- 相關(guān)推薦
高二數(shù)學(xué)算法與程序框圖教學(xué)計劃
時間過得太快,讓人猝不及防,我們又將續(xù)寫新的詩篇,展開新的旅程,是時候認真思考計劃該如何寫了。相信許多人會覺得計劃很難寫?下面是小編幫大家整理的高二數(shù)學(xué)算法與程序框圖教學(xué)計劃,僅供參考,大家一起來看看吧。
高二數(shù)學(xué)算法與程序框圖教學(xué)計劃1
教學(xué)要求:
掌握程序框圖的概念;
會用通用的圖形符號表示算法,掌握算法的三個基本邏輯結(jié)構(gòu)、
掌握畫程序框圖的基本規(guī)則,能正確畫出程序框圖、
通過模仿、操作、探索,經(jīng)歷通過設(shè)計程序框圖表達解決問題的過程;
學(xué)會靈活、正確地畫程序框圖、
教學(xué)重點:
程序框圖的基本概念、基本圖形符號和3種基本邏輯結(jié)構(gòu)、
教學(xué)難點:
綜合運用框圖知識正確地畫出程序框圖
教學(xué)過程:
一、復(fù)習(xí)準備:
1、寫出算法:給定一個正整數(shù)n,判定n是否偶數(shù)、
2、用二分法設(shè)計一個求方程的近似根的算法、
二、講授新課:
1、教學(xué)程序框圖的認識:
①討論:如何形象直觀的表示算法? →圖形方法、教師給出一個流程圖(上面1題),學(xué)生說說理解的算法步驟、
②定義程序框圖:程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準確、直觀地表示算法的圖形、
③基本的'程序框和它們各自表示的功能:
程序框
名稱
功能
終端框
(起止框)
表示一個算法的起始和結(jié)束
輸入、輸出框
表示一個算法輸入和輸出的信息
處理(執(zhí)行)框
賦值、計算
判斷框
判斷一個條件是否成立
流程線
連接程序框
④閱讀教材P5的程序框圖、 →討論:輸入35后,框圖的運行流程,討論:最大的I值、
2、教學(xué)算法的基本邏輯結(jié)構(gòu):
①討論:P5的程序框圖,感覺上可以如何大致分塊?流程再現(xiàn)出一些什么結(jié)構(gòu)特征?
→教師指出:順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu)、
②試用一般的框圖表示三種邏輯結(jié)構(gòu)、
③出示例3:已知一個三角形的三邊分別為4,5,6,利用海倫公式設(shè)計一個算法,求出它的面積,并畫出算法的程序框圖、 (學(xué)生用自然語言表示算法→師生共寫程序框圖→討論:結(jié)構(gòu)特征)
④出示例4:任意給定3個正實數(shù),設(shè)計一個算法,判斷分別以這3個數(shù)為三邊邊長的三角形是否存在、畫出這個算法的程序框圖、 (學(xué)生分析算法→寫出程序框圖→試驗結(jié)果→討論結(jié)構(gòu))
⑤出示例5:設(shè)計一個計算1+2+3+、、、+1000的值的算法,并畫出程序框圖、
(學(xué)生分析算法→寫出程序框圖→給出另一種循環(huán)結(jié)構(gòu)的框圖→對比兩種循環(huán)結(jié)構(gòu))
3、 小結(jié):
程序框圖的基本知識;三種基本邏輯結(jié)構(gòu);畫程序框圖要注意:流程線的前頭;判斷框后邊的流程線應(yīng)根據(jù)情況標(biāo)注"是"或"否";循環(huán)結(jié)構(gòu)中要設(shè)計合理的計數(shù)或累加變量等、
三、鞏固練習(xí):
練習(xí):把復(fù)習(xí)準備題②的算法寫成框圖、
四、課后作業(yè)
作業(yè):P12 A組1、2題、
高二數(shù)學(xué)算法與程序框圖教學(xué)計劃2
【課程分析】:
在前面的兩節(jié)里,我們已經(jīng)學(xué)習(xí)了一些簡單的算法,對算法已經(jīng)有了一個初步的了解。這節(jié)課的內(nèi)容是繼續(xù)加深對算法的認識,體會算法的思想。這節(jié)課所學(xué)習(xí)的輾轉(zhuǎn)相除法與更相減損術(shù)是第三節(jié)我們所要學(xué)習(xí)的四種算法案例里的第一種。學(xué)生們通過本節(jié)課對中國古代數(shù)學(xué)中的算法案例——輾轉(zhuǎn)相除法與更相減損術(shù)學(xué)習(xí),體會中國古代數(shù)學(xué)對世界數(shù)學(xué)發(fā)展的貢獻。教學(xué)重點是理解輾轉(zhuǎn)相除法與更相減損術(shù)求最大公約數(shù)的方法。難點是把輾轉(zhuǎn)相除法與更相減損術(shù)的方法轉(zhuǎn)換成程序框圖與程序語言。
