常用大寫字母A,B,C,?表示。 把研究的對象稱為元素,通常用小寫拉丁字母a,b,c,?表示;
接下來,我引導(dǎo)學(xué)生把集合的涵義進行拓展,期間結(jié)合一些師生互動:我們班上的女生能不能構(gòu)成一個集合,班上身高在1.75米以上的男生能不能構(gòu)成一個集合,班上高的男生能不能構(gòu)成一個集合??,通過身邊這些大量例子,讓學(xué)生了解集合的概念,并切實感受到學(xué)習(xí)集合語言的重要性。
對于集合元素的特征:確定性、互異性、無序性。我則在學(xué)生了解集合概念基礎(chǔ)上,通過設(shè)置三個問題(1)班里個子高的同學(xué)能否構(gòu)成一個集合?(2)在一個給定的集合中能否有相同的元素?(3)班里的全體同學(xué)組成一個集合,調(diào)整座位后這個集合有沒有變化?調(diào)整后的集合和原來的集合是什么關(guān)系?讓學(xué)生思考:任意一組對象是否都能組成一個集合?集合中的元素有什么特征?
這樣設(shè)計將知識問題化,問題生活化,激發(fā)學(xué)生學(xué)習(xí)的主動性,引導(dǎo)學(xué)生歸納出集合中元素的三大特性,用簡練的語言概括為——確定性、互異性、無序性用兩集合相等的概念。
思考3:(1)設(shè)集合A表示“1~20以內(nèi)的所有質(zhì)數(shù)”,那么3,4,5,6這四個元素哪些在集合A中?哪些不在集合A中?
(2)對于一個給定的集合A,那么某元素a與集合A有哪幾種可能關(guān)系?
(3)如果元素a是集合A中的元素,我們?nèi)绾斡脭?shù)學(xué)化的語言表達?
(4)如果元素a不是集合A中的元素,我們?nèi)绾斡脭?shù)學(xué)化的語言表達?用符號∈或?填空:
[設(shè)計說明]這幾個問題比較簡單,直接提問同學(xué)回答,并師生一起完善答案。通過問題的層層深入,目的是引導(dǎo)學(xué)生歸納出元素與集合的關(guān)系及表示方法。
反饋練習(xí):
(1)設(shè)A為所有亞洲國家組成的集合,則
中國____A, 美國____A,
印度____A, 英國____A;
對于集合中常用的符號,我做了這樣處理:簡要介紹后,讓學(xué)生用兩三分鐘的時間結(jié)合符號特點記憶。目的在于給學(xué)生一個信號:課堂上能消化的東西要及時記住。
2.集合的表示法:列舉法和描述法
讓學(xué)生自習(xí)閱讀課本P3——P4的內(nèi)容5-7分鐘,接著讓同學(xué)試著解決如下三個問題
(1) 由大于10小于20的所有整數(shù)組成的集合;
(2) 表示不等式x-7《3的解集;
(3) 由1——20以內(nèi)的所有素數(shù)組成的集合;
把集合的元素一一列舉出來,并用花括號“{}”括起來表示的方法叫做列舉法。 用集合所含元素的共同特征表示集合的方法稱為描述法。具體方法是:在花括號內(nèi)先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。
通過三個問題不僅檢驗了學(xué)生的自學(xué)效果,同時也讓學(xué)生明白列舉法和描述法兩種方法各自的優(yōu)缺點,更重要的是對集合的列舉法和描述法的規(guī)范表達做進一步強調(diào), 最后,我?guī)ьI(lǐng)學(xué)生分析了課本P4的例題,對集合的列舉法和描述法的規(guī)范表達做進一
步的強調(diào),讓學(xué)生完成書上的習(xí)題,并請幾個學(xué)生上臺來演練,通過練習(xí)達到及時的反饋。
(四)歸納整理,整體認識
1.本節(jié)課我們學(xué)習(xí)了哪些知識內(nèi)容?
2.你認為學(xué)習(xí)集合有什么意義?
3. 比較列舉法與描述法的優(yōu)缺點。
(五)布置作業(yè)
作業(yè):習(xí)題1.1A組: 2、3、4.
作業(yè)的布置是要突出本節(jié)課的重點——集合概念的理解以及集合的表示法,讓學(xué)生對數(shù)學(xué)符號的適用在課外進行延伸和鞏固。
說板書
在教學(xué)中我把黑板分為三部分,把知識要點寫在左側(cè),中間是課本例題演練,右側(cè)是實例應(yīng)用。在左側(cè)的知識要點主要列出了集合、元素的概念、元素的特性:確定性,互異性,無序性,和集合的表示法:列舉法和描述法。
以上是我對《集合的含義與表示》這節(jié)教材的認識和對教學(xué)過程的設(shè)計。對這節(jié)課的設(shè)計,我始終在努力貫徹一教師為主導(dǎo),以學(xué)生為主題,以問題為基礎(chǔ),以能力、方法為主線,有計劃培養(yǎng)學(xué)生的自學(xué)能力、觀察和實踐能力、思維能力為指導(dǎo)思想,利用各種教學(xué)手段激發(fā)學(xué)生的學(xué)習(xí)興趣,體現(xiàn)了對學(xué)生創(chuàng)新意識的培養(yǎng)。
高一數(shù)學(xué)說課稿10
各位領(lǐng)導(dǎo)和老師,大家好!我說課的內(nèi)容是蘇教版必修1第1章第3節(jié)第一課時《交集、并集》,下面我想談?wù)勎覍@節(jié)課的教學(xué)構(gòu)想:
一、教材分析:
與傳統(tǒng)的教材處理不同,本章在學(xué)生通過觀察具體集合得到集合的補集的概念后,上升到數(shù)學(xué)內(nèi)部,將“補”理解為集合間的一種“運算”。在此基礎(chǔ)上,通過實例,使學(xué)生感受和掌握集合之間的另外兩種運算—交和并。設(shè)計的思路從具體到理論,再回到具體,螺旋上升。集合作為一種數(shù)學(xué)語言,在后續(xù)的學(xué)習(xí)中是一種重要的工具。因此,在教學(xué)過程中要針對具體問題,引導(dǎo)學(xué)生恰當(dāng)使用自然語言、圖形語言和集合語言來描述相應(yīng)的數(shù)學(xué)內(nèi)容。有了集合的語言,可以更清晰的表達我們的思想。所以,集合是整個數(shù)學(xué)的基礎(chǔ),在以后的學(xué)習(xí)中有著極為廣泛的應(yīng)用。
基于以上的分析制定以下的教學(xué)目標(biāo)
二、教學(xué)目標(biāo):
1、理解交集與并集的概念;掌握有關(guān)集合的術(shù)語和符號,并會用它們正確表示一些簡單的集合。 能用Venn圖表示集合之間的關(guān)系;掌握兩個集合的交集、并集的求法。
2、通過對交集、并集概念的學(xué)習(xí),培養(yǎng)學(xué)生觀察、比較、分析、概括的能力,使學(xué)生認識由具體到抽象的思維過程。
3、通過對集合符號語言的學(xué)習(xí),培養(yǎng)學(xué)生符號表達能力,培養(yǎng)嚴謹?shù)膶W(xué)習(xí)作風(fēng),養(yǎng)成良好的學(xué)習(xí)習(xí)慣。
三、教學(xué)重點、難點:
針對以上的分析我把教學(xué)重點放在交集與并集的概念,一些集合的交集和并集的求法上。而把如何引導(dǎo)學(xué)生通過觀察、比較、分析、概括出交集與并集的概念作為本節(jié)的教學(xué)難點。
四、教法、學(xué)法:
針對我們師范學(xué)校學(xué)生的特點,我本著低起點、高要求、循序漸進,充分調(diào)動學(xué)生學(xué)習(xí)積極性的原則,采用“五環(huán)節(jié)教學(xué)法”。同時利用多媒體輔助教學(xué)。
下面我重點說一說教學(xué)過程
六、教學(xué)過程:
第一個環(huán)節(jié):問題情境
通過實例:學(xué)校舉辦了排球賽,08小教(2)56名同學(xué)中有12名同學(xué)參賽,后來又舉辦了田徑賽,這個班有20名同學(xué)參賽。已知兩項都參賽的有6名同學(xué)。兩項比賽中,這個班共有多少名同學(xué)沒有參加過比賽?讓學(xué)生感受到數(shù)學(xué)與我們的生活息息相關(guān),從而激發(fā)學(xué)生的學(xué)習(xí)興趣。
學(xué)生思考后回答,然后老師加以引導(dǎo),讓學(xué)生的回答達到這樣三個層次:
層次一:發(fā)現(xiàn)要求沒有參加比賽的人數(shù),首先應(yīng)該算出參加比賽的人數(shù),并且知道參加比賽的人數(shù)是12+20-6,而不是12+20,因為有6人既參加排球賽又參加田徑賽。
層次二:老師引導(dǎo)學(xué)生利用集合的觀點再來研究這個問題。先設(shè)利用Venn圖來表示集合A,B,C.發(fā)現(xiàn)集合A,B的公共部分就是集合C.
