高二的數學說課稿(15篇)
作為一名默默奉獻的教育工作者,通常需要準備好一份說課稿,編寫說課稿是提高業務素質的有效途徑。那么應當如何寫說課稿呢?下面是小編精心整理的高二的數學說課稿,希望對大家有所幫助。
高二的數學說課稿1
一:教材分析:
1、教材的地位與作用:本節課要講的是正、余弦函數的性質,它是歷年高考的重點內容之一,在高考中常以選擇題、填空題的形式出現。有時與其它三角變換、函數的一般性質綜合。考查靈活,常有創新性。這就要求我們注意運用三角函數的性質培養學生善于運用三角函數的性質解決問題。因此,學好這節課不僅可以為我們今后學習正切、余切函數的性質打下基礎,還可以進一步提高學生分析問題和解決問題的能力,它對知識起到了承上啟下的作用。
2、教學目標的確定:根據教參及教學大綱的要求,依據教學目的以及學生的實際情況,制定如下的教學目標:
(1)知識目標:正、余弦函數的性質及應用(定義域、值域、最大、最小值、奇偶性、單調性)
(2)能力目標:
a:掌握正、余弦函數的性質;
b:靈活利用正、余弦函數的性質
(3)德育目標:
a:滲透數形結合的思想
b:培養聯合變化的觀點
c:提高數學素質
3、教學重點和難點的確定及依據;
由于正、余弦函數的主要性質在本節中有著重要的地位。因此,成為本節課的重點,在教學中,單調性、奇偶性和周期性是學生第一次接觸的三個概念,而函數的單調性、奇偶性以及周期函數,周期,最小正周期的意義是本節教學中學生第一次接觸的內容。這在學生的基礎上理解有一定的難度。因此成為本節課的難點。那么克服本節課的難點的關鍵在于復習好正、余弦函數圖象的意義,充分利用圖形講清正、余弦函數的特點,梳理好講解順序,使學生通過適當的練習正確理解概念、圖象、特性、實現教學目標和進一步提高學生的學習探索能力,充分發揮學生的主體作用。
二:教材處理:
正、余弦函數的性質,其中定義域、值域、最大值、最小值,學生以前已接觸過,所以只需簡單提示。但是單調性,奇偶性,周期性是學生第一次接觸到的,考慮到學生的基礎參差不齊,接受能力不同,因此在教學中要顧全局,耐心講解,并通過適當的教具啟發調動學生的主觀能動性。
三、教學方法和手段:
1、教學方法:啟發誘導式教學方法,為增強圖象的形象直觀性,增大教學內容,提高效率。我利用計算機軟件,在此基礎上,學生運用觀察法、發現法、學習法、歸納法以及練習法進行學習,在教學過程中,首先我以習提問形式引入課題,意義使學生利用類比思想,認識到研究三角函數的方向所在,減少盲目性。為了有利于學生正確了解正、余弦圖形的性質,我又指導了學生復習正、余弦函數的圖象。再從介紹圖象的特點讓學生觀察、發現、歸納函數的性質。同時結合不同例子鞏固所學的知識,訓練學生的知識應用能力。軟件輔助教的充分利用使得教學生動而有條理,使學生認識到數歸思想、數形結合在學習知識中的作用。
2、教學手段:根據本節課的特點,要在正、余弦函數的圖象的基礎上操作性質,所以有條件的話不防可用動畫的形式表現,給學生一種直觀形象,不僅激發了學生的創造性思維能力,更起到了事半功倍的效果。
四、教學過程:
1、復習導入:
通過復習已學過的正、余弦函數的圖象,不妨叫學生自己作圖,這樣不僅復習了上節課的五點作圖法,還可以引出新課,正、余弦函數的性質
2、新課
a:打出多媒體課件,不妨叫學生自己觀察正、余弦函數的圖象,定義域和值域,最大值,最小值,學生應該都能觀察出來,只須稍微強調一下。
b:周期函數的定義:可有誘導公式sin(x+2kn)=sinx
得出函數值是按一定的規律重復取的,給出定義,講解定義時,要特別強調“作零常數t”,及“對于定義域的每一值,都要有f(x+t)=f(x)成立,也就是說,如果在定義域內的每一個值使得f(x+t)=f(x)成立。非零常數t就是周期了,不妨舉一個例子,是否正弦函數的周期,sin(n/2+x)是否等于sin(x)還應強調并不是所有的函數都會有最小正周期。
c:奇偶性:在講解定義時,應該強調,在判斷函數是否為奇偶函數時,必須先看其定義域是否關于原點對稱,后再由f(x)=f(-x)或f(-x)=-f(x),也就是說,定義域關于原點對稱,一個函數有奇偶性的必要條件,還應強調并不是所有的函數都有奇偶性,但也有函數既是奇函數,也是偶函數。可以舉例說明:奇函數一定關于原點對稱,偶函數一定關于y軸對稱。反之也成立。
d:在講解周期性、奇偶性、單調性時可有多媒體課件實現。
(1)、對稱軸:y=sinx的對稱軸是x=kn+n/2;y=cosx的對稱軸是x=kn;對稱性;
(2)對稱中心:y=sinx的對稱中心是(kn,0)y=cosx的對稱中心是(kn+n/2,0)
當y=sinxx∈[-n/2+2kn,n/2+2kn]時,曲線逐漸上升,y的值由-1逐漸增加到1;
單調性x∈[n/2+2kn,n/2+2kn]時,曲線逐漸下降,y的值由1逐漸減少到-1;
當y=cosxx∈[-n+2kn,2kn]時,曲線逐漸上升,y的值由-1逐漸增加到1;
x∈[2kn,n+2kn]時,曲線逐漸下降,y的值由1逐漸減少到-1;
五、例題講解:
例1:
cos(-23n/5)-cos(-17n/4)
問:能否求出上式的值?能否求出其值比0大還是小?須運用我們這節課所學的哪部分知識?
求上式的值大于0還是小于0?
∵y=cosx是偶函數,∴原式為cos(23n/5)-cos(17n/4)
可知cos(23n/5) 即cos(-23n/5)-cos(-17n/4)<0 例2:y=√sinx+1 提出問題:學生能提出什么問題? 教師引導:上式有沒有最大值,最小值,值域,什么時候取得最大值?什么時候取得最小值?奇偶性如何?能不能畫出它的圖象?圖象與y=cosx有什么關系? 求取的最大值的x的值所有集合。 當x取最大值時的取值為x=kn+n/2(k∈r) 即取的最大值的x的值的所有集合為[x∣x=kn+n/2(k∈r)] 例3:y=√sinx的定義域。 由0≦sinx≦1可得: x的定義域為:2kn≦x≦&pro d;+2kn(k∈r) 即x的定義域為[2kn,n+2kn](k∈r) 問:可不可以求值域?有沒有奇偶性?如果有的話,是奇函數還是偶函數? 拓展:求上式函數的奇偶性。一般來講,學生會用定義法求出上式既不是奇函數,也不是偶函數。 結果:上式既不是奇函數,也不是偶函數。 問:為什么呢? 強調:函數有奇偶性的必要條件是定義域關于原點對稱。 六、課堂小結: 通過本節學習,要求掌握正、余弦函數的性質以及性質的簡單應用,解決一些相關問題。 七、作業布置: 使學生通過作業進一步掌握和鞏固本節內容 一、教材分析; 本知識來自于人教版高中數學必修3第一章第二節,著好似一章新知識,該部分知識被安排在五本必修課本中的第三本,處于高中知識的過度階段。而在上課前,無論是老師還是學生,都會有一些相應的問題,下面兩個問題就是兩個比較有代表性的問題。 1、為什么要在數學中教語句? 2、學語句不上機,是不是紙上談兵? 現在我們來好好研究一下這兩個問題。首先,學語句是為了算法思想,而基本算法語句 是算法思想的直觀表現,是程序框圖的語言形式,所以學語句是進一步體會算法思想,進一步提高邏輯思維能力,提高思辨能力和實辨能力。(有條件上機的進行實踐,沒條件上機的進行思辨,在實踐中思辨,在思辨中實踐,提高學生的學習興趣,增加學生的實踐機會)。所以,學語句不上機,不是紙上談兵。 二、學情分析; 在學習基本算法語句之前(本節課主要講輸入語句、輸出語句與賦值語句),學生已在本章知識的第一節學習了算法與程序框圖的基本思想與定義,而且該部分與一些初等函數知識相掛鉤,并且相互結合學習。在此之前,學生在必修1已經對初等函數知識有了相應的學習與了解。 三、教學法; 該部分知識主要采取說教法進行講授,通過學生所熟悉的生活問題引入課堂,為公式學習創設情境,拉近數學與現實之間的距離,激發學生的求知欲,調動學生主體參與的積極性。 四、教學目標; 1、知識目標: (1)初步了解基本算法語句中的輸入、輸出、賦值語句; (2)理解算法語句是將算法的各種控制結構變成計算機能夠理解的程序語言; 2、情感目標; (1)通過對三種語句的實現,發展有條理思考,表達能力,邏輯思維能力; (2)學習算法語句,幫助學生利用計算機軟件實現算法,活躍思維,提高數學素質。 五、教學重、難點; 重點:輸入語句、輸出語句、賦值語句的基本結構特點及用法; 難點:輸入語句、輸出語句、賦值語句的意義及作用。 六、教學過程; 例1、引入生活中的例子:“讓一個學生去辦公室幫我去我的辦公室泡一杯茶”,通過這個例子來聽到學生,讓他們了解其實計算機與人的辦事思維是一樣的。在這個過程中,首先我會告訴學生:辦公室的位置、辦公桌的地點、茶葉、茶杯等信息,即將這些信息輸入到學生的大腦(該過程等價于計算機的輸入過程);然后學生開始行動,將茶葉、水放入茶杯(該過程等價于計算機的賦值過程);最后學生將完成的茶水給我(該過程等價于計算機的輸出過程)。 通過該例子的引入,使學生對本次課堂所要學習的知識有初步的了解,使他們在接受正式的計算機基本語句之前對該部分知識有一個簡單的邏輯思維,從而使他們更容易接受該部分知識,最后達到減輕學習知識難度的目的,也為后面的學習做鋪墊。 例2、用描點法做函數y?x3?3x2?24x?30的圖像時,需要求出函數的自變量和函數的一組對應值,編寫程序,分別計算出當x??5,?4,?3,?2,?1,0, 1, 2, 3, 4, 5時的函數值。 (現在教學生來泡茶)算法分析: 根據題意,對于每一個輸入的自變量的值,都要輸出相應的函數值,寫出算法步驟如下: 第一步,輸入一個自變量x的值。(計算機簡單算法語句的輸入過程,泡茶第一步) 第二部,計算y?x3?3x2?24x?30。 第三部,輸出y。(計算機簡單算法語句的輸出過程,泡茶第三部) 下面,結合上節課所學的知識,復習并鞏固上節課所學的程序框圖,將上面的算法分析用程序框圖表示出來。 顯然,這是一個由順序結構構成的算法,按照程序框圖中流程線的方向,引導學生,得出相應的算法語句,最后得出輸入語句、輸出語句、賦值語句的定義。 各位領導,各位老師: 我說課的課題是《任意角的三角函數》,內容取自人教版普通高中課程標準實驗教科書《數學》④(必修)第1。2。1節。 一、教材結構與內容簡析 本節內容在全書及章節的地位:三角函數是描述周期運動現象的重要的數學模型,有非常廣泛的應用。三角函數的定義是在初中對銳角三角函數的定義以及剛學過的“角的概念的推廣”的基礎上討論和研究的。三角函數的定義是本章最基本的概念,對三角內容的整體學習至關重要,是其他所有知識的出發點。緊緊扣住三角函數定義這個寶貴的源泉,可以自然地導出本章的具體內容:三角函數線、定義域、符號判斷、值域、同角三角函數關系、多組誘導公式、多組變換公式、圖象和性質。 三角函數的定義在教材中起著承前啟后的作用,一方面,通過這部分內容的學習,可以幫助學生更加深入理解函數這一基本概念,另一方面它又為平面向量、解析幾何等內容的學習作必要的準備。三角函數知識還是物理學、高等數學、測量學、天文學的重要基礎。 三角函數定義必然是學好全章內容的關鍵,如果學生掌握不好,將直接影響到后續內容的學習,由三角函數定義的基礎性和應用的廣泛性決定了本節教材的重點就是定義本身。 