【學(xué)情分析】:
在理解最大公約數(shù)的基礎(chǔ)上去發(fā)現(xiàn)輾轉(zhuǎn)相除法與更相減損術(shù)中的數(shù)學(xué)規(guī)律,并能模仿已經(jīng)學(xué)過的程序框圖與算法語句設(shè)計出輾轉(zhuǎn)相除法與更相減損術(shù)的程序框圖與算法程序。
【設(shè)計思路】
采用啟發(fā)式,并遵循循序漸進的教學(xué)原則。這有利于學(xué)生掌握從現(xiàn)象到本質(zhì),從已知到未知逐步形成念的學(xué)習(xí)方法,有利于發(fā)展學(xué)生抽象思維能力和邏輯推理能力。
【學(xué)習(xí)目標(biāo)】
(1)理解輾轉(zhuǎn)相除法與更相減損術(shù)中蘊含的數(shù)學(xué)原理,并能根據(jù)這些原理進行算法分析。
(2)基本能根據(jù)算法語句與程序框圖的知識設(shè)計完整的程序框圖并寫出算法程序。
(3)領(lǐng)會數(shù)學(xué)算法與計算機處理的結(jié)合方式,初步掌握把數(shù)學(xué)算法轉(zhuǎn)化成計算機語言的一般步驟。
【教學(xué)流程】
一、創(chuàng)設(shè)情景,揭示課題
1、教師首先提出問題:在初中,我們已經(jīng)學(xué)過求最大公約數(shù)的知識,你能求出18與30的公約數(shù)嗎?
2、接著教師進一步提出問題,我們都是利用找公約數(shù)的方法來求最大公約數(shù),如果公約數(shù)比較大而且根據(jù)我們的觀察又不能得到一些公約數(shù),我們又應(yīng)該怎樣求它們的最大公約數(shù)?比如求8251與6105的最大公約數(shù)?這就是我們這一堂課所要探討的內(nèi)容。
二、研探新知,發(fā)現(xiàn)規(guī)律
1、輾轉(zhuǎn)相除法
例1求兩個正數(shù)8251和6105的最大公約數(shù)。
解:8251=6105×1+2146
顯然8251的最大公約數(shù)也必是2146的約數(shù),同樣6105與2146的公約數(shù)也必是8251的約數(shù),所以8251與6105的最大公約數(shù)也是6105與2146的最大公約數(shù)。
6105=2146×2+1813 2146=1813×1+333
1813=333×5+148 333=148×2+37
148=37×4+0
則37為8251與6105的"最大公約數(shù)。
以上我們求最大公約數(shù)的方法就是輾轉(zhuǎn)相除法。也叫歐幾里德算法,它是由歐幾里德在公元前300年左右首先提出的。利用輾轉(zhuǎn)相除法求最大公約數(shù)的步驟如下:
第一步:用較大的.數(shù)m除以較小的數(shù)n得到一個商q0和一個余數(shù)r0;
第二步:若r0=0,則n為m,n的最大公約數(shù);若r0≠0,則用除數(shù)n除以余數(shù)r0得到一個商q1和一個余數(shù)r1;
第三步:若r1=0,則r1為m,n的最大公約數(shù);若r1≠0,則用除數(shù)r0除以余數(shù)r1得到一個商q2和一個余數(shù)r2;
依次計算直至rn=0,此時所得到的rn-1即為所求的最大公約數(shù)。
(1)輾轉(zhuǎn)相除法的程序框圖及程序
程序框圖:(略)
程序:(當(dāng)循環(huán)結(jié)構(gòu))直到型結(jié)構(gòu)見書37面。
INPUT “m=”;m
INPUT “n=”;n
IF m
m=n
n=x
END IF
r=m MOD n
WHILE r<>0
r=m MOD n
m=n
n=r
WEND
PRINT m
END
練習(xí):利用輾轉(zhuǎn)相除法求兩數(shù)4081與20723的最大公約數(shù)(答案:53)
2、更相減損術(shù)
