亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

七年級數學上冊教案

時間:2024-07-03 13:03:01 數學教案 我要投稿

七年級數學上冊教案錦集(15篇)

  作為一名專為他人授業解惑的人民教師,編寫教案是必不可少的,教案是實施教學的主要依據,有著至關重要的作用。那么大家知道正規的教案是怎么寫的嗎?下面是小編整理的七年級數學上冊教案,希望能夠幫助到大家。

七年級數學上冊教案錦集(15篇)

七年級數學上冊教案1

  【學習目標】

  1、能根據題意用字母表示未知數,然后分析出等量關系,再根據等量關系列出方程。

  2、理解什么是一元一次方程。

  3、理解什么是方程的解及解方程,學會檢驗一個數值是不是方程的解的方法。

  【重點難點】

  體會找等量關系,會用方程表示簡單實際問題,能驗證一個數是否是一個方程的解。

  【導學指導】

  一、溫故知新

  1:前面學過有關方程的一些知識,同學們能說出什么是方程嗎?

  答:叫做方程。

  一元一次方程復習

  注意:我們在解一元一次方程時,既要學會按部就班(嚴格按步驟)地解方程,又要善于認真觀察方程的結構特征,靈活采用解方程的一些技巧,隨機應變(靈活打亂步驟)解方程,能達到事半功倍的效果.對于一般解題步驟與解題技巧來說,前者是基礎,后者是機智,只有真正掌握了一般步驟,才能熟能生巧.

  解一元一次方程常用的技巧有:

  (1)有多重括號,去括號與合并同類項可交替進行

  (2)當括號內含有分數時,常由外向內先去括號,再去分母

  (3)當分母中含有小數時,可根據xx分數的基本性質xx把分母化成整數

  (4)運用整體思想,即把含有未知數的代數式看作整體進行變形

  (三)實際問題與一元一次方程

  1.用一元一次方程解決實際問題的一般步驟是:

  (1)審題,搞清已知量和待求量,分析數量關系. (審題,尋找等量關系)

  (2)根據數量關系與解題需要設出未知數,建立方程;

  (3)解方程;

  (4)檢查和反思解題過程,檢驗答案的正確性以及是否符合題意,并作答.

  2.用一元一次方程解決實際問題的典型類型

  (1)數字問題:①數的表示方法:一個三位數的百位數字為a,十位數字是b,個位數字為c則這個三位數表示為xx100a+10b+cxx(其中a、b、c均為整數,且1≤a≤9,0≤b≤9,0≤c≤9).

  ②用一個字母表示連續的自然數、奇數、偶數等規律數.

  (2)和、差、倍、分問題:關鍵詞是“是幾倍,增加幾倍,增加到幾倍,增加百分之幾,增長率,哪個量比哪個量……”

  《第三章一元一次方程》精編導學

  3.1從算式到方程

  【學習目標】

  1、知道什么是方程,什么是一元一次方程;

  2、在實際問題中,能夠找到并利用題中的等量關系列出方程.

  【重點難點】

  重點1.歸納方程、一元一次方程的概念;

  2.分析實際問題中的數量關系,利用其中的相等關系列出方程。

  難點:能夠用方程解決一些實際問題。

  【學法指導】

自主探究、合作學習

  【自主學習,基礎過關】

  1. (1)3+b=2b+1 (2)4+x=7

  (3) 0.7x=1400 (4)2x-2=6

  請大家觀察上面4個式子有什么共同特點?

  從而得到:xxxxxxxxxxxxxxx的等式叫做方程。

  2.閱讀課本78頁問題,你能用算術方法解答嗎?試一試。

  若設A,B兩地間的路程是x km?則從A地到B地,卡車用了小時,客車用了小時。根據題意,可列出等式嗎?

  還有其他的解法嗎?試著改變一種設法。

  我的疑惑

  【合作探究,釋疑解惑】

  1.根據下面實際問題中的數量關系,設未知數列出方程:

  ①用一根長為48cm的鐵絲圍成一個正方形,正方形的邊長為多少?

  ②某校女生人數占全體學生數的52%,比男生多80人,這個學校有多少學生?

  ③練習本每本0.8元,小明拿了10元錢買了若干本,還找回4.4元。問:小明買了幾本練習本?