數學思想方法分析:作為一名數學老師,不僅要傳授給學生數學知識,更重要的是傳授給學生數學思想、數學意識,因此本節課在教學中力圖向學生展示嘗試類比、數形結合等數學思想方法。 二、教學重點、難點、關鍵 教學重點:任意角的三角函數的定義,三角函數的符號規律。 教學難點:任意角的三角函數概念的建構過程。 教學關鍵:如何想到建立直角坐標系;六個比值的確定性( α確定,比值也隨之確定)與依賴性(比值隨著α的變化而變化)。 三、學情分析 學生已經掌握的內容及學生學習能力 1。 學生在初中時已經學習了基本的銳角三角函數的定義,掌握了銳角三角函數的一些常見的知識和求法。 2。學生的運算能力較差。 3。部分同學對數學的學習有相當的興趣和積極性。 4。在探究問題的能力,合作交流的意識等方面發展不夠均衡,必須在老師一定的指導下才能進行。 四、 教學目標 根據上述教材結構與內容分析,考慮到學生已有的認知結構心理特征 ,我制定如下教學目標: 1。基礎知識目標:使學生正確理解任意角的正弦、余弦、正切的定義,了解余切、正割、余割的定義; 2。能力訓練目標:通過學生積極參與知識的“發現”與“形成”的過程,培養合情猜測的能力。 3。情感目標:通過學習,滲透數形結合和類比的數學思想,培養學生良好的思維習慣。 下面,為了講清重點、難點,使學生能達到本節設定的教學目標,我再從教法和學法上談談: 五、教學理念和方法 教學中注意用新課程理念處理傳統教材,學生的數學學習活動不僅要接受、記憶、模仿和練習,而且要自主探索、合作交流、師生互動,教師發揮組織者、引導者、合作者的作用,引導學生主體參與、揭示本質、經歷過程。 根據本節課內容、高一學生認知特點和我自己的教學風格,本節課采用“啟發探索、講練結合”的方法組織教學教法, 在課堂結構上,設計了 ①創設情境——揭示課題②推廣認知——形成概念③鞏固新知——探求規律④總結反思——提高認識⑤任務后延——自主探究五個層次的學法,它們環環相扣,層層深入,從而順利完成教學目標。 接下來,我再具體談一談這堂課的教學過程: 六、教學程序及設想 總體來說, 由舊及新,由易及難,逐步加強,逐步推進,給定定義后通過應用定義又逐步發現新知識,拓展、完善定義。 先由初中的直角三角形中銳角三角函數的定義,過度到直角坐標系中銳角三角函數的定義,再發展到直角坐標系中任意角三角函數的定義。 (一)創設情境——揭示課題 問題1:在初中我們學習了銳角三角函數,那么銳角三角函數是如何定義的? 【設計意圖】學生在初中學習了銳角的三角函數概念,現在學習任意角的三角函數,又是一種推廣和拓展的過程(類似于從有理數到實數的擴展)。溫故知新,要讓學生體會知識的產生、發展過程,就要從源頭上開始,從學生現有認知狀況開始,對銳角三角函數的復習就必不可少。 問題 2:角的概念推廣之后,這樣的三角函數定義還適用嗎? 問題 3:若將銳角放入直角坐標系中,你能用角的終邊上的點的坐標來表示銳角三角函數嗎? 留時間讓學生獨立思考或自由討論,教師參與討論或巡回對學困生作啟發引導。 能表示嗎?怎樣表示?針對剛才的問題點名讓學生回答。 用角的對邊、鄰邊、斜邊比值的說法顯然是受到阻礙了,由于前面已經以直角坐標系為工具來研究任意角了,學生一般會想到(否則教師進行提示)繼續用直角坐標系來研究任意角的三角函數。 【設計意圖】 從學生現有知識水平和認知能力出發,創設問題情景,讓學生產生認知沖突,進行必要的啟發,將學生思維引上自主探索、合作交流的“再創造”征程。 教師對學生回答情況進行點評后布置任務情景:請同學們用直角坐標系重新研究銳角三角函數定義! 師生共做(學生口述,教師板書圖形和比值)。 問題 4:對于確定的角 ,這三個比值是否與P在 的終邊上的位置有關?為什么? 先讓學生想象思考,作出主觀判斷,再引導學生觀察右圖, 聯系相似三角形知識,探索發現: 對于銳角α的每一個確定值, 六個比值都是確定的,不會隨P在終邊上的移動而變化。 得出結論(強調):當α為銳角時,六個比值隨α的變化而變化;但對于銳角α的每一個確定值,六個比值都是確定的,不會隨P在終邊上的移動而變化。 所以,六個比值分別是以角α為自變量、以比值為函數值的函數。 (二)推廣認知——形成概念 將銳角的比值情形推廣到任意角α后,水到渠成,師生共同進行探索和推廣出:任意角的三角函數定義。同時教師強調:由于弧度制使角和實數建立了一一對應關系,所以三角函數是以實數為自變量的函數,對數學學習能力較好的同學起到了很好的指導作用。 教師指出: sinα、csα、tanα的定義域必須緊扣三角函數定義在理解的基礎上記熟,ctα、cscα、secα的定義域不要求記憶。 (關于值域,到后面再學習)。 【設計意圖】定義域是函數三要素之一,研究函數必須明確定義域。 指導學生根據定義自主探索確定三角函數定義域,有利于在理解的基礎上記住它、應用它,也增進對三角函數概念的掌握。 (三)鞏固新知——探求規律 為了使學生達到對知識的深化理解,進而達到鞏固提高的效果, 例1。已知角 的終邊過點 ,求 的六個三角函數值 要求:讀完題目,思考:計算什么?需要準備什么?閉目心算,對照板書,模仿書面表達格式。 鞏固定義之后,我特地設計了一組即時訓練題,以鞏固和加深對三角函數概念的理解,通過課堂積極主動的練習活動,培養學生分析解決問題的能力。 例2。 求 的正弦、余弦和正切值。 分析: 終邊上有無窮多個點,根據三角函數的定義,只要知道 終邊上任意一個點的坐標,就可以計算這個角的三角函數值(或判斷其無意義) 師生探索:緊扣三角函數定義求解,首先要在終邊上取定一點。終邊在哪兒呢?取定哪一點呢?任意點、還是特殊點?要靈活,只要能夠算出三角函數值,都可以。 取特殊點能使計算更簡明。 等待學生基本理解和掌握三角函數定義后,觀察、分析初、高中所計算的函數值有何變化,讓學生意識到三角函數值的正負與角所在象限有關, 然后引導學生緊緊抓住三角函數定義來分析,從而導出三角函數值的正負與角所在象限的關系,進而由教師總結符號記憶方法,便于學生記憶。 【設計意圖】判斷三角函數值的正負符號,是本章教材的一項重要的知識、技能要求。 要引導學生抓住定義、數形結合判斷和記憶三角函數值的正負符號,并總結出形象的“才”字符號法則,這也是理解和記憶的關鍵。 (四)總結反思——提高認識 由學生總結本節課所學習的主要內容:⑴任意角的三角函數的定義及其定義域;⑵三角函數的符號規律。讓學生通過知識性內容的小結,把課堂教學傳授的知識盡快化為學生的素質;通過數學思想方法的小結,使學生更深刻地理解數學思想方法在解題中的地位和應用,并且逐漸培養學生的良好的個性品質目標。 (五)任務后延——自主探究 學生經過以上四個環節的學習,已經初步掌握了任意角的三角函數的定義及三角函數的符號規律,有待進一步提高認知水平,因此我針對學生素質的差異設計了有層次的作業,其中思考題的設計思想是:綜合練習鞏固提高,更為下節的學習內容打下基礎,同時留給學生課后自主探究,這樣既使學生掌握基礎知識,又使學有佘力的學生有所提高,從而達到拔尖和“減負”的目的,以有利于全體學生的發展。 六、簡述板書設計。 ctα、cscα、secα的定義寫在sinα、csα、tanα的左下方,突出本節重要內容的主體地位。 結束:以上,我僅從說教材,說學情,說教法,說學法,說教學程序上說明了“教什么”和“怎么教”,闡明了“為什么這樣教”。 希望各位領導 、同行對本堂說課提出寶貴意見。 各位評委老師, 大家好! 我是本科數學XX號選手,今天我要進行說課的課題是高中數學必修一第一章第三節第一課時《函數單調性與(小)值》(可以在這時候板書課題,以緩解緊張)。我將從教材分析;教學目標分析;教法、學法;教學過程;教學評價五個方面來陳述我對本節課的設計方案。懇請在座的專家評委批評指正。 一、教材分析 1、教材的地位和作用 (1)本節課主要對函數單調性的學習; (2)它是在學習函數概念的基礎上進行學習的,同時又為基本初等函數的學習奠定了基礎,所以他在教材中起著承前啟后的重要作用;(可以看看這一課題的前后章節來寫) (3)它是歷年高考的熱點、難點問題 (根據具體的課題改變就行了,如果不是熱點難點問題就刪掉) 2、教材重、難點 重點:函數單調性的定義 難點:函數單調性的證明 重難點突破:在學生已有知識的基礎上,通過認真觀察思考,并通過小組合作探究的辦法來實現重難點突破。(這個必須要有) 二、教學目標 知識目標: (1)函數單調性的定義 (2)函數單調性的證明 能力目標:培養學生全面分析、抽象和概括的能力,以及了解由簡單到復雜,由特殊到一般的化歸思想 情感目標:培養學生勇于探索的精神和善于合作的意識 (這樣的教學目標設計更注重教學過程和情感體驗,立足教學目標多元化) 三、教法學法分析 1、教法分析 "教必有法而教無定法",只有方法得當才會有效。新課程標準之處教師是教學的組織者、引導者、合作者,在教學過程要充分調動學生的積極性、主動性。本著這一原則,在教學過程中我主要采用以下教學方法:開放式探究法、啟發式引導法、小組合作討論法、反饋式評價法 2、學法分析 "授人以魚,不如授人以漁",最有價值的知識是關于方法的只是。學生作為教學活動的主題,在學習過程中的參與狀態和參與度是影響教學效果最重要的因素。在學法選擇上,我主要采用:自主探究法、觀察發現法、合作交流法、歸納總結法。 (前三部分用時控制在三分鐘以內,可適當刪減) 四、教學過程 1、以舊引新,導入新知 通過課前小研究讓學生自行繪制出一次函數f(x)=x和二次函數f(x)=x^2的圖像,并觀察函數圖象的特點,總結歸納。通過課上小組討論歸納,引導學生發現,教師總結:一次函數f(x)=x的圖像在定義域是直線上升的,而二次函數f(x)=x^2的圖像是一個曲線,在(—∞,0)上是下降的,而在(0,+∞)上是上升的。(適當添加手勢,這樣看起來更自然) 2、創設問題,探索新知 緊接著提出問題,你能用二次函數f(x)=x^2表達式來描述函數在(—∞,0)的圖像?教師總結,并板書,揭示函數單調性的定義,并注意強調可以利用作差法來判斷這個函數的單調性。 讓學生模仿剛才的表述法來描述二次函數f(x)=x^2在(0,+∞)的圖像,并找個別同學起來作答,規范學生的數學用語。 讓學生自主學習函數單調區間的定義,為接下來例題學習打好基礎。 3、例題講解,學以致用 例1主要是對函數單調區間的鞏固運用,通過觀察函數定義在(—5,5)的圖像來找出函數的單調區間。這一例題主要以學生個別回答為主,學生回答之后通過互評來糾正答案,檢查學生對函數單調區間的掌握。強調單調區間一般寫成半開半閉的形式 例題講解之后可讓學生自行完成課后練習4,以學生集體回答的方式檢驗學生的學習效果。 例2是將函數單調性運用到其他領域,通過函數單調性來證明物理學的波意爾定理。這是歷年高考的熱點跟難點問題,這一例題要采用教師板演的方式,來對例題進行證明,以規范總結證明步驟。一設二差三化簡四比較,注意要把f(x1)—f(x2)化簡成和差積商的形式,再比較與0的大小。 學生在熟悉證明步驟之后,做課后練習3,并以小組為單位找部分同學上臺板演,其他同學在下面自行完成,并通過自評、互評檢查證明步驟。 