我國早期也有解決求最大公約數(shù)問題的算法,就是更相減損術(shù)。
更相減損術(shù)求最大公約數(shù)的步驟如下:可半者半之,不可半者,副置分母·子之?dāng)?shù),以少減多,更相減損,求其等也,以等數(shù)約之。
翻譯出來為:
第一步:任意給出兩個正數(shù);判斷它們是否都是偶數(shù)。若是,用2約簡;若不是,執(zhí)行第二步。第二步:以較大的數(shù)減去較小的數(shù),接著把較小的數(shù)與所得的差比較,并以大數(shù)減小數(shù)。繼續(xù)這個操作,直到所得的數(shù)相等為止,則這個數(shù)(等數(shù))就是所求的最大公約數(shù)。
例2用更相減損術(shù)求98與63的最大公約數(shù)、
解:由于63不是偶數(shù),把98和63以大數(shù)減小數(shù),并輾轉(zhuǎn)相減,即:98-63=35
63-35=28
35-28=7
28-7=21
21-7=14
14-7=7
所以,98與63的最大公約數(shù)是7。
練習(xí):用更相減損術(shù)求兩個正數(shù)84與72的最大公約數(shù)。(答案:12)
三、對比歸納,得出結(jié)論
3、比較輾轉(zhuǎn)相除法與更相減損術(shù)的區(qū)別
(1)都是求最大公約數(shù)的方法,計算上輾轉(zhuǎn)相除法以除法為主,更相減損術(shù)以減法為主,計算次數(shù)上輾轉(zhuǎn)相除法計算次數(shù)相對較少,特別當(dāng)兩個數(shù)字大小區(qū)別較大時計算次數(shù)的區(qū)別較明顯。
(2)從結(jié)果體現(xiàn)形式來看,輾轉(zhuǎn)相除法體現(xiàn)結(jié)果是以相除余數(shù)為0則得到,而更相減損術(shù)則以減數(shù)與差相等而得到
高二數(shù)學(xué)算法與程序框圖教學(xué)計劃3
教學(xué)目標(biāo):
1、知識與技能
(1)了解算法的含義,體會算法的思想;
(2)能夠用自然語言敘述算法;
(3)掌握正確的算法應(yīng)滿足的要求;
(4)會寫出解線性方程(組)的算法;
(5)會寫出一個求有限整數(shù)序列中的最大值的算法.
2、過程與方法
(1)通過求解二元一次方程組,體會解方程的一般性步驟,從而得到一個解二元一次方程組的步驟,這些步驟就是算法,不同的問題有不同的算法;
(2)同一個問題也可能有多個算法,能模仿求解二元一次方程組的步驟,寫出一個求有限整數(shù)序列中的最大值的算法.
3、情感與價值觀
通過本節(jié)的學(xué)習(xí),對計算機的算法語言有一個基本的了解;明確算法的要求,認識到計算機是人類征服自然的一個有力工具,進一步提高探索、認識世界的能力.
教學(xué)重點、難點:
重點:算法的含義,解二元一次方程組、判斷一個數(shù)為質(zhì)數(shù)和利用“二分法”求方程近似解的算法設(shè)計.
難點:把自然語言轉(zhuǎn)化為算法語言.
教學(xué)過程:
(一)創(chuàng)設(shè)情景、導(dǎo)入課題
問題1:把大象放入冰箱分幾步?
第一步:把冰箱門打開;
第二步:把大象放進冰箱;
第三步:把冰箱門關(guān)上.
問題2:指出在家中燒開水的過程分幾步?(略)
問題3:如何求一元二次方程 的解?
第一步:計算 ;
第二步:如果 ,
如果 ,方程無解
第三步:下結(jié)論.輸出方程的根或無解的信息.
注意:在以上三個問題的求解過程中,老師要緊扣算法定義,帶領(lǐng)學(xué)生總結(jié),反復(fù)強調(diào),使學(xué)生體會以下幾點:
①有窮性:步驟是有限的,它應(yīng)在有限步操作之后停止,而不能是無限地執(zhí)行下去。
②確定性:每一步應(yīng)該是確定的并且能有效地執(zhí)行且得到確定的結(jié)果,而不應(yīng)當(dāng)是模棱兩可的。
③邏輯性:從初始步驟開始,分為若干個明確的步驟,前一步是后一步的前提,只有執(zhí)行完前一步才能進行下一步,并且每一步都準確無誤,才能完成問題。
④不唯一性:求解某一個問題的算法不一定只有唯一的一個,可以有不同的算法。
⑤普遍性:很多具體的問題,都可以設(shè)計合理的算法去解決。
注:其他還有輸入性、輸出性等特征,結(jié)論不固定.