層次三:引導(dǎo)學(xué)生發(fā)現(xiàn)集合C的元素的構(gòu)成與集合A,B的元素的關(guān)系。學(xué)生可以發(fā)現(xiàn)集合C中的元素是由既參加排球比賽又參加田徑比賽的同學(xué)構(gòu)成的,更進一步集合C的元素是由既屬于集合A的元素又屬于集合B的元素構(gòu)成的。
通過對三個層次的探究和分析讓學(xué)生體驗數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
高一數(shù)學(xué)說課稿11
一、教材分析
1.教材中的地位及作用
本節(jié)課是學(xué)生在已掌握雙曲線的定義及標(biāo)準(zhǔn)方程之后,在此基礎(chǔ)上,反過來利用雙曲線的標(biāo)準(zhǔn)方程研究其幾何性質(zhì)。它是教學(xué)大綱要求學(xué)生必須掌握的內(nèi)容,也是高考的一個考點,是深入研究雙曲線,靈活運用雙曲線的定義、方程、性質(zhì)解題的基礎(chǔ),更能使學(xué)生理解、體會解析幾何這門學(xué)科的研究方法,培養(yǎng)學(xué)生的解析幾何觀念,提高學(xué)生的數(shù)學(xué)素質(zhì)。
2.教學(xué)目標(biāo)的確定及依據(jù)
平面解析幾何研究的主要問題之一就是:通過方程,研究平面曲線的性質(zhì)。教學(xué)參考書中明確要求:學(xué)生要掌握圓錐曲線的性質(zhì),初步掌握根據(jù)曲線的方程,研究曲線的幾何性質(zhì)的方法和步驟。根據(jù)這些教學(xué)原則和要求,以及學(xué)生的學(xué)習(xí)現(xiàn)狀,我制定了本節(jié)課的教學(xué)目標(biāo)。
(1)知識目標(biāo):①使學(xué)生能運用雙曲線的標(biāo)準(zhǔn)方程討論雙曲線的范圍、對稱性、頂點、離心率、漸近線等幾何性質(zhì);
②掌握雙曲線標(biāo)準(zhǔn)方程中的幾何意義,理解雙曲線的漸近線的概念及證明;
③能運用雙曲線的幾何性質(zhì)解決雙曲線的一些基本問題。
(2)能力目標(biāo):①在與橢圓的性質(zhì)的類比中獲得雙曲線的性質(zhì),培養(yǎng)學(xué)生的觀察能力,想象能力,數(shù)形結(jié)合能力,分析、歸納能力和邏輯推理能力,以及類比的學(xué)習(xí)方法;
②使學(xué)生進一步掌握利用方程研究曲線性質(zhì)的基本方法,加深對直角坐標(biāo)系中曲線與方程的概念的理解。
(3)德育目標(biāo):培養(yǎng)學(xué)生對待知識的科學(xué)態(tài)度和探索精神,而且能夠運用運動的,變化的觀點分析理解事物。
3.重點、難點的確定及依據(jù)
對圓錐曲線來說,漸近線是雙曲線特有的性質(zhì),而學(xué)生對漸近線的發(fā)現(xiàn)與證明方法接受、理解和掌握有一定的困難。因此,在教學(xué)過程中我把漸近線的發(fā)現(xiàn)作為重點,充分暴露思維過程,培養(yǎng)學(xué)生的創(chuàng)造性思維,通過誘導(dǎo)、分析,巧妙地應(yīng)用極限思想導(dǎo)出了雙曲線的漸近線方程。這樣處理將數(shù)學(xué)思想滲透于其中,學(xué)生也易接受。因此,我把漸近線的證明作為本節(jié)課的難點,根據(jù)本節(jié)的教學(xué)內(nèi)容和教學(xué)大綱以及高考的要求,結(jié)合學(xué)生現(xiàn)有的實際水平和認知能力,我把漸近線和離心率這兩個性質(zhì)作為本節(jié)課的重點。
4.教學(xué)方法
這節(jié)課內(nèi)容是通過雙曲線方程推導(dǎo)、研究雙曲線的性質(zhì),本節(jié)內(nèi)容類似于“橢圓的簡單的幾何性質(zhì)”,教學(xué)中可以與其類比講解,讓學(xué)生自己進行探究,得到類似的結(jié)論。在教學(xué)中,學(xué)生自己能得到的結(jié)論應(yīng)該讓學(xué)生自己得到,凡是難度不大,經(jīng)過學(xué)習(xí)學(xué)生自己能解決的問題,應(yīng)該讓學(xué)生自己解決,這樣有利于調(diào)動學(xué)生學(xué)習(xí)的積極性,激發(fā)他們的學(xué)習(xí)積極性,同時也有利于學(xué)習(xí)建立信心,使他們的主動性得到充分發(fā)揮,從中提高學(xué)生的思維能力和解決問題的能力。
漸近線是雙曲線特有的
性質(zhì),我們常利用它作出雙曲線的草圖,而學(xué)生對漸近線的發(fā)現(xiàn)與證明方法接受、理解和掌握有一定的困難。因此,在教學(xué)過程中著重培養(yǎng)學(xué)生的創(chuàng)造性思維,通過誘導(dǎo)、分析,從已有知識出發(fā),層層設(shè)(釋)疑,激活已知,啟迪思維,調(diào)動學(xué)生自身探索的內(nèi)驅(qū)力,進一步清晰概念(或圖形)特征,培養(yǎng)思維的深刻性。
例題的選備,可將此題作一題多變(變條件,變結(jié)論),訓(xùn)練學(xué)生一題多解,開拓其解題思路,使他們在做題中總結(jié)規(guī)律、發(fā)展思維、提高知識的應(yīng)用能力和發(fā)現(xiàn)問題、解決問題能力。
二、教學(xué)程序