  小結:像上面①、②、③中列出的方程,它們都含有xxxxx個未知數(元),未知數的'次數都是xxxxxxx,這樣的方程叫做一元一次方程。

  (即方程的一邊或兩邊含有未知數)

  【檢測反饋,學以致用】

  1.根據條件列出等式:

  ①比a大5的數等于8:

  ②某數的30%比它的2倍少34:

  ③27與x的差的一半等于x的4倍:xxxxxxxxx

  ④比a的3倍小2的數等于a與b的和:

  2.列方程解決實際問題

  (1)用一根長24cm的鐵絲圍成一個長方形,使它的長是寬的1.5倍,長方形的長,寬各應是多少?

  (2)小芳種了一株樹苗,開始時樹苗高為40厘米,栽種后每周升高約15厘米,大約幾周后樹苗長高到1米?

  【總結提煉,知識升華】

  1、學習收獲

  2、需要注意的問題

  【課后訓練,鞏固拓展】

  1、必做題:教科書80頁練習1,2,3,4題;

  2、懸賞題(2個優)

  雞兔同籠,上有20頭,下有52足,請問雞兔各有多少只?

七年級數學上冊教案2

  教學目標

  1.知識與技能

  ①理解有理數的意義.②能把給出的有理數按要求分類.③了解0在有理數分類的作用.

  2.過程與方法

  經歷本節的學習,培養學生樹立分類討論的觀點和能正確地進行分類的能力.

  3.情感、態度與價值觀

  通過聯系與發展、對立與統一的'思考方法對學生進行辯證唯物主義教育.

  教學重點難點

  重點:會把所給的各數填入它所在的數集的圖里.難點:掌握有理數的兩種分類.

  教與學互動設計

  (一)創設情境,導入新課

  討論交流現在,同學們都已經知道除了我們小學里所學的數之外,還有另一種形式的數,即負數.大家討論一下,到目前為止,你已經認識了哪些類型的數.

  (二)合作交流,解讀探究

  學生列舉:3,5.7,-7,-9,-10,0,-3,-7.4,5.2…

  議一議你能說說這些數的特點嗎?

  學生回答,并相互補充:有小學學過的整數、0、分數,也有負整數、負分數.

  說明:我們把所有的這些數統稱為有理數.

七年級數學上冊教案3

  教學目的:

  1.知識與技能

  體會有理數乘法的實際意義;

  掌握有理數乘法的運算法則和乘法法則,靈活地運用運算律簡化運算。

  2.過程與方法

  經歷有理數乘法的推導過程,用分類討論的思想歸納出兩數相乘的法則,感悟中、小學數學中的乘法運算的重要區別。

  通過體驗有理數的乘法運算,感悟和歸納出進行乘法運算的一般步驟。

  3.情感、態度與價值觀

  通過類比和分類的思想歸納乘法法則,發展舉一反三的能力。

  教學重點:

  應用法則正確地進行有理數乘法運算。

  教學難點:

  兩負數相乘,積的符號為正。

  教具準備:

  多媒體。

  教學過程:

  一、引入

  前面我們已經學習了有理數的加法運算和減法運算,今天,我們開始研究有理數的乘法運算.

  問題一:有理數包括哪些數?

  回答:有理數包括正整數、正分數、負整數、負分數和零.

  問題二:小學已經學過的乘法運算,屬于有理數中哪些數的運算?

  回答:屬于正有理數和零的乘法運算.或答:屬于正整數、正分數和零的乘法運算.

  計算下列各題;

  以上這些題,都是對正有理數與正有理數、正有理數與零、零與零的乘法,方法與小學學過的相同,今天我們要研究的有理數的乘法運算,重點就是要解決引入負有理數之后,怎樣進行乘法運算的問題.

  二、新課

  我們以蝸牛爬行距離為例,為區分方向,我們規定:向左為負,向右為正,為區分時間,我們規定:現在前為負,現在后為正。

  如圖,一只蝸牛沿直線l爬行,它現在的位置恰在l上的點O。

  1.正數與正數相乘

  問題一:如果蝸牛一直以每分2cm的速度向右爬行,3分后它在什么位置?

  講解:3分后蝸牛應在l上點O右邊6cm處,這可表示為

  (+2)×(+3)=+6

  答:結果向東運動了6米.

  2.負數與正數相乘

  問題二:如果蝸牛一直以每分2cm的速度向左爬行,3分后它在什么位置?