提問:算法是如何定義?
(二)師生互動、講解新課
x-2y=-1 ①
回顧(課本P2內(nèi)容): 寫出解二元一次方程組 2x y=1 ② 的算法.
解:第一步,②×2 ①,得5x=1;③
第二步,解③,得x= ;
第三步,②-①×2得5y=3;④
第四步,解④ ,得y= ;
第五步,得到方程組的解為 x= ;y= 。
思考1:你能寫出求解一般的二元一次方程組的步驟嗎?
上題的算法是由加減消元法求解的`,這個算法也適合一般的二元一次方程組的解法
對于一般的二元一次方程組 可以寫出類似的求解步驟:
第一步,①×b2-②×b1,得 ;③
第二步,解③,得 .
第三步,②×a1-①×a2,得 ;④
第四步,解④,得 ;
第五步,得到方程組的解為
(高斯消去法)
思考2:根據(jù)上述分析,用加減消元法解二元一次方程組,可以分為五個步驟進行,這五個步驟就構(gòu)成了解二元一次方程組的一個“算法”.我們再根據(jù)這一算法編制計算機程序,就可以讓計算機來解二元一次方程組.那么解二元一次方程組的算法包括哪些內(nèi)容?
思考3:一般地,算法是由按照一定規(guī)則解決某一類問題的基本步驟組成的.
你認為:
(1)這些步驟的個數(shù)是有限的還是無限的?
(2)每個步驟是否有明確的計算任務(wù)?
總結(jié):在數(shù)學(xué)中,按照一定規(guī)則解決某一類問題的明確和有限的步驟稱為算法.
算法(algorithm)一詞出現(xiàn)于12世紀,源于算術(shù)(algorism),即算術(shù)方法.指的是用阿拉伯?dāng)?shù)字進行算術(shù)運算的過程.在數(shù)學(xué)中,算法通常是指按照一定的規(guī)則解決某一類問題的明確的和有限的步驟.現(xiàn)在,算法通常可以編成計算機程序,讓計算機執(zhí)行并解決問題.后來,人們把它推廣到一般,把進行某一工作的方法和步驟稱為算法.
廣義地說,算法就是做某一件事的步驟或程序.菜譜是做菜肴的算法,洗衣機的使用說明書是操作洗衣機的算
法,歌譜是一首歌曲的算法.在數(shù)學(xué)中,主要研究計算機能實現(xiàn)的算法,即按照某種機械程序步驟一定可以得到結(jié)果的解決問題的程序.比如解方程的算法、函數(shù)求值的算法、作圖的算法,等等.
(三)例題剖析,鞏固提高
例1(課本P3例1):如果讓計算機判斷7是否為質(zhì)數(shù),如何設(shè)計算法步驟?
算法:
第一步,用2除7,得到余數(shù)1,所以2不能整除7.
第二步,用3除7,得到余數(shù)1,所以3不能整除7.
第三步,用4除7,得到余數(shù)3,所以4不能整除7.
第四步,用5除7,得到余數(shù)2,所以5不能整除7.
第五步,用6除7,得到余數(shù)1,所以6不能整除7.
因此,7是質(zhì)數(shù).
課堂練習(xí)1:
整數(shù)89是否為質(zhì)數(shù)?如果讓計算機判斷89是否為質(zhì)數(shù),按照上述算法需要設(shè)計多少個步驟?
思考4:用2~88逐一去除89求余數(shù),需要87個步驟,這些步驟基本是重復(fù)操作,我們可以按下面的思路改進這個算法,減少算法的步驟.
(1)用i表示2~88中的任意一個整數(shù),并從2開始取數(shù);
(2)用i除89,得到余數(shù)r. 若r=0,則89不是質(zhì)數(shù);若r≠0,將i用i 1替代,再執(zhí)行同樣的操作;
(3)這個操作一直進行到i取88為止.
你能按照這個思路,設(shè)計一個“判斷89是否為質(zhì)數(shù)”的算法步驟嗎?
算法設(shè)計:
第一步,令i=2;
第二步,用i除89,得到余數(shù)r;
第三步,若r=0,則89不是質(zhì)數(shù),結(jié)束算法;若r≠0,將i用i 1替代;
第四步,判斷“i>88”是否成立?若是,則89是質(zhì)
數(shù),結(jié)束算法;否則,返回第二步.
探究:一般地,判斷一個大于2的整數(shù)是否為質(zhì)數(shù)的算法步驟如何設(shè)計?