(一).設(shè)計思路
(二).教學(xué)流程
1.復(fù)習(xí)引入
我們已經(jīng)學(xué)習(xí)過橢圓的標(biāo)準(zhǔn)方程和雙曲線的標(biāo)準(zhǔn)方程,以及橢圓的簡單的幾何性質(zhì),請同學(xué)們來回顧這些知識點,對學(xué)習(xí)的舊知識加以復(fù)習(xí)鞏固,同時為新知識的學(xué)習(xí)做準(zhǔn)備,利用多媒體工具的先進性,結(jié)合圖像來演示。
2.觀察、類比
這節(jié)課內(nèi)容是通過雙曲線方程推導(dǎo)、研究雙曲線的性質(zhì),本節(jié)內(nèi)容類似于“橢圓的簡單的幾何性質(zhì)”,教學(xué)中可以與其類比講解,讓學(xué)生自己進行探究,首先觀察雙曲線的形狀,試著按照橢圓的幾何性質(zhì),歸納總結(jié)出雙曲線的幾何性質(zhì)。一般學(xué)生能用類似于推
導(dǎo)橢圓的幾何性質(zhì)的方法得出雙曲線的范圍、對稱性、頂點、離心率,對知識的理解不能浮于表面只會看圖,也要會從方程的角度來解釋,抓住方程的本質(zhì)。用多媒體演示,加強學(xué)生對雙曲線的簡單幾何性質(zhì)范圍、對稱性、頂點(實軸、虛軸)、離心率(不深入的講解)的鞏固。之后,比較雙曲線的這四個性質(zhì)和橢圓的性質(zhì)有何聯(lián)系及區(qū)別,這樣可以加強新舊知識的聯(lián)系,借助于類比方法,引起學(xué)生學(xué)習(xí)的興趣,激發(fā)求知欲。
3.雙曲線的漸近線的發(fā)現(xiàn)、證明
(1)發(fā)現(xiàn)
由橢圓的幾何性質(zhì),我們能較準(zhǔn)確地畫出橢圓的圖形。那么,由雙曲線的幾何性質(zhì),能否較準(zhǔn)確地畫出雙曲線的圖形為引例,讓學(xué)生動筆實踐,通過列表描點,就能把雙曲線的頂點及附近的點較準(zhǔn)確地畫出來,但雙曲線向遠處如何伸展就不是很清楚。從而說明想要準(zhǔn)確的畫出雙曲線的圖形只有那四個性質(zhì)是不行的。
從學(xué)生曾經(jīng)學(xué)習(xí)過的反比例函數(shù)入手,而且可以比較精確的畫出反比例函數(shù)的圖像,它的圖像是雙曲線,當(dāng)雙曲線伸向遠處時,它與x、y軸無限接近,此時x、y軸是的漸近線,為后面引出漸近線的概念埋下伏筆。從而讓學(xué)生猜想雙曲線有何特征?有沒有漸近線?由于雙曲線的對稱性,我們只須研究它的圖形在第一象限的情況即可。在研究雙曲線的范圍時,由雙曲線的標(biāo)準(zhǔn)方程,可解出,,當(dāng)x無限增大時,y也隨之增大,不容易發(fā)現(xiàn)它們之間的微妙關(guān)系。但是如果將式子變形為,我們就會發(fā)現(xiàn):當(dāng)x無限增大,逐漸減小、無限接近于0,而就逐漸增大、無限接近于1();若將變形為,即說明此時雙曲線在第一象限,當(dāng)x無限增大時,其上的點與坐標(biāo)原點之間連線的斜率比1小,但與斜率為1的直線無限接近,且此點永遠在直線的下方。其它象限向遠處無限伸展的變化趨勢就可以利用對稱性得到,從而可知雙曲線的圖形在遠處與直線無限接近,此時我們就稱直線叫做雙曲線的漸近線。這樣從已有知識出發(fā),層層設(shè)(釋)疑,激活已知,啟迪思維,調(diào)動學(xué)生自身探索的內(nèi)驅(qū)力,進一步清晰概念(或圖形)特征,培養(yǎng)思維的深刻性。
利用由特殊到一般的規(guī)律,就可以引導(dǎo)學(xué)生探尋雙曲線(a>0,b>0)的漸近線,讓學(xué)生同樣利用類比的方法,將其變形為,,由于雙曲線的`對稱性,我們可以只研究第一象限向遠處的變化趨勢,繼續(xù)變形為,,可發(fā)現(xiàn)當(dāng)x無限增大時,逐漸減小、無限接近于0,逐漸增大、無限接近于,即說明對于雙曲線在第一象限遠處的點與坐標(biāo)原點之間連線的斜率比小,與斜率為的直線無限接近,且此點永遠在直線下方。其它象限向遠處無限伸展的變化趨勢可以利用對稱性得到,從而可知雙曲線(a>0,b>0)的圖形在遠處與直線無限接近,直線叫做雙曲線(a>0,b>0)的漸近線。我就是這樣將漸近線的發(fā)現(xiàn)作為重點,充分暴露思維過程,培養(yǎng)學(xué)生的創(chuàng)造性思維,通過誘導(dǎo)、分析,巧妙地應(yīng)用極限思想導(dǎo)出了雙曲線的漸近線方程。這樣處理將數(shù)學(xué)思想滲透于其中,學(xué)生也易接受。
(2)證明
如何證明直線是雙曲線(a>0,b>0)的漸近線呢?
啟發(fā)思考①:首先,逐步接近,轉(zhuǎn)換成什么樣的數(shù)學(xué)語言?(x→∞,d→0)
啟發(fā)思考②:顯然有四處逐步接近,是否每一處都進行證明?
啟發(fā)思考③:鎖定第一象限后,具體地怎樣利用x表示d
(工具是什么:點到直線的距離公式)
啟發(fā)思考④:讓學(xué)生設(shè)點,而d的表達式較復(fù)雜,能否將問題進行轉(zhuǎn)化?
分析:要證明直線是雙曲線(a>0,b>0)的漸近線,即要證明隨著x的增大,直線和曲線越來越靠攏。也即要證曲線上的點到直線的距離
|mQ|越來越短,因此把問題轉(zhuǎn)化為計算|mQ|。但因|mQ|不好直接求得,因此又可以把問題轉(zhuǎn)化為求|mN|。
啟發(fā)思考⑤:這樣證明后,還須交代什么?