  講解:3分后蝸牛應在l上點O右邊6cm處,這可表示為

  (-2)×(+3)=(-6)

  3.正數與負數相乘

  問題三:如果蝸牛一直以每分2cm的速度向右爬行,3分前它在什么位置?

  講解:3分后蝸牛應為l上點O左邊6cm處,這可以表示為

  (+2)×(-3)=-6

  4.負數與負數相乘

  問題四:如果蝸牛一直以每分2cm的速度向左爬行,3分前它在什么位置?

  講解:3分前蝸牛應為l上點O右邊6cm處,這可以表示為

  (-2)×(-3)=+6

  5.零與任何數相乘或任何數與零相乘

  問題五:原地不動或運動了零次,結果是什么?

  答:結果都是仍在原處,即結果都是零,若用式子表達:

  0×3=0;0×(-3)=0;2×0=0;(-2)×0=0.

  綜合上述五個問題得出:

  (1)(+2)×(+3)=+6;

  (2)(-2)×(+3)=-6;

  (3)(+2)×(-3)=-6;

  (4)(-2)×(-3)=+6.

  (5)任何數與零相乘都得零.

  觀察上述(1)~(4)回答:

  1.積的符號與因數的符號有什么關系?

  2.積的絕對值與因數的絕對值有什么關系?

  答:1.若兩個因數的符號相同,則積的符號為正;若兩個因數的符號相反,則積的符號為負.2.積的絕對值等于兩個因數的絕對值的積.

  由此我們可以得到:

  兩數相乘,同號得正,異號得負,并把絕對值相乘.

  (1)~(5)包括了兩個有理數相乘的所有情況,綜合上述各種情況,得到有理數乘法的`法則:

  口答:確定下列兩數積的符號:

  例題:計算下列各題:

  解題步驟:

  1.認清題目類型.

  2.根據法則確定積的符號.

  3.絕對值相乘.

  練習:

  1.口答下列各題:

  (1)6×(-9);(2)(-6)×(-9);

  (3)(-6)×9;(4)(-6)×1;

  (5)(-6)×(-1);(6)6×(-1);

  (7)(-6)×0;(8)0×(-6);

  (9)(-6)×0.25;(10)(-0.5)×(-8);

  注意:由(4)(5)(6)得:一個數與1相乘得原數,一個數與-1相乘,得原數的相反數.

  2.在表中的各個小方格里,填寫所在的橫行的第一個數與所在直列的第一個數的積:

  3.計算下列各題:

  (1)(-36)×(-15);(2)-48×1.25;

  4.填空:

  (1)1×(-5)=____;(-1)×(-5)=____;

  +(-5)=____;-(-5)=____;

  (2)1×a=____;(-1)×a=____;

  (3)1×|-5|=____;-1×|-5|=____;

  -|-5|=____

  (4)1+(-5)=____;(-1)+(-5)=____;

  (-1)+5=____.

  三、小結

  (1)指導學生看書,精讀乘法法則.

  (2)強調運用法則進行有理數乘法的步驟.

  (3)比較有理數乘法的符號法則與有理數加法的符號法則的區別,以達到進一步鞏固有理數乘法法則的目的.

  四、作業

  1.計算:

  (1)(-16)×15;(2)(-9)×(-14);

  (3)(-36)×(-1);(4)13×(-11);

  (5)(-25)×16;(6)(-10)×(-16).

  2.計算:

  (1)2.9×(-0.4);(2)-30.5×0.2;

  (3)0.72×(-1.25);(4)100×(-0.001);

  (5)-4.8×(-1.25);(6)-4.5×(-0.32).

  3.計算:

  4.填空:(用“>”或“<”號連接)

  (1)如果a<0,b>0,那么,ab____0;

  (2)如果a<0,b<0,那么,ab____0;

  (3)當a>0時,a____2a;

  (4)當a<0時,a____2a.

  板書設計

  1.4有理數的乘法

  法則:練習

  教學設計思路

  本節課是在小學已接觸到的乘法、初中剛學習過的有理數的加減法基礎上進行的。通過對實際問題的解決,引入有理數的乘法法則。在講解運動的例子時運用現代化教學手段,把圖形中的“靜”變“動”,增強了直觀性,初步培養想象能力。

  教學反思

  強調學生與教師一起共同參與教學活動,我們堅持把教學活動過程體現在教學中,又激發學生的思維積極性,讓學生學會分析問題和解決問題。

七年級數學上冊教案4

  教學目標

  1.知識與技能

  會利用絕對值比較兩個負數的大小.