4、歸納小結 本節課我們主要學習了函數單調性的定義及證明過程,并在教學過程中注重培養學生勇于探索的精神和善于合作的意識。 5、作業布置 為了讓學生學習不同的數學,我將采用分層布置作業的方式: 6、板書設計 我力求簡潔明了地概括本節課的學習要點,讓學生一目了然。 (這部分最重要用時六到七分鐘,其中定義講解跟例題講解一定要說明學生的活動) 五、教學評價 本節課是在學生已有知識的基礎上學習的,在教學過程中通過自主探究、合作交流,充分調動學生的積極性跟主動性,及時吸收反饋信息,并通過學生的自評、互評,讓內部動機和外界刺激協調作用,促進其數學素養不斷提高。 一、教學設計 ——人教A版數學選修2-3第1章第3節第2課時 一、教材背景分析 1.教材的地位和作用 《“楊輝三角”與二項式系數的性質》是全日制普通高級中學教科書人教A版選修2-3第1章第3節第2課時. 教科書將二項式系數性質的討論與“楊輝三角”結合起來,是因為“楊輝三角”蘊含了豐富的內容,由它可以直觀看出二項式系數的性質,“楊輝三角”是我國古代數學重要成就之一,顯示了我國古代人民的卓越智慧和才能,應抓住這一題材,對學生進行愛國主義教育,激勵學生的民族自豪感. 本節內容以前面學習的二項式定理為基礎,由于二項式系數組成的數列就是一個離散函數,引導學生從函數的角度研究二項式系數的性質,便于建立知識的前后聯系,使學生體會用函數知識研究問題的方法,可以畫出它的圖象,利用幾何直觀、數形結合、特殊到一般的數學思想方法進行思考,這對發現規律,形成證明思路等都有好處. 這一過程不僅有利于培養學生的思維能力、理性精神和實踐能力,也有利于學生理解本節課的核心數學知識,發展其數學應用意識. 研究二項式系數這組特定的組合數的性質,對鞏固二項式定理,建立相關知識之間的聯系,進一步認識組合數、進行組合數的計算和變形都有重要的作用,對后續學習微分方程等也具有重要地位. 2.學情分析 知識結構:學生已學習兩個計數原理和二項式定理,再讓學生課前探究“楊輝三角”包含的規律,結合“楊輝三角”,并從函數的角度研究二項式系數的性質. 心理特征:高二的學生已經具備了一定的分析、探究問題的能力,恰時恰點的問題引導就能建立知識之間的相互聯系,解決相關問題. 3.教學重點與難點 重點:體會用函數知識研究問題的方法,理解二項式系數的`性質. 難點:結合函數圖象,理解增減性與最大值時,根據n的奇偶性確定相應的分界點;利用賦值法證明二項式系數的性質. 關鍵:函數思想的滲透. 二、教學目標 1.通過課前組織學生開展“了解楊輝三角、探究與發現楊輝三角包含的規律”的學習活動,讓學生感受我國古代數學成就及其數學美,激發學生的民族自豪感. 2.通過學生從函數的角度研究二項式系數的性質,建立知識的前后聯系,體會用函數知識研究問題的方法,培養學生的觀察能力和歸納推理能力. 3.通過體驗“發現規律、尋找聯系、探究證明、性質運用”的學習過程,使學生掌握二項式系數的一些性質,體會應用數形結合、特殊到一般進行歸納、賦值法等重要數學思想方法解決問題的“再創造”過程. 4.通過恰時恰點的問題引入、引申,采用學生課前自主探究、課上合作探究、課下延伸探究的學習方式,培養學生問題意識,提高學生思維能力,孕育學生創新精神,激發學生探索、研究我國古代數學的熱情. 三、教法選擇和學法指導 教法:問題引導、合作探究. 學法:從課前探究和課上展示中感知規律,結合“楊輝三角”和函數圖象性質領悟性質,在探究證明性質中理解知識,螺旋上升地學習核心數學知識和滲透重要數學思想. 四、教學基本流程設計 五、教學過程 1. 展示成果話楊輝 課前開展學習活動:了解“楊輝三角”的歷史背景、地位和作用,探究與發現“楊輝三角”包含的規律. (1)學生從不同的角度暢談“楊輝三角”,對它有何了解及認識. (2)各小組展示探究與發現的成果——“楊輝三角”包含的一些規律. 【設計意圖】引導學生開展課外學習,了解“楊輝三角”,探究與發現“楊輝三角”包含的規律,弘揚我國古代數學文化;展示探究與發現的楊輝三角的規律,為學習二項式系數的性質埋下伏筆. 2. 感知規律悟性質 通過課外學習,同學們觀察發現了楊輝三角的一些規律,并且知道楊輝三角的第 行就是 展開式的二項式系數, 展開式的二項式系數具有楊輝三角同行中的規律——對稱性和增減性與最大值. 【設計意圖】尋找二項式系數與楊輝三角的關系,從而讓學生理解二項式系數具有楊輝三角同行中的規律. 3. 聯系舊知探新知 【問題提出】怎樣證明 展開式的二項式系數具有對稱性和增減性與最大值呢? 【問題探究】探究:(1) 展開式的二項式系數 , 可以看成是以 為自變量的函數 嗎?它的定義域是什么? (2)畫出 和7時函數 的圖象,并觀察分析他們是否具有對稱性和增減性與最大值. (3)結合楊輝三角和所畫函數圖象說明或證明二項式系數的性質. 對稱性:與首末兩端“等距離”的兩個二項式系數相等. . 增減性與最大值: ,所以 相對于 的增減情況由 決定.由 可知,當 時,二項式系數是逐漸增大的.由對稱性知它的后半部分是逐漸減小的,且在中間取得最大值.當 的偶數時,中間的一項取得最大值;當 是奇數時,中間的兩項 , 相等,且同時取得最大值. 【設計意圖】教師引導學生用函數思想探究二項式系數的性質,學生畫圖并觀察分析圖象性質;運用特殊到一般、數形結合的數學思想歸納二項式系數的性質,升華認識;通過分組討論、自主探究、合作交流,說明或證明二項式系數的對稱性和增減性與最大值,提高學生合作意識. 4. 合作交流議方法 【繼續探究】問題: 展開式的各二項式系數的和是多少? 探究:(1)計算 展開式的二項式系數的和( =1,2,3,4,5,6). (2)猜想 展開式的二項式系數的和. (3)怎樣證明你猜想的結論成立? 賦值法:已知 , 令 ,則 . 這就是說, 的展開式的各個二項式系數的和等于 . 元集合子集的個數(兩個計數原理). 分類計數原理: 分步計數原理: 個2相乘,即 . 所以 . 【問題拓展】你能求 嗎? 在展開式 中,令 , 則得 , 即 ,所以 , 在 的展開式中,奇數項的二項式系數的和等于偶數項的二項式系數的和. 【設計意圖】通過學生歸納猜想各二項式系數的和,引導學生驗證猜想結論是否正確;同時為了突破利用賦值法證明二項式系數性質的難點,引導學生從模型化的角度出發,多角度的分析問題、探究問題、解決問題,將學生思維推向高潮,既加深學生對前后知識的內在聯系的理解,又從深度和廣度上讓學生感受數學知識的串聯和呼應. 5. 反饋升華撥思路 練1. 的展開式中的第四項和第八項的二項式系數相等,則 等于 . 練2. 的展開式中前 項的二項式系數逐漸增大,后半部分逐漸減小,二項式系數取得最大值的是第 項. 練3.已知 ,求: (1) ;(2) . 【設計意圖】促進學生進一步掌握二項式系數的性質,學會用賦值法解決問題,促進其有意識的運用. 6. 懸念小結再求索 【課堂小結】 通過本節課的學習,你有什么收獲和體會(從數學和生活的角度)?還有什么疑問嗎? 【課堂延伸】今天同學們展示了一些楊輝三角的規律,但是作為我國古代數學重要成就之一的楊輝三角還有更多有趣的規律,相信大家一定有極高的熱情和嚴謹的態度去探究與發現楊輝三角的奧妙之處. 【課外活動】(研究性學習) 活動主題:楊輝三角中的奧妙. 活動目標:探究與發現楊輝三角中的更多奧妙. 活動方案步驟:查閱資料,收集信息;獨立思考,發現規律,猜想證明;合作探究,小組討論,形成初步結論;與指導老師及其他小組成員交流展示;撰寫研究性學習報告. 【設計意圖】通過課堂的整理、總結與反思,使學生更好的掌握主干知識,體會探究過程中滲透的數學思想方法,再次感受我國古代數學成就,激勵自己努力學習.“楊輝三角”還有很多有趣的規律,讓學生帶著問題走進課堂,帶著疑問離開教室,培養學生自主研修的習慣,提高學生探究問題、解決問題的能力.設計研究性學習活動,誘發學生創造性的想象和推理.同時教會學生如何開展研究性學習. 一、教材分析 概率是高中數學的新增內容,它自成體系,是數學中一個較獨立的學科分支,與以往所學的數學知識有很大的區別,但與人們的日常生活密切相關,而且對思維能力有較高要求,在高考中占有重要地位。 本節內容在本章節的地位:《條件概率》(第一課時)是高中課程標準實驗教材數學選修2—3第二章第二節的內容,它在教材中起著承前啟后的作用,一方面,可以鞏固古典概型概率的計算方法,另一方面,為研究相互獨立事件打下良好的基礎。 教學重點、難點和關鍵:教學重點是條件概率的定義、計算公式的推導及條件概率的計算;難點是條件概率的判斷與計算;教學關鍵是數學建模。 二、教學目標 根據上述教材分析,考慮到學生已有的認知結構心理特征,我制定如下教學目標: 基礎知識目標——掌握條件概率的定義及計算方法 思想方法目標——歸納、類比的方法和建模思想 能力培養目標——培養學生思維的靈活性及知識的遷移能力 根據這兩年高考改卷的反饋信息,考生在概率題的書面表達上丟分的情況是很普遍的,因此本節課還想達到: 表達能力目標——培養學生書面表達的嚴謹和簡潔 個性品質目標——培養學生克服“心欲通而不能,口欲講而不會”的困難,提高探索問題的積極性和學習數學的興趣 三、教法 在教學中,不僅要使學生“知其然”,而且要使學生“知其所以然”。為了體現以生為本,遵循學生的認知規律,堅持以教師為主導,學生為主體的教學思想,體現循序漸進的教學原則,我采用引導發現法、分析討論法的教學方法,通過提問、啟發、設問、歸納、講練結合、適時點撥的方法,讓學生的思維活動在老師的引導下層層展開,讓學生大膽參與課堂教學,使他們“聽”有所“思”,“練”有所“獲”,使傳授知識與培養能力融為一體。 四、學法 以建構主義為指導,采用以啟發式教學為主,同時結合師生共同討論、歸納的教學方法,根據學生的認知水平,為課堂設計了: ①創設情景——引入概念 ②類比推導——得出公式 ③討論研究——歸納方法 ④即時訓練——鞏固方法 ⑤總結反思——提高認識 ⑥作業布置——評價反饋 六個層次的學法,它們環環相扣,層層深入,從而順利完成教學目標。 五、教學過程 創設情景——引入概念 首先引入兩個實際問題,激發學生的興趣。 【實例1】3張獎券中只有1張能中獎,現分別由3名同學無放回地抽取,最后一名同學抽到中獎獎券的概率是多少?若第一個同學沒有抽到中獎獎券,則最后一名同學抽到中獎獎券的概率是多少? 【實例2】有5道快速搶答題,其中3道理科題,2道文科題,從中無放回地抽取兩次,每次抽取1道題,兩次都抽到理科題的概率是多少?若第一次抽到理科題,則第二次抽到理科題的概率是多少? 每個實例有兩個問題組成,后一個問題多一個限制條件,教師引導學生對比兩個實例中前后問題的區別和聯系,概括出條件概率的定義。 由于判斷事件的類型對選擇概率公式起著決定性影響,因此在引入定義后讓學生再做一組判斷題練習以鞏固對定義的理解。 