(在其他象限,同理可證,或由對稱性可知有相似情況)
引導(dǎo)學(xué)生層層深入的進行探究,從而更深刻的理解雙曲線的漸近線的發(fā)現(xiàn)及證明過程。
(3)深化
再來研究實軸在y軸上的雙曲線(a>0,b>0)的漸近線方程就會變得容易很多,此時可利用類比的方法或者利用對稱性得到焦點在y軸上的雙曲線的漸近線方程即為。
這樣,我們就完滿地解決了畫雙曲線遠處趨向問題,從而可比較精確的畫出雙曲線。但是如果仔細觀察漸近線實質(zhì)就是雙曲線過實軸端點、虛軸端點,作平行與坐標(biāo)軸的直線所成的矩形的兩條對角線,數(shù)形結(jié)合,來加強對雙曲線的漸近線的理解。
4.離心率的幾何意義
橢圓的離心率反映橢圓的扁平程度,雙曲線離心率有何幾何意義呢?不難得到:,這是剛剛學(xué)生在類比橢圓的幾何性質(zhì)時就可以得到的簡單結(jié)論。通過對離心率的研究,同樣也可以使學(xué)生進一步加深對漸近線的理解。
由等式,可得:,不難發(fā)現(xiàn):e越小(越接近于1),就越接近于0,雙曲線開口越小;e越大,就越大,雙曲線開口越大。所以,雙曲線的離心率反映的是雙曲線的開口大小。通過對這些性質(zhì)的探究,就可以更好的理解雙曲線圖形與這些基本量之間的關(guān)系,更加準(zhǔn)確的作出雙曲線的圖形。
5.例題分析
為突出本節(jié)內(nèi)容,使學(xué)生盡快掌握剛才所學(xué)的知識。我選配了這樣的例題:
例1.求雙曲線9x2-16y2=144的實半軸長和虛半軸長、頂點和焦點坐標(biāo)、漸近線方程、離心率。選題目的在于拿到一個雙曲線的方程之后若不是標(biāo)準(zhǔn)式,要先將所給的雙曲線方程化為標(biāo)準(zhǔn)方程,后根據(jù)標(biāo)準(zhǔn)方程分別求出有關(guān)量。本題求漸近線的方程的方法:(1)直接根據(jù)漸近線方程寫出;(2)利用雙曲線的圖形中的矩形框架的對角線得到。加強對于雙曲線的漸近線的應(yīng)用和理解。
變1:求雙曲線9y2-16x2=144的實半軸長和虛半軸長、頂點和焦點坐標(biāo)、漸近線方程、離心率。選題目的:和上題相同先將所給的雙曲線方程化為標(biāo)準(zhǔn)方程,后根據(jù)標(biāo)準(zhǔn)方程分別求出有關(guān)量;但求漸近線時可直接求出,也可以利用對稱性來求解。
關(guān)鍵在于對比:雙曲線的形狀不變,但在坐標(biāo)系中的位置改變,它的那些性質(zhì)改變,那些性質(zhì)不變?試歸納雙曲線的幾何性質(zhì)。
變2:已知雙曲線的漸近線方程是,且經(jīng)過點(,3),求雙曲線的標(biāo)準(zhǔn)方程。選題目的:在已知雙曲線的漸近線的前提下
高一數(shù)學(xué)說課稿12
今天我說課的內(nèi)容是高二立體幾何(人教版)第九章第二章節(jié)第八小節(jié)《棱錐》的第一課時:《棱錐的概念和性質(zhì)》。下面我就從教材分析、教法、學(xué)法和教學(xué)程序四個方面對本課的教學(xué)設(shè)計進行說明。
一、說教材
1、本節(jié)在教材中的地位和作用:
本節(jié)是棱柱的后續(xù)內(nèi)容,又是學(xué)習(xí)球的必要基礎(chǔ)。第一課時的教學(xué)目的是讓學(xué)生掌握棱錐的一些必要的基礎(chǔ)知識,同時培養(yǎng)學(xué)生猜想、類比、比較、轉(zhuǎn)化的能力。著名的生物學(xué)家達爾文說:“最有價值的知識是關(guān)于方法和能力的知識”,因此,應(yīng)該利用這節(jié)課培養(yǎng)學(xué)生學(xué)習(xí)方法、提高學(xué)習(xí)能力。
2. 教學(xué)目標(biāo)確定:
(1)能力訓(xùn)練要求
①使學(xué)生了解棱錐及其底面、側(cè)面、側(cè)棱、頂點、高的概念。
②使學(xué)生掌握截面的性質(zhì)定理,正棱錐的性質(zhì)及各元素間的關(guān)系式。
(2)德育滲透目標(biāo)
①培養(yǎng)學(xué)生善于通過觀察分析實物形狀到歸納其性質(zhì)的能力。
②提高學(xué)生對事物的感性認識到理性認識的能力。
③培養(yǎng)學(xué)生“理論源于實踐,用于實踐”的觀點。
3. 教學(xué)重點、難點確定:
重 點:1.棱錐的截面性質(zhì)定理 2.正棱錐的性質(zhì)。
難 點:培養(yǎng)學(xué)生善于比較,從比較中發(fā)現(xiàn)事物與事物的區(qū)別。
二、說教學(xué)方法和手段
1、教法:
“以學(xué)生參與為標(biāo)志,以啟迪學(xué)生思維,培養(yǎng)學(xué)生創(chuàng)新能力為核心”。
在教學(xué)中根據(jù)高中生心理特點和教學(xué)進度需要,設(shè)置一些啟發(fā)性題目,采用啟發(fā)式誘導(dǎo)法,講練結(jié)合,發(fā)揮教師主導(dǎo)作用,體現(xiàn)學(xué)生主體地位。
2、教學(xué)手段:
根據(jù)《教學(xué)大綱》中“堅持啟發(fā)式,反對注入式”的教學(xué)要求,針對本節(jié)課概念性強,思維量大,整節(jié)課以啟發(fā)學(xué)生觀察思考、分析討論為主,采用“多媒體引導(dǎo)點撥”的教學(xué)方法以多媒體演示為載體,以“引導(dǎo)思考”為核心,設(shè)計課件展示,并引導(dǎo)學(xué)生沿著積極的思維方向,逐步達到即定的教學(xué)目標(biāo),發(fā)展學(xué)生的邏輯思維能力;學(xué)生在教師營造的“可探索”的環(huán)境里,積極參與,生動活潑地獲取知識,掌握規(guī)律、主動發(fā)現(xiàn)、積極探索。
三、說學(xué)法:
這節(jié)課的核心是棱錐的截面性質(zhì)定理,.正棱錐的性質(zhì)。教學(xué)的指導(dǎo)思想是:遵循由已知(棱柱)探究未知(棱錐)、由一般(棱錐)到特殊(正棱錐)的認識規(guī)律,啟發(fā)學(xué)生反復(fù)思考,不斷內(nèi)化成為自己的認知結(jié)構(gòu)。
四、 學(xué)程序:
[復(fù)習(xí)引入新課]
1.棱柱的性質(zhì):(1)側(cè)棱都相等,側(cè)面是平行四邊形
(2)兩個底面與平行于底面的截面是全等的多邊形
(3)過不相鄰的兩條側(cè)棱的截面是平行四邊形
2.幾個重要的四棱柱:平行六面體、直平行六面體、長方體、正方體
思考:如果將棱柱的上底面給縮小成一個點,那么我們得到的將會是什么樣的體呢?