  2.過程與方法

  利用絕對值概念比較有理數的大小,培養學生的邏輯思維能力.

  3.情感、態度與價值觀

  敢于面對數學活動中的困難,有學好數學的自信心.

  教學重點難點

  重點:利用絕對值比較兩個負數的.大小.

  難點:利用絕對值比較兩個異分母負分數的大小.

  教與學互動設計

  (一)創設情境,導入新課

  投影 你能比較下列各組數的大小嗎?

  (1)│-3│與│-8│ (2)4與-5 (3)0與3

  (4)-7和0 (5)0.9和1.2

  (二)合作交流,解讀探究

  討論交流 由以上各組數的大小比較可見:正數都大于0,0都大于負數,正數都大于負數.

  思考 若任取兩個負數,該如何比較它的大小呢?

  點撥 若-7表示-7℃,-1表示-1℃,則兩個溫度誰高誰低?

  【總結】 兩個負數,絕對值大的反而小,或說,兩個負數絕對值小的反而大.

  注意 ①比較兩個負數的大小又多了一種方法,即:兩個負數,絕對值大的反而小.

  ②異號的兩數比較大小,要考慮它們的正負;同號兩數比較大小,要考慮先比較它們的絕對值.

  ③在數軸上表示有理數,它們從左到右的順序也就是從小到大的順序,即:左邊的數總比右邊的數要小.即:利用數軸來比較有理數的大小.

七年級數學上冊教案5

  教學內容:

  人教版小學數學教材六年級下冊第107~108頁例2及相關練習。

  教學目標:

  1.在學習過程中引導學生探索研究數與形之間的聯系,尋找規律,發現規律,學會利用圖形來解決一些有關數的問題。

  2.讓學生經歷猜想與驗證的過程,體會和掌握數形結合、歸納推理、極限等基本數學思想。

  重點難點:

  探索數與形之間的聯系,尋找規律,并利用圖形來解決有關數的問題。

  教學準備:

  教學課件。

  教學過程:

  一、直接導入,揭示課題

  同學們,上節課我們探究了圖形中隱藏的數的規律,今天我們繼續研究有關數與圖形之間的聯系。(板書課題:數與形)

  【設計意圖】直奔主題,簡潔明了,有利于學生清楚本節課學習的內容和方向。

  二、探索發現,學習新知

  (一)教師與學生比賽算題

  1.教師:你知道等于多少嗎?(學生:)

  教師:那等于多少呢?(學生計算需要時間)教師緊接著說:我已經算好了,是,不信你算算。

  2.只要按照這個分子是1,分母依次擴大2倍的規律寫下去,不管有多少個分數相加,我都能立馬算出結果。有的同學不相信是嗎?咱們試試就知道。為了方便,我請我們班計算最快的同學跟我一起算,看看結果是否相同。誰來出題?

  在學生出題后,老師都能立刻算出結果,并且是正確的,學生感到很驚奇。

  3.知道我為什么算得那么快嗎?因為我有一件神秘的法寶,你們也想知道嗎?

  【設計意圖】一方面,教師通過與學生比賽計算速度,且每次老師勝利,使學生產生好奇心,再通過教師幽默的語言,吸引學生的注意力,激發學生的學習興趣和求知欲。另一方面,為接下來學習例題做好鋪墊。

  (二)借助正方形探究計算方法

  1.這件法寶就是(師邊說邊課件出示一個正方形),讓我們來把它變一變,聰明的同學們一定能看明白是怎么回事了。

  2.進行演示講解。

  (1)演示:用一個正方形表示“1”,先取它的一半就是正方形的(涂紅),再剩下部分的一半就是正方形的(涂黃)。

  想一想:正方形中表示的涂色部分與空白部分和整個正方形之間有什么關系呢?(涂色部分等于“1”減去空白部分)空白部分占正方形的幾分之幾?()那么涂色部分還可以怎么算呢?(),也就是說。

  (2)繼續演示,誰知道除了通分,還可以怎么算?