【練習】判斷下列是否屬于條件概率 ⒈、在管理系中選1個人排頭舉旗,恰好選中一個的是三年級男生的概率 ⒉、有10把鑰匙,其中只有1把能將門打開,隨機抽出1把試開,若試過的不再用,則第2次能將門打開的概率 ⒊、某小組12人分得1張球票,依次抽簽,已知前4個人未摸到,則第5個人模到球票的概率 ⒋、兩臺車床加工同樣的零件,第一臺的次品率未0.03,第二臺的次品率為0.02,兩臺車床加工的零件放在一起,隨機取出一個零件是發現是次品,則它是第二臺機床加工的概率是多少? ⒌、箱子里裝有10件產品,其中只有一件是次品,在9件合格品中,有6件是一等品,3件二等品,現從中任取3件,若取得的都是合格,則僅有1件是一等品的概率 通過以上練習使學生能準確區分條件概率與一般概率。 異面直線所成角說課稿《異面直線所成角》是高中數學《立體幾何》一章中的第二節《空間兩直線》中的重要內容、《立體幾何》是高中數學教學中相對獨立的一章,而本節內容恰是把平面內的直線擴展為空間任兩條直線的位置關系問題,是培養學生建立空間想象力的關鍵,下面就從以下四個方面說課。 第一方面:教學設計意圖 高中《數學教學大綱》要求學生具有良好的空間想象力和一定的作圖識圖能力,本節教學也要求培養學生對空間兩直線所成角這一立體概念的理解,在此基礎上,再依據對學生進行素質教育的目標制定了以下教學目標: 1、認知目標:理解空間兩異面直線所成角的概念,并會作出,求出兩異面直線所成角。 2、能力目標:培養學生的識圖,作圖能力,在習題講解中,培養學生的空間想象力和發散思維。 3、德育目標:在對學生進行創造性思維培養的同時,激發學生對科學文化知識的探求熱情和邏輯清晰的辯證主義觀點。 本節課的重,難點: 教學重點:對異面直線所成角的概念的理解和應用。 教學難點:如何在實際問題中求出異面直線所成角。 第二方面:教法的選定 本節內容作為《立體幾何》中兩大重要概念之一––––"角"的初次接觸,就要求學生能牢固的落實兩異面直線所成角的概念及作法,并能對具體問題求出所成角,這樣才能真正提高其空間想象力,根據上述目標要求和學生思維模式缺乏"立體性"這一特點,我采用了"練習教學法",從習題入手,輔以計算機軟件,將平面圖形"立"起來,為學生創設較好的思維空間,增強了教學的直觀性,再利用"問題中心式"教法,提出問題,對學生進行啟發,讓學生自己動腦,動口,動手,這樣既可以發揮教師的主導作用,又突出了學生的主體地位、 第三方面:學法的指導 要從兩個方面教會學生落實本節內容。 1、根據計算機軟件所設計的空間幾何圖形,帶領學生去識圖,讀圖,作圖,并能依據圖形的特點去分析,作出或找出所要求的所成角,從而加強學生的圖形空間想象力。 2、找到所求角后,還需指導學生利用邏輯的分析和學過的平面幾何知識最終解決問題。 第四方面:教學過程和板書設計 第一步:采用"溫故式導入",提問學生"兩異面直線所成角"的定義,加深學生對概念的掌握,在同學回答的同時,由計算機打出概念,并在重點字"銳角或直角"處閃動,突出重點。 再利用計算機演示空間兩異面直線所成角的作法,重點體現選取不同點平移均可。 第二步:進入例題講解:"如何對具體問題求異面直線所成角呢" 首先,由計算機給出本節第一道例題,及圖。 教師帶領學生一起審題,該題為求證"兩直線平行"的簡單證明題,其目的在于加強學生對異面直線所成角概念的理解,突出選取"空間任一點平移直線均可"這一原則,為此,特由計算機設計出選取不同點平移的圖及證法,再一次強調概念。 然后,進入第二道例題,同樣由計算機給出題目和圖,該題為"在已知正方體內求兩組異面直線所成角問題",不同于前題教法處在于,在教師進行了啟發性提問后,由計算機給出3個不同選點,教師讓同學自己分析并到前面操作電腦,選取解法,用計算機進行演示,并由學生自己講解、最后由教師對學生的解法進行歸納總結,從而得出"對特殊幾何體中異面直線所成角問題應以幾何體為依托,尋找特殊位置進行平移,并利用三角函數及平面幾何知識進行求解"這一結論。 例3的講解思路及方法同例2相同。 1、教學目標 1、知識與技能 (1)正確理解樣本數據標準差的意義和作用,學會計算數據的標準差。 (2)能根據實際問題的需要合理地選取樣本,從樣本數據中提取基本的數字特征(如平均數、標準差),并做出合理的解釋。 (3)會用樣本的基本數字特征估計總體的基本數字特征。 (4)形成對數據處理過程進行初步評價的意識。 2、過程與方法 在解決統計問題的過程中,進一步體會用樣本估計總體的思想,理解數形結合的數學思想和邏輯推理的數學方法。 3、情感態度與價值觀 會用隨機抽樣的方法和樣本估計總體的思想解決一些簡單的實際問題,認識統計的作用,能夠辨證地理解數學知識與現實世界的聯系。 2重點難點 重點:用樣本平均數和標準差估計總體的平均數與標準差。 難點:能應用相關知識解決簡單的實際問題。 3教學過程3.1第一學時評論(0) 新設計 【創設情境】 在一次射擊比賽中,甲、乙兩名運動員各射擊10次,命中環數如下﹕ 甲運動員﹕7,8,6,8,6,5,8,10,7,4; 乙運動員﹕9,5,7,8,7,6,8,6,7,7. 觀察上述樣本數據,你能判斷哪個運動員發揮的更穩定些嗎?為了從整體上更好地把握總體的規律,我們要通過樣本的數據對總體的數字特征進行研究。——用樣本的數字特征估計總體的數字特征(板出課題)。 【探究新知】 <一>、眾數、中位數、平均數 〖探究〗:P62 (1)怎樣將各個樣本數據匯總為一個數值,并使它成為樣本數據的“中心點”? (2)能否用一個數值來描寫樣本數據的離散程度?(讓學生回憶初中所學的一些統計知識,思考后展開討論) 初中我們曾經學過眾數,中位數,平均數等各種數字特征,應當說,這些數字都能夠為我們提供關于樣本數據的特征信息。例如前面一節在調查100位居民的月均用水量的問題中,從這些樣本數據的頻率分布直方圖可以看出,月均用水量的眾數是2.25t(最高的矩形的中點)(圖略見課本第62頁)它告訴我們,該市的月均用水量為2. 25t的居民數比月均用水量為其他值的居民數多,但它并沒有告訴我們到底多多少。 〖提問〗:請大家翻回到課本第56頁看看原來抽樣的數據,有沒有2.25這個數值呢?根據眾數的定義,2.25怎么會是眾數呢?為什么?(請大家思考作答) 分析:這是因為樣本數據的頻率分布直方圖把原始的一些數據給遺失的原因,而2.25是由樣本數據的頻率分布直方圖得來的,所以存在一些偏差。 〖提問〗:那么如何從頻率分布直方圖中估計中位數呢? 分析:在樣本數據中,有50%的個體小于或等于中位數,也有50%的個體大于或等于中位數。因此,在頻率分布直方圖中,矩形的面積大小正好表示頻率的大小,即中位數左邊和右邊的直方圖的面積應該相等。由此可以估計出中位數的值為2.02。(圖略見課本63頁圖2.2-6) 〖思考〗:2.02這個中位數的估計值,與樣本的中位數值2.0不一樣,你能解釋其中的原因嗎?(原因同上:樣本數據的頻率分布直方圖把原始的一些數據給遺失了) 課本63頁圖2.2-6)顯示,大部分居民的月均用水量在中部(2.02t左右),但是也有少數居民的月均用水量特別高,顯然,對這部分居民的用水量作出限制是非常合理的。 〖思考〗:中位數不受少數幾個極端值的影響,這在某些情況下是一個優點,但是它對極端值的不敏感有時也會成為缺點,你能舉例說明嗎?(讓學生討論,并舉例) <二>、標準差、方差 1.標準差 平均數為我們提供了樣本數據的重要信息,可是,有時平均數也會使我們作出對總體的片面判斷。某地區的統計顯示,該地區的中學生的平均身高為176㎝,給我們的印象是該地區的中學生生長發育好,身高較高。但是,假如這個平均數是從五十萬名中學生抽出的五十名身高較高的學生計算出來的話,那么,這個平均數就不能代表該地區所有中學生的身體素質。因此,只有平均數難以概括樣本數據的實際狀態。 例如,在一次射擊選拔比賽中,甲、乙兩名運動員各射擊10次,命中環數如下﹕ 甲運動員﹕7,8,6,8,6,5,8,10,7,4; 乙運動員﹕9,5,7,8,7,6,8,6,7,7. 觀察上述樣本數據,你能判斷哪個運動員發揮的更穩定些嗎?如果你是教練,選哪位選手去參加正式比賽? 我們知道,。 兩個人射擊的平均成績是一樣的。那么,是否兩個人就沒有水平差距呢?(觀察P66圖2.2-8)直觀上看,還是有差異的。很明顯,甲的成績比較分散,乙的成績相對集中,因此我們從另外的角度來考察這兩組數據。 考察樣本數據的分散程度的大小,最常用的統計量是標準差。標準差是樣本數據到平均數的一種平均距離,一般用s表示。 樣本數據的標準差的算法: (1)、算出樣本數據的平均數。 (2)、算出每個樣本數據與樣本數據平均數的差: (3)、算出(2)中的平方。 (4)、算出(3)中n個平方數的平均數,即為樣本方差。 (5)、算出(4)中平均數的算術平方根,,即為樣本標準差。 其計算公式為: 顯然,標準差較大,數據的離散程度較大;標準差較小,數據的離散程度較小。 〖提問〗:標準差的取值范圍是什么?標準差為0的樣本數據有什么特點? 從標準差的定義和計算公式都可以得出:。當時,意味著所有的樣本數據都等于樣本平均數。 (在課堂上,如果條件允許的話,可以給學生簡單的介紹一下利用計算機來計算標準差的方法。) 2.方差 從數學的角度考慮,人們有時用標準差的平方(即方差)來代替標準差,作為測量樣本數據分散程度的工具: 在刻畫樣本數據的分散程度上,方差和標準差是一樣的,但在解決實際問題時,一般多采用標準差。 【例題精析】 〖例1〗:畫出下列四組樣本數據的直方圖,說明他們的異同點。 (1)5,5,5,5,5,5,5,5,5 (2)4,4,4,5,5,5,6,6,6 (3)3,3,4,4,5,6,6,7,7 (4)2,2,2,2,5,8,8,8,8 分析:先畫出數據的直方圖,根據樣本數據算出樣本數據的平均數,利用標準差的計算公式即可算出每一組數據的標準差。 解:(圖略,可查閱課本P68) 四組數據的平均數都是5.0,標準差分別為:0.00,0.82,1.49,2.83。 他們有相同的平均數,但他們有不同的標準差,說明數據的分散程度是不一樣的。 〖例2〗:(見課本P69) 分析:比較兩個人的生產質量,只要比較他們所生產的零件內徑尺寸所組成的兩個總體的平均數與標準差的大小即可,根據用樣本估計總體的思想,我們可以通過抽樣分別獲得相應的樣本數據,然后比較這兩個樣本數據的平均數、標準差,以此作為兩個總體之間的差異的估計值。 【課堂精練】練習1. 2. 3 4 【課堂小結】 用樣本的數字特征估計總體的數字特征分兩類: 用樣本平均數估計總體平均數。 用樣本標準差估計總體標準差。樣本容量越大,估計就越精確。 平均數對數據有“取齊”的作用,代表一組數據的平均水平。 標準差描述一組數據圍繞平均數波動的大小,反映了一組數據變化的幅度。 今天我說課的課題是“兩條直線所成的角”的第一課時,我準備從以下五個方面來匯報我是如何處理教材和設計教學過程的。 一.關于教學目標的確定 通過這節課的教學,要使學生掌握兩條直線所成角的概念和夾角公式的推導方法,掌握一直線到另一直線的角和兩條直線的夾角公式及其應用,正確理解夾角公式成立的條件及特殊夾角的求法。能力的培養也是數學教學不可缺少的一環,通過這節課的教學,應培養學生數形結合的能力和提高他們閱讀理解的自學能力。另外滲透“由特殊到一般”的辯證思想和“分類討論”的思想也是這堂課的重要目標。 二.