在中央電視臺幸運52節(jié)目中,有一個猜商品價格的環(huán)節(jié),竟猜者如在規(guī)定的時間內(nèi)大體猜出某種商品的價格,就可獲得該件商品.現(xiàn)有一商品,價格在0~8000元之間,采取怎樣的策略才能在較短的時間內(nèi)說出比較接近的答案呢?
例2、一群小兔一群雞,兩群合到一群里,要數(shù)腿共48,要數(shù)腦袋整17,多少只小兔多少只雞?
算法1:S1 首先計算沒有小兔時,小雞的數(shù)為:17只,腿的總數(shù)為34條。
S2 再確定每多一只小兔、減少一只小雞增加的腿數(shù)2條。
S3 再根據(jù)缺的腿的條數(shù)確定小兔的數(shù)量: (48-34)/2=7只
S4 最后確定小雞的數(shù)量:17-7=10只.
算法2:S1 首先設(shè) 只小雞, 只小兔。
S2 再列方程組為:
S3 解方程組得:
S4 指出小雞10只,小兔7只。
算法3:S1 首先設(shè) 只小雞,則有 只小兔
S2 列方程
S3 解方程得 ,則
S4 指出小雞10只,小兔7只.
算法4:S1 “請一名馴獸師”所有小雞抬一條腿,所有小兔抬兩條腿
S2 有小兔 只
S3 有小雞 只
S4 指出小雞10只,小兔7只.
算法5:S1 有小兔 只
S2 有小雞 只
二分法:
對于區(qū)間[a,b ]上連續(xù)不斷,且f(a)f(b)<0的函數(shù)y=f(x),通過不斷地把函數(shù)f(x)的零點所在的區(qū)間一分為二,使區(qū)間的兩個端點逐步逼近零點,而得到零點近似值的方法叫做二分法.
例3(課本P4例2):寫
出用“二分法”求方程 的近似解的算法.
算法分析:
令f(x)= ,則方程 的解就是函數(shù)f(x)的零點.
第一步,令f(x)= ,給定精確度d.
第二步,確定區(qū)間[a,b],滿足f(a)·f(b)<0.
第三步,取區(qū)間中點 .
第四步,若f(a)·f(m)<0,則含零點的區(qū)間為[a,m],否則,含零點的區(qū)間為[m,b].
將新得到的含零點的區(qū)間仍記為[a,b];
第五步,判斷[a,b]的長度是否小于d或f(m)是否等于0.若是,則m是方程的近似解;否則,返回第三步.
(四)課堂小結(jié),鞏固反思
1、算法的主要特點:
(1)有限性:一個算法在執(zhí)行有限步后必須結(jié)束;
(2)確切性:算法的每一個步驟和次序必須是確定的;
(3)輸入:一個算法有0個或多個輸入,以刻劃運算對象的初始條件.所謂0個輸入是指算法本身定出了初始條件.
(4)輸出:一個算法有1個或多個輸出,以反映對輸入數(shù)據(jù)加工后的結(jié)果.沒有輸出的算法是毫無意義的.
2、計算機解決任何問題都要依賴算法,算法是建立在解法基礎(chǔ)上的操作過程,算法不一定要有運算結(jié)果.設(shè)計一個解決某類問題的算法的核心內(nèi)容是將解決問題的過程分解為若干個明確的步驟,即算法,它沒有一個固定的模式,但有以下幾個基本要求:
(1)符合運算規(guī)則,計算機能操作;
(2)每個步驟都有一個明確的計算任務(wù);
(3)對重復(fù)操作步驟作返回處理;
(4)步驟個數(shù)盡可能少;
(5)每個步驟的語言描述要準確、簡明.
【高二數(shù)學(xué)算法與程序框圖教學(xué)計劃】相關(guān)文章:
高二數(shù)學(xué)算法與程序框圖教學(xué)計劃的范例06-14
高二數(shù)學(xué)上冊算法與程序框圖教學(xué)計劃07-10
人教版高二數(shù)學(xué)上冊算法與程序框圖教學(xué)計劃06-12
高二數(shù)學(xué)算法教學(xué)計劃安排06-14
高二數(shù)學(xué)《算法初步》與案例教學(xué)計劃06-12
關(guān)于高中數(shù)學(xué)《算法的含義、程序框圖 》練習(xí)題06-13
關(guān)于《1.1 算法與程序框圖(1)》測試題06-12
程序框圖數(shù)學(xué)說課稿02-11