[講授新課]
1、棱錐的基本概念
(1).棱錐及其底面、側(cè)面、側(cè)棱、頂點、高、對角面的概念
(2).棱錐的表示方法、分類
2、棱錐的性質(zhì)
(1). 截面性質(zhì)定理:如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比
已知:如圖(略),在棱錐S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并與SH交于H’。
證明:(略)
引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐
的側(cè)面積比也等于它們對應(yīng)高的平方比、等于它們的底面積之比。
(2).正棱錐的定義及基本性質(zhì):
正棱錐的定義:①底面是正多邊形
②頂點在底面的射影是底面的中心
①各側(cè)棱相等,各側(cè)面是全等的等腰三角形;各等腰三角形底邊上的高相等,它們叫做正棱錐的斜高;
②棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個直角三角形;
棱錐的高、側(cè)棱和側(cè)棱在底面內(nèi)的射影也組成一個直角三角形
引申: ①正棱錐的側(cè)棱與底面所成的角都相等;
②正棱錐的側(cè)面與底面所成的二面角相等;
(3)正棱錐的各元素間的關(guān)系
下面我們結(jié)合圖形,進一步探討正棱錐中各元素間的關(guān)系,為研究方便將課本 圖9-74(略)正棱錐中的棱錐S-OBM從整個圖中拿出來研究。
引申:
①觀察圖中三棱錐S-OBM的側(cè)面三角形狀有何特點?
(可證得∠SOM =∠SOB =∠SMB =∠OMB =900,所以側(cè)面全是直角三角形。)
②若分別假設(shè)正棱錐的高SO= h,斜高SM= h’,底面邊長的一半BM= a/2,底面正多邊形外接圓半徑OB=R,內(nèi)切圓半徑OM= r,側(cè)棱SB=L,側(cè)面與底面的二面角∠SMO= α ,側(cè)棱與底面組成的角 ∠SBO= β, ∠BOM=1800/n (n為底面正多邊形的邊數(shù))請試通過三角形得出以上各元素間的關(guān)系式。
(課后思考題)
[例題分析]
例1.若一個正棱錐每一個側(cè)面的頂角都是600,則這個棱錐一定不是( )
A.三棱錐 B.四棱錐 C.五棱錐 D.六棱錐
(答案:D)
例2.如圖已知正三棱錐S-ABC的高SO=h,斜高SM=L,求經(jīng)過SO的中點且平行于底面的截面△A’B’C’的面積。
解析及圖略
例3.已知正四棱錐的棱長和底面邊長均為a,求:
(1)側(cè)面與底面所成角α的余弦(2)相鄰兩個側(cè)面所成角β的余弦
解析及圖略
【課堂練習(xí)】
1、 知一個正六棱錐的高為h,側(cè)棱為L,求它的底面邊長和斜高。
解析及圖略
2、 錐被平行與底面的平面所截,若截面面積與底面面積之比為1∶2,求此棱錐的高被分成的兩段(從頂點到截面和從截面到底面)之比。
解析及圖略
【課堂小結(jié)】
一:棱錐的基本概念及表示、分類
二:棱錐的性質(zhì)
1. 截面性質(zhì)定理:如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比
引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐的側(cè)面積比也等于它們對應(yīng)高的平方比、等于它們的底面積之比。
2.正棱錐的定義及基本性質(zhì)
正棱錐的定義:①底面是正多邊形
②頂點在底面的射影是底面的中心
(1)各側(cè)棱相等,各側(cè)面是全等的等腰三角形;各等腰三角形底邊上的高
相等,它們叫做正棱錐的斜高;
(2)棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個直角三角形;棱錐的高、側(cè)棱和側(cè)棱在底面內(nèi)的射影也組成一個直角三角形
引申: ①正棱錐的側(cè)棱與底面所成的角都相等;
②正棱錐的側(cè)面與底面所成的二面角相等;
③正棱錐中各元素間的關(guān)系
【課后作業(yè)】
1:課本P52 習(xí)題9.8 : 2、 4
2:課時訓(xùn)練:訓(xùn)練一
高一數(shù)學(xué)說課稿13
各位領(lǐng)導(dǎo)、各位老師:
大家好!
今天我說課的題目是《兩角差的余弦公式》。我計劃從教材背景、教學(xué)目標(biāo)、教學(xué)方法、教學(xué)過程、教學(xué)評價等方面來談?wù)勎覍Ρ竟?jié)課的理解。
背景分析
1、教材所處的地位和作用:
《兩角差的余弦公式》是新課標(biāo)人教版數(shù)學(xué)必修四第三章第一課時的教學(xué)內(nèi)容,是本模塊第一章《三角函數(shù)》和第二章《平面向量》相關(guān)知識的延續(xù)和拓展。其中心任務(wù)是通過已學(xué)知識,探索建立兩角差的余弦公式。它不僅是前面已學(xué)的誘導(dǎo)公式的推廣,也是后面其它和(差)角公式推導(dǎo)的基礎(chǔ)和核心,具有承前啟后的作用,是本章的重點內(nèi)容之一。
2、重點,難點以及確定的依據(jù):
對本節(jié)課來說,學(xué)生最大的困惑在于如何得到公式.所以,
本節(jié)課的教學(xué)重點是:兩角差的余弦公式的探究和應(yīng)用;
教學(xué)難點是:兩角差的余弦公式的由來及證明;
引導(dǎo)學(xué)生通過主動參與,獨立探索。
教學(xué)目標(biāo)設(shè)計
(1)知識與技能:
本節(jié)課的知識技能目標(biāo)定位在公式的向量法證明和應(yīng)用上;學(xué)會運用分類討論思想完善證明;學(xué)會正用、逆用、變用公式;學(xué)會運用整體思想,抓住公式的本質(zhì).在新舊知識的沖撞過程中,讓學(xué)生自主地對知識進行重組、構(gòu)建,形成屬于自己的知識結(jié)構(gòu)體系.
(2)過程與方法:
創(chuàng)設(shè)問題情景,調(diào)動學(xué)生已有的認知結(jié)構(gòu),激發(fā)學(xué)生的問題意識,展開提出問題、分析問題、解決問題的學(xué)習(xí)活動,讓學(xué)生體會從“特殊”到“一般”的探究過程;在探究過程中體會化歸、數(shù)形結(jié)合等數(shù)學(xué)思想;在公式的證明過程中,培養(yǎng)學(xué)生反思的好習(xí)慣;在公式的理解記憶過程中,讓學(xué)生發(fā)現(xiàn)數(shù)學(xué)中的簡潔、對稱美;在公式的運用過程中,培養(yǎng)學(xué)生嚴謹?shù)乃季S習(xí)慣和自我糾錯能力.
(3)情感、態(tài)度與價值觀:
體驗科學(xué)探索的過程,鼓勵學(xué)生大膽質(zhì)疑、大膽猜想,培養(yǎng)學(xué)生的“問題意識”,使學(xué)生感受科學(xué)探索的樂趣,激勵勇氣,培養(yǎng)創(chuàng)新精神和良好的團隊合作意識. 通過對猜想的驗證,對公式證明的完善,培養(yǎng)學(xué)生實事求是的科學(xué)態(tài)度和科學(xué)精神.
教法設(shè)計
1、學(xué)情分析:
學(xué)生剛剛學(xué)習(xí)了同角三角函數(shù)的變換及平面向量的知識,對用舉反例推翻猜想、運用單位圓、用向量解決三角問題已經(jīng)有了一定的基礎(chǔ),但還遠未達到綜合運用這些方法自主探究和證明的水平.
教學(xué)手段:
(1)從知識的認知程序上看,老師看問題從整體到局部,而學(xué)生卻是從局部到整體。本節(jié)課嘗試將“帶著知識走向?qū)W生”的接受式教學(xué)模式轉(zhuǎn)變?yōu)椤皫е鴮W(xué)生走向知識”的探究式教學(xué)模式,充分尊重學(xué)生的主體地位.