關于教材內容的選擇和處理 這節課所選用的教學內容是:教材中的定義、公式,但例題的選擇較課本難度有所加深,這是因為教材上的例題只是公式的直接應用,通過學生自學和思考老師提出的問題后,對一般學生來說是沒有什么問題的。因此,本著因材施教的原則,并著眼于會考與高考的要求,例題的難度有所加深,這樣選擇教學內容也是與教學目標相符的。 我認為這節課的教學重點是兩條直線的夾角公式及其應用,這是因為: 1.《全日制中學數學教學大綱》上明確規定要求學生“掌握兩條直線所成的角”。 2. 數學知識的應用也是會考與高考的要求,因此兩條直線夾角公式的應用毫無疑問地成為重點。 教學難點是直線L1到L2的角的公式的推導,理由有二: 1. 由于一條直線到另一條直線的角是帶方向的角,這是學生不易理解的地方。 2. 在推導直線L1到L2的角的公式的過程中,要進行分類討論,這是學生的薄弱環節。 三.關于教學方法的確定 根據這節課的內容和學生的實際水平,我采用自學輔導的方法進行教學。 自學輔導法符合教學論中的自覺性和積極性、鞏固性、可接受性,教學與發展相結合,教師的主導作用與學生的主體地位相統一等原則;自學輔導法的關鍵是通過老師的引導和啟發要求學生針對老師提出的問題閱讀理解最終解決問題。這樣就能充分調動學生學習的主動性和積極性,使學生變被動學習為主動學習。 四.關于學法的指導 課堂教學的目的就是在給學生傳授知識的同時,教給他們好的方法,使他們“會學習”。 這一節課一開始讓學生在觀察中產生疑問,在疑惑不解中,通過老師的引導。并通過自已閱讀教材使疑問逐步解決,這樣做既激發了他們的學習欲望,也培養了他們發現問題、解決問題的能力。 在給出例題后,大多數學生能想到利用入射角等于反射角來解決,這時要鼓勵學生再“嘗試”用其它方法來解,通過嘗試,學生的思維能力得到了培養,思維空間得到了拓廣,既活躍了課堂氣氛,也提高了學生的學習積極性。 五.關于教學過程的設計 首先引導學生回憶兩條直線平行與垂直的判定方法,并從兩條直線垂直是兩條直線相交的特殊情況出發,引出“兩條直線所成的角”這一課題。 接著打出投影片①,讓學生通過觀察說出圖中直線L1與L2所成角的銳角(或直角)θ的大小,并要求給出θ與直線L1、L2的傾斜角α1、α2之間的關系。圖(1)、(2)學生容易觀察解決,而圖(3)、(4)卻無法直接觀察出θ的大小 ,但能確定θ與α1、α2之間的關系,這時老師應趁熱打鐵,引導學生走上“已知三角函數值求角”的正確軌道上。這樣設計,使學生目標明確,避免盲目性。 然后老師掛出小黑板,出示問題(1)—(5),讓學生帶著問題閱讀教材,使他們明確直線L1到L2的角的公式與兩直線夾角公式的聯系與區別。這樣既培養了學生獨立思考和自學能力,又使他們主動積極地參與教學活動。 閱讀完后先回答問題(1)—(5),這時為了學生對所學公式有較深的理解,先讓學生將開始給出的圖(3)、(4)作為課堂練習進行鞏固訓練,并要兩位學生演板,演板后師生共同訂正。接著為了使學生對兩條直線所成的角有較全面的認識,老師與學生共同討論各種位置的兩條直線所成角的情形,這樣的安排也是為高考《考試說明》中要求掌握“邏輯劃分(分類討論)的思想”而設計的,目的是讓學生形成對知識系統化和網絡化的認識,也突破了本節課的難點。 “精通的目的在于學習”。公式的應用是這節課的重點,在學生把概念和公式的來龍去脈搞清楚后,再打出投影片②(例題),例題是根據《會考綱要》中“能用坐標法解決涉及直線的簡單應用(如光線的反射問題、有關軸對稱和點對稱問題)”的要求而選取的。大多數學生可以想到利用反射角等于入射角來求解,此時,進一步引導學生從對稱的角度來思考,又有兩種求解方法(見投影片)。 例題講完后再將問題加以引申,這樣的設計主要是讓學有余力的學生沒有“饑餓感”。 課堂小結是教學的重要環節之一,為了便于學生記憶和理解,我把這堂課的內容歸納為兩個概念、兩個公式和四種情形。然后給出兩個思考題(見投影片③)。思考題的目的是促使學生正確、周密地思考問題,同時為講解下一節課作準備,起承上啟下的作用。 最后是布置作業,它是緊緊圍繞本節課的教學內容而選擇的,通過作業的訓練可以及時反饋學生所學知識的掌握程度。 以上我從五個方面闡述了“兩條直線所成的角”中第一課時教學內容的有關設想,不足之處,請各位老師批評賜教。 一、概說 1.教材分析: 橢圓及其標準方程是圓錐曲線的基礎,它的學習方法對整個這一章具有導向和引領作用,直接影響其他圓錐曲線的學習。是后繼學習的基礎和范示。同時,也是求曲線方程的深化和鞏固。 2.教學分析: 橢圓及其標準方程是培養學生觀察、分析、發現、概括、推理和探索能力的極好素材。本節課通過創設情景、動手操作、總結歸納,應用提升等探究性活動,培養學生的數學創新精神和實踐能力,使學生掌握坐標法的規律,掌握數學學科研究的基本過程與方法。 3.學生分析: 高中二年級學生正值身心發展的鼎盛時期,思維活躍,又有了相應知識基礎,所以他們樂于探索、敢于探究。但高中生的邏輯思維能力尚屬經驗型,運算能力不是很強,有待于訓練。 基于上述分析,我采取的是教學方法是“問題誘導--啟發討論--探索結果”以及“直觀觀察--歸納抽象--總結規律”的一種研究性教學方法,注重“引、思、探、練”的結合。 引導學生學習方式發生轉變,采用激發興趣、主動參與、積極體驗、自主探究的學習,形成師生互動的教學氛圍。 我設定的教學重點是:橢圓定義的理解及標準方程的推導。 教學難點是:標準方程的推導。 二、目標說明: 根據數學教學大綱要求確立“三位一體”的教學目標。 1.知識與技能目標: 理解橢圓定義、掌握標準方程及其推導。 2.過程與方法目標:注重數形結合,掌握解析法研究幾何問題的一般方法,注重探索能力的培養。 3.情感、態度和價值觀目標: (1)探究方法激發學生的求知欲,培養濃厚的學習興趣。 (2)進行數學美育的滲透,用哲學的觀點指導學習。 三、過程說明: 依據“一個為本,四個調整”的新的教學理念和上述教學目標設計教學過程。“以學生發展為本,新型的師生關系、新型的教學目標、新型的教學方式、新型的呈現方式”體現如下: (一)對教材的重組與拓展:根據教學目標,選擇教學內容,遵循拓展、開放、綜合的原則。教材中對橢圓定義盡管很嚴密,但不夠直觀,所以增加了影音文件:海爾波譜彗星的運行軌道圖,最后,讓學生交流用幾何畫板畫橢圓以及5個探究性問題,作為對教材的拓展。 (二)在教學過程中的體現: 1.新課導入:以影音文件“海爾波譜彗星的運行軌道示意圖”導入,呈現方式具有新異性,激發學習興趣;畫板畫圖,增強動手操作意識,直觀形象從而引入橢圓定義,進而研究橢圓標準方程。 2.新課呈現: 學生通過觀看文件、動手操作,然后自己總結橢圓定義,符合從感性上升為理性的認知規律,而且提升了抽象概括的能力。然后,進行推導橢圓的標準方程,培養運算能力,進而探討標準方程的特點。教師作為熱烈討論的平等氛圍中的引導者,鼓勵學生大膽探究、勇于創新,積極談論和參與體驗,培養嚴謹的邏輯思維,抽象概括的能力,滲透數學美學教育,掌握數形結合的重要數學思想,最后的幾個探究性問題鼓勵學生積極探索,敢于探究,轉變學習方式。 3.鞏固應用 根據定義及其標準方程,設計三組九道練習題,引導學生聯系、思考、討論、反饋、矯正,增強運用能力。 4.繼續探究: (1)觀察橢圓形狀,不同原因在哪里; (2)改變繩長或變換焦點位置再畫橢圓,發現關系; (3)用幾何畫板交流畫圖,觀察形狀變化; (4)如何描述形狀變化? 引導學生探究欲望,開展研究性學習。 四、評價說明 本節課的學生評價堅持形成性評價和階段性評價相結合的原則。 (一)形成性評價:從操作能力、概括能力、學習興趣、交流合作、情緒情感方面對學習效果進行過程評價。對出現問題的學生,教師指出其可取之處并耐心引導,這樣有助于培養他們勇于面對挫折,持之以恒地科學探索精神;當學生做的精彩有創新,教師給予學生充分的鼓勵,從而進一步激發學生創造的潛能,提高他們的創新能力。 (二)階段性評價:從單元測試、期中測試等方面對學生的階段性學習成果進行測試。評價結果以每次測試成績和學生平時的綜合表現為依據。同時要進行學生的自我評價以及教師對行動的綜合性評價。 (三)教師自我反思評價:本課充分體現了“一個為本,四個調整”的新課程理念。 五、說課總結 這節課使用計算機網絡技術,展現知識的發生過程,是學生始終處于問題探索研究狀態之中,激情引趣。注重數學科學研究方法的掌握,是研究性教學的一次有益嘗試。有利于改變學生的學習方式,有利于學生自主探究,有利于學生的實踐能力和創新意識的培養。 一、說教材: 1、教材的地位與作用 導數是微積分的核心概念之一,它為研究函數提供了有效的方法。在前面幾節課里學生對導數的概念已經有了充分的認識,本節課教材從形的角度即割線入手,用形象直觀的“逼近”方法定義了切線,獲得導數的幾何意義,更有利于學生理解導數概念的本質內涵。這節課可以利用幾何畫板進行動畫演示,讓學生通過觀察、思考、發現、思維、運用形成完整概念。通過本節的學習,可以幫助學生更好的體會導數是研究函數的單調性、變化快慢等性質最有效的工具,是本章的關鍵內容。 2、教學的重點、難點、關鍵 教學重點:導數的幾何意義、切線方程的求法以及“數形結合,逼近”的思想方法。 教學難點:理解導數的幾何意義的本質內涵 1)從割線到切線的過程中采用的逼近方法; 2)理解導數的概念,將多方面的意義聯系起來,例如,導數反映了函數f(x)在點x附近的變化快慢,導數是曲線上某點切線的斜率,等等。 二、說教學目標: 根據新課程標準的要求、學生的認知水平,確定教學目標如下: 1、知識與技能: 通過實驗探求理解導數的幾何意義,理解曲線在一點的切線的概念,會求簡單函數在某點的切線方程。 2、過程與方法: 經歷切線定義的形成過程,培養學生分析、抽象、概括等思維能力;體會導數的思想及內涵,完善對切線的認識和理解。 通過逼近、數形結合思想的具體運用,使學生達到思維方式的遷移,了解科學的思維方法。 3、情感態度與價值觀: 滲透逼近、數形結合、以直代曲等數學思想,激發學生學習興趣,引導學生領悟特殊與一般、有限與無限,量變與質變的辯證關系,感受數學的統一美,意識到數學的應用價值 三、說教法與學法 對于直線來說它的導數就是它的斜率,學生會很自然的思考導數在函數圖像上是不是有很特殊的幾何意義。而且剛剛學過了圓錐曲線,學生對曲線的切線的概念也有了一些認識,基于以上學情分析,我確定下列教法: 教法:從圓的切線的定義引入本課,再引導學生討論一般曲線的切線的定義,通過幾何畫板的動畫演示,得出曲線的切線的“逼近”法的定義。同樣通過幾何畫板的實驗觀察得到導數的幾何意義和直觀感知“逼近”的數學思想。因此,我采用實驗觀察法、探究性研究教學和信息技術輔助教學法相結合,以突出重點和突破難點; 學法:為了發揮學生的主觀能動性,提高學生的綜合能力,本節課采取了自主、合作、探究的學習方法。 