  根據學生回答,板書。

  (3)演示:那么計算就可以得到?()。

  3.看到這兒,你發現什么規律了嗎?

  4.小結:按照這樣的規律往下加,不管加到幾分之一,只要用1減去這個幾分之一就可以得到答案了。

  5.這個法寶怎么樣?誰來說說它好在哪里?你學會了嗎?

  6.嘗試練習

  【設計意圖】將復雜的數量運算轉化為簡單的圖形面積計算,轉繁為簡,轉難為易,引導學生探索數與圖形的'聯系,讓學生體會到數形結合、歸納推理的數學思想方法。

  (三)知識提升,探索發現

  1.感受極限。

  (1)剛才我們已經從一直加到了,如果我繼續加,加到,得數等于?()再接著加,一直加到,得數等于?()隨著不斷繼續加,你發現得數越來越?(大)無數個這樣的數相加,和會是多少呢?

  (2)這時候你心中有沒有一個大膽的猜想?(學生猜想:這樣一直加下去,得數會不會就等于1了。)

  (3)想象一下,如果我們在剛才加的過程中在正方形上不斷涂色,那空白部分的面積就越來越?(小)而涂色部分的面積越來越接近?(1)也就是求和的得數越來越接近?(1)最終得數是1嗎?你有什么方法來證明得數就是1?

  (學情預設:學生提出書本的圓形圖和線段圖,若沒有學生提出,教師自己提出。)

  2.利用線段圖直觀感受相加之和等于“1”。

  (1)書本上有兩幅圖,我們一起來看看(課件出示)。一幅是圓形圖,一幅是線段圖,你能看懂它的意思嗎?請你想一想,然后告訴大家你的想法。

  (2)學生看書思考。

  (3)全班交流,課件演示,得出結論:這些分數不斷加下去,總和就是1。

  【設計意圖】利用數與形的結合,讓學生直觀體會極限數學思想,并讓學生經歷猜想得數等于“1”,到數形結合證明得數等于“1”的過程,激發學生學習興趣,培養學生探索新知的精神。

  3.課堂小結。

  對于這種借用圖形來幫助我們解決問題的方法,你有什么感受?

  教師小結:是的,“數”與“形”有著緊密的聯系,在一定條件下可以相互轉化。當用數形結合的方法解決問題時,你會發現許多難題的解決變得很簡單。

  4.舉一反三。

  其實在以前的學習中,我們也常用到數形結合的數學方法幫助我們解題,你能想到些例子嗎?(如學生有困難,教師舉例:一年級加法,分數的認識,復雜的路程問題線段圖等。)

  【設計意圖】讓學生體會“數形結合”是數學學習中常用的方法。

  三、練習鞏固

  1.基礎練習。

  (1)學生獨立計算。

  (2)全班交流反饋。

  【設計意圖】通過練習,回顧新知,鞏固新知,使學生對新知識掌握得更扎實。

  2.小林、小強、小芳、小兵和小剛5人進行象棋比賽,每2人之間都要下一盤。小林已經下了4盤,小強下了3盤,小芳下了2盤,小兵下了1盤。請問:小剛一共下了幾盤?分別和誰下的?

  解決問題

  (1)全班讀題,學生獨立思考。

  (2)指名回答。

  (3)根據學生回答情況,連線(課件演示)。

  (4)結合連線圖得出:小剛一共下了2盤,分別和小林、小強下的。

  【設計意圖】讓學生進一步體會數形結合的直觀性和變難為易的特點。

  四、課堂總結

  快下課了,請你來說說這節課有什么收獲?

  課后反思:

  圖形的直觀形象的特點,決定了化數為形往往能達到以簡馭繁的目的,例2中,用舉例的方法求出等比數列的有限和,都不能證明無限多項相加結果為1,但是接近 1,但這個無限接近于1的數是多少呢?電子白板呈現出圓形模型和線段模型來表示“1”,使學生結合分數意義,在圓上和線段上分別有規律地表示這些加數,當這個過程無止境地持續下去時,所有的扇形和線段就會把整個圓和整條線段占滿,即和為“1”,用畫圖的方法來表示計算過程和結果,讓學生感受到什么叫無限接近,什么叫直觀形象,同時,一個極其抽象的極限問題,變得十分直觀和便捷。