(2)本節(jié)課的教法采用了“一個主題兩種教學(xué)”的設(shè)計模式.一個主題:公式探究與應(yīng)用,兩種教學(xué):顯形教學(xué)(知識能力教學(xué))、隱性教學(xué)(情商培養(yǎng)),實踐兩種教學(xué)相互促進的人性化教學(xué)理念.
(3)在課堂上營造民主、開放、平等的教學(xué)氛圍,注重教學(xué)評價的多元性,將簡單的結(jié)果評價上升為對過程的評價;將一味的知識評價拓展為能力評價,突出學(xué)生的主體性,實現(xiàn)顯形教學(xué)與隱性教學(xué)的雙重評價,為全面發(fā)展學(xué)生打下基礎(chǔ).
(4)利用幾何畫板,通過計算機技術(shù),給學(xué)生提供一種驗證猜想合理性的途徑. (教學(xué)媒體設(shè)計)
課堂結(jié)構(gòu)設(shè)計:
引入課題,提出猜想,實驗探究,嚴謹證明,例題訓(xùn)練,課堂小結(jié)
教學(xué)過程設(shè)計
1、引入課題:
例:如圖所示,一個斜坡的高為6m,斜坡的水平長度為8m,已知作用在物體上的力F與水平方向的夾角為60°,且大小為10N ,在力F的作用下物體沿斜坡運動了3m,求力F作用在物體上的功W.
解: W =
= 30.
提問:1、解決問題需要求什么?
2、你能找到哪些與有關(guān)的條件?
3、能否利用這些條件求出?如果能,提出你的猜想.
4、怎樣檢驗這些猜想是否正確?
【設(shè)計意圖】生活實例引入,體現(xiàn)數(shù)學(xué)與實際生活的聯(lián)系,也與物理(功的定義)、哲學(xué)(透過現(xiàn)象看本質(zhì))等相關(guān)學(xué)科相聯(lián)系,增強學(xué)生的應(yīng)用意識,激發(fā)學(xué)生的學(xué)習(xí)熱情,同時也讓學(xué)生體會數(shù)學(xué)知識的產(chǎn)生、發(fā)展過程.
2、提出猜想:
從特殊情況去猜測公式的結(jié)構(gòu)形式.
令
令
分析:可見,我們的公式的形式應(yīng)該與均有關(guān)系?他們之間存在怎樣的代數(shù)關(guān)系呢?請同學(xué)們根據(jù)下表中數(shù)據(jù),相互交流討論,提出你的猜想.
用具體值檢驗猜想的合理性.
令則=
三角函數(shù)
三角函數(shù)值
猜想:
【設(shè)計意圖】鼓勵學(xué)生發(fā)揮想象力,大膽猜測,然后再去驗證其合理性,增強學(xué)生探索問題、挑戰(zhàn)困難的勇氣.
3、實驗探究:
【設(shè)計意圖】讓學(xué)生用幾何畫板進行數(shù)學(xué)實驗, 激起學(xué)生的好奇心和探究欲望, 使學(xué)生體會到數(shù)學(xué)的系統(tǒng)演繹性和實驗歸納性的兩個側(cè)面.
4、嚴謹證明:
(利用向量)
前一章我們剛剛學(xué)習(xí)完向量,并用向量知識解決了相關(guān)的幾何問題,這里,我們能否用向量知識來推導(dǎo)兩角差的余弦公式呢?我們來仔細觀察猜想的結(jié)構(gòu),我們在什么地方見到過類似結(jié)構(gòu)?在向量部分,求角的余弦有什么方法嗎?
(學(xué)生:向量的數(shù)量積!)
證明:在平面直角坐標(biāo)系xOy內(nèi)作單位圓O,以O(shè)x為始邊作角,它們終邊與單位圓O的交點分別為A、B,則:
=, =
=
∴= (0≤≤)
思考:1、作為兩向量的夾角,有沒有限制條件?
2、如果不在[0,]這個區(qū)間內(nèi),我們的結(jié)論還會成立嗎?怎樣給出證明?(引導(dǎo)學(xué)生找到與夾角之間的關(guān)系)
【設(shè)計意圖】讓學(xué)生經(jīng)歷用向量知識解出一個數(shù)學(xué)問題的過程,體會向量方法在數(shù)學(xué)探究過程中的簡潔性。
思考:1、作為兩向量的夾角,有沒有限制條件?
2、如果不在[0,]這個區(qū)間內(nèi),我們的結(jié)論還會成立嗎?怎樣給出證明?(引導(dǎo)學(xué)生找到與夾角之間的關(guān)系)
推廣完善:令為、的夾角,
則
無論哪種情況,都有
小結(jié):兩角差的余弦公式:
(其中為任意角,簡記為)
思考:請同學(xué)們仔細觀察一下公式的結(jié)構(gòu),說說公式的結(jié)構(gòu)有什么特點?應(yīng)怎樣記憶?(對學(xué)生的回答給予及時肯定)
【設(shè)計意圖】引導(dǎo)學(xué)生關(guān)注兩個向量的夾角θ與α-β的聯(lián)系與區(qū)別,并通過觀察和討論,增強學(xué)生用數(shù)形結(jié)合、分類討論的方法解決問題的意識,感受數(shù)學(xué)思維的嚴謹性.
(介紹單位圓的三角函數(shù)線法)
除了以上的證明方法,是否還有其它證法呢?
我們發(fā)現(xiàn),這里涉及的是三角函數(shù),是這個角的余弦問題,那我們還能不能考慮在單位圓里用三角函數(shù)線來推導(dǎo)呢?
請同學(xué)們課后自己在單位圓中畫出、,并考慮如何用角的正弦線、余弦線來表示的余弦線?
這個問題作為課后思考題,請同學(xué)們課下相互討論,共同探索。
【設(shè)計意圖】根據(jù)教學(xué)實際,對教材進行適當(dāng)安排,把單位圓三角函數(shù)線證法留作課后學(xué)生思考,為學(xué)生的課后探討留有空間。
5、例題訓(xùn)練:
1、解決引例中的問題.
2、P127練習(xí):已知,求.
(運用公式時應(yīng)根據(jù)角的范圍,正確確定兩角正、余弦值的范圍)
公式的逆用:.
4、公式活用:.
【設(shè)計意圖】例1讓學(xué)生運用所學(xué)解決實際問題;例2利用變式突破學(xué)生在運用公式過程中的易錯點;例3對逆用公式解題加深認識;例4活用公式,加深學(xué)生對公式中兩角形式變化的認識,強化整體思想。
6:課堂小結(jié):
公式探索的一般步驟;公式的結(jié)構(gòu)和功能;公式的運用應(yīng)注意的問題。
7、作業(yè):
P127 練習(xí)1、2、3;
.