教具:幾何畫板、幻燈片 一、教學背景分析 1、教材結構分析 《圓的方程》安排在高中數學第二冊(上)第七章第六節、圓作為常見的簡單幾何圖形,在實際生活和生產實踐中有著廣泛的應用、圓的方程屬于解析幾何學的基礎知識,是研究二次曲線的開始,對后續直線與圓的位置關系、圓錐曲線等內容的學習,無論在知識上還是方法上都有著積極的意義,所以本節內容在整個解析幾何中起著承前啟后的作用、 2、學情分析 圓的方程是學生在初中學習了圓的概念和基本性質后,又掌握了求曲線方程的一般方法的基礎上進行研究的、但由于學生學習解析幾何的時間還不長、學習程度較淺,且對坐標法的運用還不夠熟練,在學習過程中難免會出現困難、另外學生在探究問題的能力,合作交流的意識等方面有待加強、 根據上述教材結構與內容分析,考慮到學生已有的認知結構和心理特征,我制定如下教學目標: 3、教學目標 (1)知識目標: ①掌握圓的標準方程; ②會由圓的標準方程寫出圓的半徑和圓心坐標,能根據條件寫出圓的標準方程; ③利用圓的標準方程解決簡單的實際問題、 (2)能力目標: ①進一步培養學生用代數方法研究幾何問題的能力; ②加深對數形結合思想的理解和加強對待定系數法的運用; ③增強學生用數學的意識、 (3)情感目標: ①培養學生主動探究知識、合作交流的意識; ②在體驗數學美的過程中激發學生的學習興趣、 根據以上對教材、教學目標及學情的分析,我確定如下的教學重點和難點: 4、教學重點與難點 (1)重點:圓的標準方程的求法及其應用、 (2)難點: ①會根據不同的已知條件求圓的標準方程; ②選擇恰當的坐標系解決與圓有關的實際問題、 為使學生能達到本節設定的教學目標,我再從教法和學法上進行分析: 二、教法學法分析 1、教法分析為了充分調動學生學習的積極性,本節課采用“啟發式”問題教學法,用環環相扣的問題將探究活動層層深入,使教師總是站在學生思維的最近發展區上、另外我恰當的利用多媒體課件進行輔助教學,借助信息技術創設實際問題的情境既能激發學生的學習興趣,又直觀的引導了學生建模的過程、 2、學法分析通過推導圓的標準方程,加深對用坐標法求軌跡方程的理解、通過求圓的標準方程,理解必須具備三個獨立的條件才可以確定一個圓、通過應用圓的標準方程,熟悉用待定系數法求的過程、 下面我就對具體的教學過程和設計加以說明: 三、教學過程與設計 整個教學過程是由七個問題組成的問題鏈驅動的,共分為五個環節: 創設情境啟迪思維深入探究獲得新知應用舉例鞏固提高 反饋訓練形成方法小結反思拓展引申 下面我從縱橫兩方面敘述我的教學程序與設計意圖、 首先:縱向敘述教學過程 (一)創設情境——啟迪思維 問題一已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2.7m,高為3m的貨車能不能駛入這個隧道? 通過對這個實際問題的探究,把學生的思維由用勾股定理求線段CD的長度轉移為用曲線的方程來解決、一方面幫助學生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結論的同時學生自己推導出了圓心在原點,半徑為4的圓的標準方程,從而很自然的進入了本課的主題、用實際問題創設問題情境,讓學生感受到問題來源于實際,應用于實際,激發了學生的學習興趣和學習欲望、這樣獲取的知識,不但易于保持,而且易于遷移、 通過對問題一的探究,抓住了學生的注意力,把學生的思維引到用坐標法研究圓的方程上來,此時再把問題深入,進入第二環節、 (二)深入探究——獲得新知 問題二1、根據問題一的探究能不能得到圓心在原點,半徑為的圓的方程? 2、如果圓心在,半徑為時又如何呢? 這一環節我首先讓學生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標準方程后,引導學生歸納出圓心在原點,半徑為r的圓的標準方程、然后再讓學生對圓心不在原點的情況進行探究、我預設了三種方法等待著學生的探究結果,分別是:坐標法、圖形變換法、向量平移法、 得到圓的標準方程后,我設計了由淺入深的三個應用平臺,進入第三環節、 (三)應用舉例——鞏固提高 I、直接應用內化新知 問題三 1、寫出下列各圓的標準方程: (1)圓心在原點,半徑為3; (2)經過點,圓心在點、 2、寫出圓的圓心坐標和半徑、 我設計了兩個小問題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡單,可以安排學生口答完成,目的是先讓學生熟練掌握圓心坐標、半徑與圓的標準方程之間的關系,為后面探究圓的切線問題作準備、 II、靈活應用提升能力 問題四 1、求以點為圓心,并且和直線相切的圓的方程、 2、求過點,圓心在直線上且與軸相切的圓的方程、 3、已知圓的方程為,求過圓上一點的切線方程、 你能歸納出具有一般性的結論嗎? 已知圓的方程是,經過圓上一點的切線的方程是什么? 我設計了三個小問題,第一個小題有了剛剛解決問題三的基礎,學生會很快求出半徑,根據圓心坐標寫出圓的標準方程、第二個小題有些困難,需要引導學生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓、第三個小題解決方法較多,我預設了四種方法再一次為學生的發散思維創設了空間、最后我讓學生由第三小題的結論進行歸納、猜想,在論證經過圓上一點圓的切線方程的過程中,又一次模擬了真理發現的過程,使探究氣氛達到高潮、 III、實際應用回歸自然 問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0.01m) 我選用了教材的例3,它是待定系數法求出圓的三個參數的又一次應用,同時也與引例相呼應,使學生形成解決實際問題的一般方法,培養了學生建模的習慣和用數學的意識、 (四)反饋訓練——形成方法 問題六 1、求過原點和點,且圓心在直線上的圓的標準方程、 2、求圓過點的切線方程、 3、求圓過點的切線方程、 接下來是第四環節——反饋訓練、這一環節中,我設計三個小題作為鞏固性訓練,給學生一塊“用武”之地,讓每一位同學體驗學習數學的樂趣,成功的喜悅,找到自信,增強學習數學的愿望與信心、另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學生剛剛歸納了過圓上一點圓的切線方程,因此很容易產生思維的負遷移,另外這道題目有兩解,學生容易漏掉斜率不存在的情況,這時引導學生用數形結合的思想,結合初中已有的圓的知識進行判斷,這樣的設計對培養學生思維的嚴謹性具有良好的效果、 (五)小結反思——拓展引申 1、課堂小結 把圓的標準方程與過圓上一點圓的切線方程加以小結,提煉數形結合的思想和待定系數的方法 ①圓心為,半徑為r的圓的標準方程為: 圓心在原點時,半徑為r的圓的標準方程為: ②已知圓的方程是,經過圓上一點的切線的方程是: 2、分層作業 (A)鞏固型作業:教材P81—82:(習題7、6)1,2,4 (B)思維拓展型作業:試推導過圓上一點的切線方程 3、激發新疑 問題七 1、把圓的標準方程展開后是什么形式? 2、方程表示什么圖形? 在本課的結尾設計這兩個問題,作為對這節課內容的鞏固與延伸,讓學生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產生了、在知識的拓展中再次掀起學生探究的熱情、另外它為下節課研究圓的一般方程作了重要的準備、 以上是我縱向的教學過程及簡單的設計意圖,接下來,我從三個方面橫向的進一步闡述我的教學設計: 橫向闡述教學設計 (一)突出重點抓住關鍵突破難點 求圓的標準方程既是本節課的教學重點也是難點,為此我布設了由淺入深的學習環境,先讓學生熟悉圓心、半徑與圓的標準方程之間的關系,逐步理解三個參數的重要性,自然形成待定系數法的解題思路,在突出重點的同時突破了難點、 第二個教學難點就是解決實際應用問題,這是學生固有的難題,主要是因為應用問題的題目冗長,學生很難根據問題情境構建數學模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進行引入,激發學生的求知欲,同時我借助多媒體課件的演示,引導學生真正走入問題的情境之中,并從中抽象出數學模型,從而消除畏難情緒,增強了信心、最后再形成應用圓的標準方程解決實際問題的一般模式,并嘗試應用該模式分析和解決第二個應用問題——問題五、這樣的設計,使學生在解決問題的同時,形成了方法,難點自然突破、 (二)學生主體教師主導探究主線 本節課的設計用問題做鏈,環環相扣,使學生的探究活動貫穿始終、從圓的標準方程的推導到應用都是在問題的指引、我的指導下,由學生探究完成的、另外,我重點設計了兩次思維發散點,分別是問題二和問題四的第三問,要求學生分組討論,合作交流,為學生設立充分的探究空間,學生在交流成果的過程中,既體驗了科學研究和真理發現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅動下,高效的完成本節的學習任務、 (三)培養思維提升能力激勵創新 為了培養學生的理性思維,我分別在問題一和問題四中,設計了兩次由特殊到一般的學習思路,培養學生的歸納概括能力、在問題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯系,培養了學生的創新精神,并且使學生的有效思維量加大,隨時對所學知識和方法產生有意注意,使能力與知識的形成相伴而行、 以上是我對這節課的教學預設,具體的教學過程還要根據學生在課堂中的具體情況適當調整,向生成性課堂進行轉變、最后我以赫爾巴特的一句名言結束我的說課,發揮我們的創造性,力爭“使教育過程成為一種藝術的事業”。 一、說教材分析 1、本節教材的地位和作用 “三垂線定理”是立體幾何的中重要定理,它是在研究了空間直線和平面垂直關系的基礎上研究空間兩條直線垂直關系的一個重要定理。它既是線面垂直關系的一個應用,又為以后學習面面垂直,研究空間距離、空間角、多面體與旋轉體的性質奠定了基礎,同時這節課也是培養高一學生空間想象能力和邏輯思維能力的重要內容,對培養學生的探索精神和創新能力都有重要意義。 2、教學內容 本節課的主要內容是三垂線定理的引出、證明和初步應用。對定理的引出改變了教材中直接給出定理的做法。通過討論空間直線與平面內直線垂直的問題讓學生逐步發現定理。這樣,學生感到自然,好接受。對教材中的例題有所增加,處理方式也有適當改變。 3、教學目標 根據教學大綱的要求,本節教材的特點和高一學生對空間圖形的認知特點,我把本節課的教學目的確定為: (1)理解三垂線定理的證明,準確把握“空間三線”垂直關系的實質。 (2)領會應用三垂線定理解題的一般步驟,初步學會應用定理解決相關問題。 (3)通過教學進一步培養學生的空間想象能力和邏輯思維能力。 (4)進行辨證唯物主義思想教育、數學應用意識教育和數學審美教育,提高學生學習數學的積極性。 4、教學重點、難點、關鍵 對高二學生來說,空間概念正在形成,因此本節課的重點是學生通過模型演示、推理論證,領會三垂線定理的實質,正確認識“空間三線”的垂直關系;同時掌握“線面垂直法”研究空間直線關系的思想方法。本節教學難點是準確把握“空間三線”垂直關系的實質,掌握應用三垂線定理的一般步驟。領會定理實質的關鍵是要認識到平面內一條直線與斜線及其在平面內的射影確定的平面垂直;應用定理的關鍵是要找到平面的垂線,射影就可由垂足與斜足確定,問題便會迎刃而解。 