【設(shè)計意圖】讓學(xué)生通過自己小結(jié),反思學(xué)習(xí)過程,加深對公式的推導(dǎo)和應(yīng)用過程的理解,促進知識的內(nèi)化;然后用作業(yè)鞏固本節(jié)課所學(xué)知識。
(附:板書設(shè)計)
§3.1.1 兩角差的余弦公式
一、公式
二、證明
引例:
例2:
例3:
4:
小結(jié):
教學(xué)評價分析
診斷性評價:
1.按常規(guī),學(xué)生很可能想到先探究兩角和的正弦公式,怎樣想到先研究兩角差的余弦公式是一個難點(但非重點),教學(xué)時可以直接提出研究兩角差的余弦公式。但后面補充老教材的證明方法,讓學(xué)生明白和與差內(nèi)在的聯(lián)系性與統(tǒng)一性,努力讓學(xué)習(xí)過程自然。
2.盡管教材在前面的習(xí)題中,已經(jīng)為用向量法證明兩角差的余弦公式做了鋪墊,多數(shù)學(xué)生仍難以想到.教師需要引導(dǎo)學(xué)生,聯(lián)想到向量的數(shù)量積公式和單位圓上點的坐標(biāo)特點,努力使數(shù)學(xué)思維顯得自然、合理。
3.用向量的數(shù)量積公式證明兩角差的余弦公式時,學(xué)生容易犯思維不嚴謹?shù)腻e誤,教學(xué)時需要引導(dǎo)學(xué)生搞清楚兩角差與相應(yīng)向量的夾角的聯(lián)系與區(qū)別。
預(yù)期效果:
1、讓學(xué)生在掌握兩角差的余弦公式探究方法的基礎(chǔ)上,能夠自我總結(jié)形成公式探究的一般方法。
2、激發(fā)學(xué)生的探究欲望,能夠獨立或合作提出推導(dǎo)其它三角恒等式的方案,形成對三角恒等變換的本質(zhì)認識,加深對靈活運用公式的理解。
3、培養(yǎng)學(xué)生的“問題意識”,在探索的過程中學(xué)會將“知識問題化”,大膽、合理地提出猜測,通過證明、完善,最終達到將“問題知識化”的目的.
高一數(shù)學(xué)說課稿14
一.教材分析:集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。
二.目標(biāo)分析:
教學(xué)重點.難點
重點:集合的含義與表示方法.
難點:表示法的恰當(dāng)選擇.
教學(xué)目標(biāo)
1.知識與技能
(1)通過實例,了解集合的含義,體會元素與集合的屬于關(guān)系;
(2)知道常用數(shù)集及其專用記號;
(3)了解集合中元素的確定性.互異性.無序性;
(4)會用集合語言表示有關(guān)數(shù)學(xué)對象;
2. 過程與方法
(1)讓學(xué)生經(jīng)歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.
(2)讓學(xué)生歸納整理本節(jié)所學(xué)知識.
3. 情感.態(tài)度與價值觀
使學(xué)生感受到學(xué)習(xí)集合的必要性,增強學(xué)習(xí)的積極性.
三. 教法分析
1.教學(xué)方法:學(xué)生通過閱讀教材,自主學(xué)習(xí).思考.交流.討論和概括,從而更好地完成本節(jié)課的教學(xué)目標(biāo).
2. 教學(xué)手段:在教學(xué)中使用投影儀來輔助教學(xué).
四.過程分析
(一)創(chuàng)設(shè)情景,揭示課題
1.教師首先提出問題:
(1)介紹自己的家庭、原來就讀的學(xué)校、現(xiàn)在的班級。
(2)問題:像“家庭”、“學(xué)校”、“班級”等,有什么共同特征?
引導(dǎo)學(xué)生互相交流. 與此同時,教師對學(xué)生的活動給予評價.
2.活動:
(1)列舉生活中的集合的例子;
(2)分析、概括各實例的共同特征
由此引出這節(jié)要學(xué)的內(nèi)容。
設(shè)計意圖:既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為新知作好鋪墊
(二)研探新知,建構(gòu)概念
1.教師利用多媒體設(shè)備向?qū)W生投影出下面7個實例:
(1)1—20以內(nèi)的所有質(zhì)數(shù);(2)我國古代的四大發(fā)明;
(3)所有的安理會常任理事國; (4)所有的正方形;
(5)海南省在20xx年9月之前建成的所有立交橋;
(6)到一個角的兩邊距離相等的所有的點;
(7)國興中學(xué)20xx年9月入學(xué)的高一學(xué)生的全體.
2.教師組織學(xué)生分組討論:這7個實例的共同特征是什么?
3.每個小組選出——位同學(xué)發(fā)表本組的討論結(jié)果,在此基礎(chǔ)上,師生共同概括出7個實例的特征,并給出集合的含義.一般地,指定的某些對象的全體稱為集合(簡稱為集).集合中的每個對象叫作這個集合的元素.
4.教師指出:集合常用大寫字母A,B,C,D,?表示,元素常用小寫字母a,b,c,d?表示.
設(shè)計意圖:通過實例讓學(xué)生感受集合的概念,激發(fā)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生樂于求索的精神
(三)質(zhì)疑答辯,發(fā)展思維
1.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,思考:集合中元素有什么特點?并注意個別輔導(dǎo),解答學(xué)生疑難.使學(xué)生明確集合元素的三大特性,即:確定性.互異性和無序性.只要構(gòu)成兩個集合的元素是一樣的,我們就稱這兩個集合相等.
2.教師組織引導(dǎo)學(xué)生思考以下問題:
判斷以下元素的全體是否組成集合,并說明理由:
(1)大于3小于11的偶數(shù);
(2)我國的小河流. 讓學(xué)生充分發(fā)表自己的建解.
3. 讓學(xué)生自己舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,并說明理由.教師對學(xué)生的學(xué)習(xí)活動給予及時的評價.
4.教師提出問題,讓學(xué)生思考
b是 (1)如果用A表示高—(3)班全體學(xué)生組成的集合,用a表示高一(3)班的一位同學(xué),
高一(4)班的一位同學(xué),那么a,b與集合A分別有什么關(guān)系?由此引導(dǎo)學(xué)生得出元素與集合的關(guān)系有兩種:屬于和不屬于.
如果a是集合A的元素,就說a屬于集合A,記作a?A.
如果a不是集合A的元素,就說a不屬于集合A,記作a?A.
(2)如果用A表示“所有的安理會常任理事國”組成的集合,則中國.日本與集合A的關(guān)系分別是什么?請用數(shù)學(xué)符號分別表示.
(3)讓學(xué)生完成教材第6頁練習(xí)第1題.
5.教師引導(dǎo)學(xué)生回憶數(shù)集擴充過程,然后閱讀教材中的相交內(nèi)容,寫出常用數(shù)集的記號.并讓學(xué)生完成習(xí)題1.1A組第1題.
6.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,并思考.討論下列問題:
(1)要表示一個集合共有幾種方式?
(2)試比較自然語言.列舉法和描述法在表示集合時,各自的特點?適用的對象是什么?
(3)如何根據(jù)問題選擇適當(dāng)?shù)募媳硎痉?
使學(xué)生弄清楚三種表示方式的優(yōu)缺點和體會它們存在的必要性和適用對象。
設(shè)計意圖:明確集合元素的三大特性,使學(xué)生弄清楚三種表示方式的優(yōu)缺點,從而突破難點。
(四)鞏固深化,反饋矯正
教師投影學(xué)習(xí):
(1)用自然語言描述集合{1,3,5,7,9};
(2)用例舉法表示集合A?{x?N|1?x?8}
(3)試選擇適當(dāng)?shù)姆椒ū硎鞠铝屑希航滩牡?頁練習(xí)第2題.