二、說教法分析 建立模型,啟發引導,猜想論證,學習應用,發展能力。 讓學生動手做模型,教師演示指導,讓學生直觀地感受到空間線面、線線關系的變化;再在教師的引導下思考線面、線線垂直關系存在的因果關系,逐步推理,猜想命題,論證命題,從而發現定理,揭示定理的實質。對定理的應用,只要求學生在理解定理的基礎上理清應用定理證題的一般步驟,學會證明一些簡單問題。 三、說學法指導 教學矛盾的主要方面是學生的學,學是中心,會學是目的,因此在教學中不斷指導學生學會學習。根據立體幾何的教學特點,本節課主要是教給學生“動手做、動腦想、大膽猜、嚴格證、多訓練、勤鉆研”的研討式學習方法,這樣做增加了學生的參與機會,增強了參與意識,教給了學生獲取知識的途徑,思考問題的方法,使學生真正能成了教學的主體。也只有這樣做,才能使學生“學”有新“思”,“思”有所“得”,“練”有新“獲”,學生才會逐步感受到數學的美,會產生一種成功感,從而提高學生學習數學學習的興趣;也只有這樣做,才能適應素質教育下培養“創新型”人才的需要。 四、說教學程序 1、(教學環節)復習提問: (1)線與平面垂直的定義?(2)線與平面垂直的判定? (3)什么叫平面的斜線、斜線在平面上的射影?(學生回答,教師作圖1) (設計意圖:為本節課的學習做好知識鋪墊和圖形準備) 2、(教學環節)演示啟發 由以上復習可知,平面的一條垂線垂直于平面內的每一條直線,平面的斜線顯然不能垂直于平面內的每一條直線,那么平面的斜線在平面內有垂線嗎?有幾條?請同學們來做做看。(教師引導學生用三角板和鉛筆在桌面上搭建模型) 通過以上實物操作的方法來表示平面的斜線在平面內有垂線,而且有無數條。引導學生進一步思考,斜線在平面內的垂線與它在平面內的射影有什么關系? 結論:直線a與射影AO垂直 那么,我們在平面內找斜線的垂線時能否只找到與其射影垂直的直線,換句話說,平面內的直線a與斜線PO的射影AO垂直時,a與斜線PO垂直嗎? 結論:根據觀察a⊥PO,為什么? (設計意圖:這樣采用觀察、猜想、發現的方法引出定理比課本上直接給出定理顯得自然,學生好接受,) 3、(教學環節)引導證明 觀察得來的結論,必須經過嚴格證明才能確認,我們把剛才的問題寫出來,大家一起來證明一下。 把定理改為一道普通例題,讓學生寫出證明過程 (設計意圖:讓學生養成嚴格論證問題的習慣和正確的書寫格式,培養學生思維的嚴密性) 4、揭示定理 這樣我們就找到了判定平面的一條斜線與平面的斜線垂直的方法:只要它與斜線的射影垂直即可。以后我們在平面內做斜線的垂線,只需做它射影的垂線即可。現在我們上面這道題用文字表述出來: 三垂線定理平面內的一條直線和這個平面的一條斜線垂直當且僅當它和這條斜線的射影垂直。 高二數學三垂線定理說課稿這就是著名的三垂線定理,它實質是平面內的直線與平面的斜線垂直的判定定理。它集中反映了平面內的一條直線、平面的斜線、斜線在平面內的射影這三者的關系。這個定理之所以著名,不僅在于它給了我們一個證明線線垂直的重要方法,為研究計算空間角,空間距離,研究多面體和旋轉體的性質奠定了基礎,而且這個定理的證明方法“線面垂直法”,也是一種非常重要的方法。 5、(教學環節)定理的應用 例1課本P155例1 例2課本P155例2 例3補充題:如圖正方體ABCD—A1B1C1D1中求證:(1)BD1⊥AC (2)BD1⊥B1C(3)BD1⊥平面AB1C 小結:使用三垂線定理證題的一般步驟:一定定平面及平面內的一條直線; 二找找平面的垂線、斜線及其射影 三證證平面內一直線與斜線垂直 (設計意圖:通過一道簡單例題的推證,總結出使用定理的方法,為使學生形成解題技能打好基礎) 6、(教學環節)小結 本節課重點學習了三垂線定理,應學會按“一定、二找、三證” 的步驟解決問題。(設計意圖:使學生對本節課所學知識的結構有一個清晰的認識,能抓住重點進行課后復習。) 7、(教學環節)作業布置練習:P157,題3、5作業:P156,題1、2、4 思考題:在正方體ABCD—A1B1C1D1的各頂點連線中,與BD1垂直的直線有那些?(設計意圖:使學生鞏固本節課所學知識,培養學生自覺學習的習慣,同時給學有余力的學生留出自由發展的空間) 五、說板書設計:塊為定理的板書及定理的證明,中間第二塊為舉例講解,右邊第三塊為學生練習和課堂小結。這樣的板書簡明清楚,重點突出,加深學生對重點知識的理解和掌握,同時便于記憶,有利于提高教學效果。 尊敬的各位評委、老師: 您們好! 今天我說課的內容是人教版高二第二冊(上)第七章第三節第4課時:“點到直線的距離”. 下面根據我寫的教案,把我對本節課的教材分析、教學方法和教學用具、教學過程以及教學評價等方面的認識做一個說明.敬請各位專家多提寶貴意見. 一、關于教材分析 1、教材的地位和作用 “點到直線的距離”是在學生學習直線方程的基礎上,進一步研究兩直線位置關系的一節內容,我們知道兩條直線相交后,進一步的量化關系是角度,而兩條直線平行后,進一步的量化關系是距離,而平行線間的距離是通過點到直線距離來解決的.此外在研究直線與圓的位置關系、曲線上的點到直線的距離以及解析幾何中有關三角形面積的計算等問題時,都要涉及點到直線的距離.所以“點到直線的距離公式”是平面解析幾何的一個重要知識點.由于這一節是直線內容的結尾部分,學生已經具備直線的有關知識(如交點、垂直、向量、三角形等),因此,一方面公式的推導成為可能,另一方面公式的推導也是檢驗學生是否真正掌握所學知識點的一個很好的課題.通過公式推導的獲得,可以培養學生分析問題、解決問題的能力,以及自主探究和合作學習的能力. 2教學目標分析 我確定教學目標的依據有以下三條: (1)教學大綱、考試大綱的要求 (2)新教材的特點 (3)所教學生的實際情況 教學目標包括:知識、能力、德育等方面的內容. “點到直線的距離公式”是平面解析幾何重要的基礎知識,也是教學大綱和考試大綱要求掌握的一個知識點.按照大綱“在傳授知識的同時,滲透數學思想方法,培養學生數學能力”的教學要求,結合新教材向量的引入,又根據所帶班級學生基礎和素質教好的情況,我把本節課的教學目標確定為: (1)讓學生理解點到直線距離公式的推導思想,掌握點到直線距離公式及其應用,會用點到直線距離求兩平行線間的距離; (2)通過推導公式方法的發現,培養學生觀察、思考、分析、歸納等數學能力;在推導過程中,滲透數形結合、轉化(或化歸)等數學思想以及特殊與一般的方法; (3)通過本節學習,引導學生用聯系與轉化的觀點看問題,體驗在探索問題的過程中獲得的成功感. 3、教學重點:點到直線距離公式的推導和應用. 教學難點:發現點到直線距離公式的推導方法. 二、關于教學方法和教學用具的說明 1、教學方法的選擇 (1)指導思想:在“以生為本”理念的指導下,充分體現“教師為主導,學生為主體”. (2)教學方法:問題解決法、討論法等. 本節課的任務主要是公式推導思路的獲得和公式的推導及應用.我選擇的是問題解決法、討論法等.通過一系列問題,創造思維情境,通過師生互動,讓學生體驗、探究、發現知識的形成和應用過程,以及思考問題的方法,促進思維發展;學生自主學習,分工合作,使學生真正成為教學的主體. 2、教學用具的選用 在選用教學用具時,我考慮到,在本節課的公式推導和例題求解中思路較多,所以采用了計算機多媒體和實物投影儀作為輔助教具.它可以將數學問題形象、直觀顯示,便于學生思考,實物投影儀展示學生不同解題方案,提高課堂效率. 三、關于教學過程的設計 “數學是思維的體操”,一題多解可以培養和提高學生思維的靈活性,及分析問題和解決問題的能力.課程標準指出,教學中應注意溝通各部分內容之間的聯系,通過類比、聯想、知識的遷移和應用等方式,使學生體會知識間的有機聯系,感受數學的整體性.課標又指出,鼓勵學生積極參與教學活動.為此,在具體教學過程中,把本節課分為以下:“創設情境提出問題——自主探索推導公式——變式訓練學會應用——學生小結教師點評——課外練習鞏固提高”五個環節來完成.下面對每個環節進行具體說明. (一)[創設情境提出問題] 1、這一環節要解決的主要問題是: 創設情境,引導學生分析實際問題,由實際問題轉化為數學問題,揭示本課任務.同時激發學生學習興趣,培養學生數學建模能力. 2、具體教學安排: 多媒體顯示實例,電信局線路問題,實際怎樣解決?能否轉化為解析幾何問題? 學生很快想到建立坐標系.如何建立坐標系?建系不同,點和直線方程不同,用點的坐標和直線方程如何解決距離問題,由此引出本課課題“點到直線的距離”. (二)[自主探索推導公式] 1、這一環節要解決的主要問題是: 充分發揮學生的主體作用,引導學生發現點到直線距離公式的推導方法,并推導出公式.在公式的推導過程中,圍繞兩條線索:明線為知識的學習,暗線為特殊與一般的邏輯方法以及轉化、數形結合等數學思想的滲透. 2、具體教學安排: 2.1學生初探解決特例 首先提出問題:怎樣用解析幾何方法求解點到直線距離?由于字母的運算有難度,引導學生從直線的特殊情況入手,這樣問題比較容易解決.學生應該能想到,如果直線是坐標軸或平行坐標軸的時候問題比較容易解決,給予學生肯定的評價.學生自己完成推導過程,選兩名學生進行板演. 2.2師生互動獲取思路 特殊情況已經解決,引導學生考慮一般直線的情況.通過學生思考,教師收集得到思路一:過P作PQ ⊥ l于Q點,根據點斜式寫出直線PQ方程,由PQ與l聯立方程組解得Q點坐標,然后利用兩點距離公式求得. 我及時評價這種方法思路自然,是一種解決辦法.為了拓展學生思維,我們根據已有的知識和經驗,還有什么辦法能解決?為此我啟發學生,提出問題: (1)求線段長度可以構造圖形嗎? (2)什么圖形?如何構造?(學生經過討論,得到構造三角形,把線段放在直角三角形中.)但是如何構造又是一個難點. (3)第三個頂點在什么位置? (4)特殊情況與一般情況有聯系嗎? 學生通過觀察、討論會提出第三個頂點的不同位置:可能在直線l與x軸的交點M或與y軸交點N;或根據特殊情況的證法提示,過P點作x、y軸的平行線與直線l的交點R、S.或同時做x、y軸平行線.這樣就收集到思路二、三、四. 三種思路已經有了,它們的共性是什么?學生能觀察出都在三角形中.我繼續引導:能不能不構造三角形?而是其它數學相關量?我們剛學習了向量知識,能否用向量知識解決問題呢?(由于在前面學習的向量知識中,向量的模可以表示兩點之間的距離,而證明兩直線垂直時也已經用到向量知識,法向量又是本節課后閱讀材料,本班學生基礎和素質較好,在學習直線方向向量時已經布置閱讀). 提出問題:線段的長度就是對應向量的模,那么如何求得向量PQ的模呢?根據實際情況提示一方面PQ的方向完全由直線的方向而定(與法向量共線),另一方面PQ的長度又與點P有關,它的長度又如何控制下來?所以有思路五,由師生一起分析,取λλ(A, B )法向量n=,而PQ = n,以下只要求得,就可以得到距離. 2.3分工合作自主完成 學生提出了不同的解決方案,究竟哪種好呢?如果讓每位學生都去用不同解法探求,在課堂上時間顯然是不允許的,但教學中又要培養學生的運算能力,如何解決這種矛盾呢?現代教育要求學生要有自主學習、合作學習能力,因此我叫學生對五種思路進行分組練習. 在學生求解過程中,我巡視,觀看學生解題,了解情況,根據課堂時間的實際情況,選取做好的學生的解題過程用實物投影儀顯示.這樣不僅能讓全體學生看到不同思路的具體解法,還能得出最佳解題方案,接著我展示最佳解題方案的規范步驟.目的讓學生有良好的規范的書面表達習慣,起到教師典范的作用. 2.4公式小結概括提升 公式推導出,學生有了成功的喜悅.我也給予了肯定.但是由于公式的結果是一般情況得出的,而對于當A = 0,或B = 0時,點在直線上是否成立,它們與當AB ≠ 0時,點在直線外有什么關系?這并沒有驗證.而我們要求學生考慮問題要全面,為此我提出提問:①上式是由條件下當AB ≠ 0時得出,對當A = 0,或B = 0時成立嗎?②點P在直線l上成立嗎?③公式結構特點是什么?用公式時直線方程是什么形式?通過學生的討論,使學生了解公式適用的范圍:任意點、任意直線.同時體現整體認識和分類討論思想. 依據新課程的理念,教師要創造性地使用教材.在公式的推導過程中,我做了和教材不同的處理方法:(1)先特殊后一般的證法,(2)多角度構造三角形,(3)知識聯系,向量解決.目的是讓學生在考慮問題時有特殊到一般的意識,符合學生認知規律,使問題的解決循序漸進.向量是新教材內容,是一種很好的數學工具,和解析幾何結合應用是現在新教材知識的交匯點.而多角度考慮問題,發散學生思維. (三)[變式訓練學會應用] 1、這一環節解決的主要問題是: 通過練習,熟悉公式結構,記憶并簡單應用公式.通過例題的不同解法,進一步讓學生體會轉化(或化歸)的數學思想. 2、具體教學安排: 由學生完成下列練習: (1)解決課堂提出的實際問題.(學生口答) (2)求點P0(-1,2)到下列直線的距離: ①3x=2 ②5y=3 ③2x+y=10 ④y=-4x+1 設計說明:練習1的設計解決了上課開始提出的實際問題.練習2的設計故意選特殊直線和非直線方程一般式,主要強調在公式應用時,直線方程是一般式,應用公式的準確性. 例題(3)求平行線2x-7y+8=0和2x-7y-6=0的距離. 我選取的是課本例題,課本只有一種具體點的解法.我通過本節課的學習,讓學生對知識從深度和廣度上進行挖掘.通過幾何畫板的演示,讓學生直觀看到思考問題的方法.除了選擇直線上的點,還可以選取原點,求它到兩條直線的距離,然后作和.或者選取直線外的點P,求它到兩條直線的距離,然后作差.由特殊點到任意點,由特殊直線到任意直線,從而延伸出兩平行線間的距離.目的是在整個過程中,讓學生注意體會解題方法中的靈活性以及轉化等數學思想方法. (四)[學生小結教師點評] 1、這一環節解決的主要問題和達到的目的是: 通過師生共同小結,鞏固所學知識,提煉用到的解決問題的方法,其中蘊涵的數學思想方法,培養學生歸納概括能力. 2、具體教學安排: 本節課小結主要由學生完成知識總結,通過學習知識所體驗到的數學思想方法,由學生總結和相互補充,教師適當點評,加以經驗總結. (五)[課外練習鞏固提高] 1課本習題7.3的第13題—16題; 2 總結寫出點到直線距離公式的多種方法. 設計說明:作業1是課本習題,檢查學生所學知識掌握的程度.作業2是根據課堂分析,讓學生總結公式推導的方法.除了課堂上想到的方法還可以繼續思考,比如在用兩點距離公式整體代換等方法,發揮學生學習的自主性和思維的廣闊性. 四、關于教學評價的設計 新課程標準提出要加強過程性評價,因而在具體教學過程中,我對于學生的語言與行為的表現,及時給予肯定性的表揚和鼓勵;學生思維暴露出問題時及時評價,矯正思維方向,調整教學思路;為了獲得后反饋信息,布置作業,通過觀察學生完成作業情況,了解學生在知識技能和數學方法方面的收獲和不足,指導我今后教學.整個教學評價是在師生互動中完成的. 以上是我對這節課的設計,懇請各位專家和老師批評、指正. 謝謝! 一.教材內容分析: 1.本節課內容在整個教材中的地位和作用。 概括地講,本節課內容的地位體現在它的基礎性,作用體現在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續和深化,對已學習過的集合知識的鞏固和運用具有重要的作用,也與后面的函數、數列、三角函數、線形規劃、直線與圓錐曲線以及導數等內容密切相關。許多問題的解決都會借助一元二次不等式的解法。因此,一元二次不等式的解法在整個高中數學教學中具有很強的基礎性,體現出很大的工具作用。 2.教學目標定位。 根據教學大綱要求、高考考試大綱說明、新課程標準精神、高一學生已有的知識儲備狀況和學生心理認知特征,我確定了四個層面的教學目標。第一層面是面向全體學生的知識目標:熟練掌握一元二次不等式的兩種解法,正確理解一元二次方程、一元二次不等式和二次函數三者的關系。第二層面是能力目標,培養學生運用數形結合與等價轉化等數學思想方法解決問題的能力,提高運算和作圖能力。第三層面是德育目標,通過對解不等式過程中等與不等對立統一關系的認識,向學生逐步滲透辨證唯物主義思想。第四層面是情感目標,在教師的啟發引導下,學生自主探究,交流討論,培養學生的合作意識和創新精神。 3.教學重點、難點確定。 本節課是在復習了一次不等式的解法之后,利用二次函數的圖象研究一元二次不等式的解法。只要學生能夠理解一元二次方程、一元二次不等式和二次函數三者的關系,并利用其關系解不等式即可。因此,我確定本節課的教學重點為一元二次不等式的解法,關鍵是一元二次方程、一元二次不等式和二次函數三者的關系。 二.教法學法分析: 數學是發展學生思維、培養學生良好意志品質和美好情感的重要學科,在教學中,我們不僅要使學生獲得知識、提高解題能力,還要讓學生在教師的啟發引導下學會學習、樂于學習,感受數學學科的人文思想,使學生在學習中培養堅強的意志品質、形成良好的道德情感。為了更好地體現課堂教學中“教師為主導,學生為主體”的教學關系和“以人為本,以學定教”的教學理念,在本節課的教學過程中,我將緊緊圍繞教師組織——啟發引導,學生探究——交流發現,組織開展教學活動。我設計了①創設情景——引入新課,②交流探究——發現規律,③啟發引導——形成結論,④練習小結——深化鞏固,⑤思維拓展——提高能力,五個環環相扣、層層深入的教學環節,在教學中注意關注整個過程和全體學生,充分調動學生積極參與教學過程的每個環節。 三.教學過程分析: 1.創設情景——引入新課。我們常說“興趣是最好的老師”,長期以來,學生對學習數學缺乏興趣,甚至失去信心,一個重要的原因,是老師在教學中不重視學生對學習的情感體驗,教學應該充分考慮學生的情感和需要,想方設法讓學生在學習中樹立信心,感受學習的樂趣。根據教材內容的安排,我以學生熟悉的畫一次函數圖象、求一次方程和一次不等式的解為背景知識切入,設置一個練習題組,一方面讓學生總結復習已有知識,為后面學習二次不等式的解法打下基礎,做好鋪墊,另一方面,使學生在自己熟悉的問題中首先獲得解題成功的快樂體驗,然后以20xx年江蘇省的一道高考試題為引子,引入本節課的新授內容。對于本題,引導學生,利用上面解練習題組1的方法,畫出二次函數圖象來解答。二次函數是初中數學的重要內容,本題又給出了函數圖象上許多點,相信學生畫出圖象應該不成問題,只要教師適當點撥,學生不難得到正確答案。以高考試題為背景引入新課,可以提高學生興趣,抓住學生眼球,吸引學生注意力,還可以讓學生實實在在感受到,高考題就在我們的課本中,就在我們平常的練習中。 2.探究交流——發現規律。從特殊到一般是我們發現問題、尋求規律、揭示問題本質最常用的方法之一。我把課本例題1、2編為練習題組(一),交由學生用上面解高考題的方法——圖象法去解,學生由于熟知二次函數圖象,求解應該不會有太大的問題。在這個過程中,教師要啟發引導學生注意對比兩題的異同,組織引導學生展開交流討論,探討第(2)題能不能先把二次項系數化正以后再構造函數畫圖求解。然后達成共識,如果二次項系數為負數時,先做等價轉化,把二次項系數化為正數再解,課本19頁例3、例4作為題組(二),繼續讓學生用上面的圖象法,由學生自己求解,這時我及時提示學生注意這兩題與題組(一)中兩題的不同(例1、例2對應方程都有兩個不等實根,例3對應方程有兩相等實根,例4對應方程無實根)。兩個題組的練習之后,可以尋求解二次不等式的一般規律。 3.啟發引導——形成結論。前面兩個題組的四個小題,基本涵蓋了一般一元二次不等式解的各種情況,進一步啟發引導學生將特殊、具體題目的結論做一般化總結,與學生一起就 △>0,△<0,△=0 c="">0或ax2+bx+c<0 a="">0)的解的情況應該水到渠成。至此,學生可以感受到,解二次不等式只須①將二次項系數化為正數,②求解二次方程 ax2+bx+c=0 的根。③根據①后的二次不等式的符號寫出解集即可,必要時也可以結合圖象寫解集。這樣我們就得到了二次不等式的另外一種解法(可稱為“三步曲”法)。 4.訓練小結——鞏固深化。為了鞏固和加深二次不等式的兩種解法,接下來及時組織學生進行課堂練習,完成課本21頁練習1-4題。本環節請不同層次的學生在黑板上書寫解題過程,之后師生共同糾正問題,規范解題過程的書寫。 5.延伸拓寬——提高能力。課堂教學既要面向全體學生,又應關注學生的個體差異。體現分類推進,分層教學的原則。為此,我又設計了一個提高練習題組,共有三道備選題目,以供程度較好學有余力的學生能夠更好的展示自己的解題能力,取得更進一步的提高。 四.課堂意外預案: 新課程理念下的教學更多的關注學生自主探究、關注學生的個性發展,鼓勵學生勇于提出問題,培養學生思維的批評性。在課堂上學生往往會提出讓老師感到“意外”的問題,我在平時的教學中重視對“課堂意外預案”的探索和思考,備課時盡量設想課堂中可能會出現的各種情況,做到有備無患,以免在課堂中學生提出讓自己出乎意料的問題,使自己陷入被動尷尬境地。結合以往經驗,在本節課,我提出兩個“意外預案”。 1.學生在做課本練習1(x+2)(x-3)>0 時,可能會問到轉化為不等式組{ 或{ 求解對不對。學生提出的問題,想法非常好,應給予肯定和鼓勵,這與下節簡單分式不等式和高次不等式的解法有關,是解不等式的另一種解法——等價轉化法,不在本節課之列。 2.根據以往的經驗,在解(x-1)(x+2)>1一類的不等式的時候,由于受方程(x+1)(x+2)=0 可轉化為x-1=0或x+2=0求解的影響,有可能會出現將不等式轉化為不等式組{ 來求解的錯誤做法,教師要關注學生,及時發現問題并給予糾正,指出上面的轉化不是等價轉化。 【高二的數學說課稿】相關文章: 高二數學說課稿06-14 高二的數學說課稿11-06 高二數學條件概率說課稿08-31 高二數學《導數概念》說課稿09-09 命題高二數學說課稿06-13 高二數學《點到直線的距離》說課稿10-13 高二數學《函數單調性》說課稿03-31 高二的數學說課稿15篇11-06高二的數學說課稿2
高二的數學說課稿3
高二的數學說課稿4
高二的數學說課稿5
高二的數學說課稿6
高二的數學說課稿7
高二的數學說課稿8
高二的數學說課稿9
高二的數學說課稿10
高二的數學說課稿11
高二的數學說課稿12
高二的數學說課稿13
高二的數學說課稿14
高二的數學說課稿15