設(shè)計意圖:使學(xué)生及時鞏固所學(xué)新知,體會三種表示方式存在的必要性和適用對象
(五)歸納小結(jié),布置作業(yè)
小結(jié):在師生互動中,讓學(xué)生了解或體會下例問題:
1.本節(jié)課我們學(xué)習(xí)了哪些知識內(nèi)容?
2.你認為學(xué)習(xí)集合有什么意義?
3.選擇集合的表示法時應(yīng)注意些什么?
設(shè)計意圖:通過回顧,對概念的發(fā)生與發(fā)展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。
作業(yè): 1.課后書面作業(yè):第13頁習(xí)題1.1A組第4題.
2. 元素與集合的關(guān)系有多少種?如何表示?類似地集合與集合間的關(guān)系又有多少種呢?如何表示?請同學(xué)們通過預(yù)習(xí)教材.
五.板書分析
高一數(shù)學(xué)說課稿15
一、本節(jié)課內(nèi)容的數(shù)學(xué)本質(zhì)
本節(jié)課的主要任務(wù)是探究二分法基本原理,給出用二分法求方程近似解的基本步驟,使學(xué)生學(xué)會借助計算器用二分法求給定精確度的方程的近似解。通過探究讓學(xué)生體驗從特殊到一般的認識過程,滲透逐步逼近和無限逼近思想(極限思想),體會“近似是普遍的、精確則是特殊的”辯證唯物主義觀點。引導(dǎo)學(xué)生用聯(lián)系的觀點理解有關(guān)內(nèi)容,通過求方程的近似解感受函數(shù)、方程、不等式以及算法等內(nèi)容的有機結(jié)合,使學(xué)生體會知識之間的聯(lián)系。
所以本節(jié)課的本質(zhì)是讓學(xué)生體會函數(shù)與方程的思想、近似的思想、逼近的思想和初步感受程序化地處理問題的算法思想。
二、本節(jié)課內(nèi)容的地位、作用
“二分法”的理論依據(jù)是“函數(shù)零點的存在性(定理)”,本節(jié)課是上節(jié)學(xué)習(xí)內(nèi)容《方程的根與函數(shù)的零點》的自然延伸;是數(shù)學(xué)必修3算法教學(xué)的一個前奏和準(zhǔn)備;同時滲透數(shù)形結(jié)合思想、近似思想、逼近思想和算法思想等。
三、學(xué)生情況分析
學(xué)生已初步理解了函數(shù)圖象與方程的根之間的關(guān)系,具備一定的用數(shù)形結(jié)合思想解決問題的能力,這為理解函數(shù)零點附近的函數(shù)值符號提供了知識準(zhǔn)備。但學(xué)生僅是比較熟悉一元二次方程解與函數(shù)零點的關(guān)系,對于高次方程、超越方程與對應(yīng)函數(shù)零點之間的聯(lián)系的認識比較模糊,計算器的使用不夠熟練,這些都給學(xué)生學(xué)習(xí)本節(jié)內(nèi)容造成一定困難。
四、教學(xué)目標(biāo)定位
根據(jù)教材內(nèi)容和學(xué)生的實際情況,本節(jié)課的教學(xué)目標(biāo)設(shè)定如下:
通過具體實例理解二分法的概念及其適用條件,了解二分法是求方程近似解的一種方法,會用二分法求某些具體方程的近似解,從中體會函數(shù)與方程之間的聯(lián)系,體會程序化解決問題的思想。
借助計算器用二分法求方程的近似解,讓學(xué)生充分體驗近似的思想、逼近的思想和程序化地處理問題的思想及其重要作用,并為下一步學(xué)習(xí)算法做知識準(zhǔn)備.
通過探究、展示、交流,養(yǎng)成良好的學(xué)習(xí)品質(zhì),增強合作意識。
通過具體問題體會逼近過程,感受精確與近似的相對統(tǒng)一。
五、教學(xué)診斷分析
“二分法”的思想方法簡便而又應(yīng)用廣泛,所需的數(shù)學(xué)知識較少,算法流程比較簡潔,便于編寫計算機程序;利用計算器和多媒體輔助教學(xué),直觀明了;學(xué)生在生活中也有相關(guān)體驗,所以易于被學(xué)生理解和掌握。 但“二分法”不能用于求方程偶次重根的近似解,精確度概念不易理解。
六、教學(xué)方法和特點
本節(jié)課采用的是問題驅(qū)動、啟發(fā)探究的教學(xué)方法。
通過分組合作、互動探究、搭建平臺、分散難點的學(xué)習(xí)指導(dǎo)方法把問題逐步推進、拾級而上,并輔以多媒體教學(xué)手段,使學(xué)生自主探究二分法的原理。
本節(jié)課特點主要有以下幾方面:
1、以問題驅(qū)動教學(xué),激發(fā)學(xué)生的求知欲,體現(xiàn)了以學(xué)生為主的教學(xué)理念。
2、注重與現(xiàn)實生活中案例相結(jié)合,讓學(xué)生體會數(shù)學(xué)來源于現(xiàn)實生活又可以解決現(xiàn)實生活中的問題。
以李詠主持的幸運52猜商品價格來創(chuàng)設(shè)情境,不僅激發(fā)學(xué)生學(xué)習(xí)興趣,學(xué)生也在猜測的過程中體會二分法思想。
3、注重學(xué)生參與知識的形成過程,使他們“聽”有所思,“學(xué)”有所獲。
本節(jié)課中的每一個問題都是在師生交流中產(chǎn)生,在學(xué)生合作探究中解決,使學(xué)生經(jīng)歷了完整的學(xué)習(xí)過程,培養(yǎng)合作交流意識。
4、恰當(dāng)?shù)乩矛F(xiàn)代信息技術(shù),幫助學(xué)生揭示數(shù)學(xué)本質(zhì)。
本節(jié)課中利用計算器進行了多次計算,逐步縮小實數(shù)解所在范圍,精確度的確定就顯得非常自然,突破了教學(xué)上的難點,提高了探究活動的有效性。整個課件都以PowerPoint為制作平臺,演示Excel
程序求方程的近似解,界畫活潑,充分體現(xiàn)了信息技術(shù)與數(shù)學(xué)課程有機整合。
七、預(yù)期效果分析
以方程的根與函數(shù)的零點知識作基礎(chǔ),通過對求方程近似解的探究討論,使學(xué)生主動參與數(shù)學(xué)實踐活動;采用多媒體技術(shù),大容量信息的呈現(xiàn)和生動形象的演示,激發(fā)學(xué)生學(xué)習(xí)興趣、激活學(xué)生思維,掌握二分法的本質(zhì),完成教學(xué)目標(biāo)。
另外盡管使用了科學(xué)計算器,但求一個方程的近似解也是很費時的,學(xué)生容易出現(xiàn)計算錯誤和產(chǎn)生急躁情緒;況且問題探究式教學(xué)跟學(xué)生的學(xué)習(xí)程度有很大關(guān)系,各小組的探究時間存在差異,教師要適時指導(dǎo)。
【高一數(shù)學(xué)說課稿】相關(guān)文章:
高一數(shù)學(xué)的說課稿02-18
高一數(shù)學(xué)說課稿12-28
人教版高一數(shù)學(xué)優(yōu)秀說課稿02-17
高一數(shù)學(xué)說課稿范文06-12