七年級數學上冊教案6

  一、三維目標。

  (一)知識與技能。

  能運用運算律探究去括號法則,并且利用去括號法則將整式化簡。

  (二)過程與方法。

  經歷類比帶有括號的有理數的運算,發現去括號時的符號變化的.規律,歸納出去括號法則,培養學生觀察、分析、歸納能力。

  (三)情感態度與價值觀。

  培養學生主動探究、合作交流的意識,嚴謹治學的學習態度。

  二、教學重、難點與關鍵。

  1、重點:去括號法則,準確應用法則將整式化簡。

  2、難點:括號前面是—號去括號時,括號內各項變號容易產生錯誤。

  3、關鍵:準確理解去括號法則。

  三、教具準備。

  投影儀。

  四、教學過程,課堂引入。

  利用合并同類項可以把一個多項式化簡,在實際問題中,往往列出的式子含有括號,那么該怎樣化簡呢?

  五、新授。

  現在我們來看本章引言中的問題(3):

  在格爾木到拉薩路段,如果列車通過凍土地段要t小時,那么它通過非凍土地段的時間為(t-0.5)小時,于是,凍土地段的路程為100t千米,非凍土地段的路程為120(t-0.5)千米,因此,這段鐵路全長為100t+120(t-0.5)千米 ①

  凍土地段與非凍土地段相差100t—120(t-0.5)千米 ②

  上面的式子①、②都帶有括號,它們應如何化簡?

  利用分配律,可以去括號,合并同類項,得:

  100t+120(t-0.5)=100t+120t+120(-0.5)=220t-60

七年級數學上冊教案7

  一、教學目標

  1.使學生認識平行線的特征,能靈活地利用平行線的三個特征解決問題.

  2.繼續對學生進行初步的數學語言的訓練,使學生能用數學語言敘述平行線的特征,并能用初步的數學語言進行簡單的邏輯推理.

  3.使學生理解平移的思想,知道圖形經過平移以后的'位置,并能畫出平移后的圖形.

  4.通過利用“幾何畫板”所做的數學實驗的演示等,培養學生的觀察能力,即在圖形的運動變化中抓住圖形的本質特征,發展學生邏輯思維能力,通過實際問題的解決培養學生分析問題和解決問題的能力.

  5.通過課堂設疑,培養學生勇于發現、探索新知識的精神.

  6.通過創設問題情境,讓學生親身體驗、直觀感知并操作確認,激發學生自主學習的欲望,使之愛學、會學、學會、會用.

  二、教學重點

  平行線的三個特征.

  三、教學難點

  靈活地利用平行線的三個特征解決問題.

  四、教學過程

  老師:同學們,如圖所示,是我們大連的馬欄河,河上有兩座橋:新華橋和光明橋.河的兩岸是兩條平行的公路:黃河路與高爾基路,某測量員在A點測得.如果你不通過測量,能否猜出的度數是多少?

  王亮:.

  老師:他到底猜得對不對呢?下面我們要先做一個實驗,拿出尺子,畫兩條平行的直線a、b,第三條直線l和這兩條直線相交,標出所得到的角,用量角器量出各個角的度數,觀察當兩直線平行時,各種角有什么關系.

  學生動手按要求做實驗.

  老師:將你發現的規律與組內同學進行交流.

  學生以小組為單位進行交流與研究.

  老師:請每組派一名代表將你們得到的規律寫到黑板上,并結合你畫的圖講解你們組的結論.

  第1組學生代表:如果兩直線平行,同位角就相等。

七年級數學上冊教案8

  教學目標

  1,整理前兩個學段學過的整數、分數(包括小數)的知識,掌握正數和負數的概念;

  2,能區分兩種不同意義的量,會用符號表示正數和負數;

  3,體驗數學發展的一個重要原因是生活實際的需要,激發學生學習數學的興趣。

  教學難點正確區分兩種不同意義的量。

  知識重點兩種相反意義的量

  教學過程(師生活動)設計理念

  設置情境

  引入課題上課開始時,教師應通過具體的例子,簡要說明在前兩個學段我們已經學過的數,并由此請學生思考:生

  活中僅有這些“以前學過的數”夠用了嗎?下面的例子

  僅供參考.

  師:今天我們已經是七年級的學生了,我是你們的數學老師.下面我先向你們做一下自我介紹,我的名字是XX,身高1。73米,體重58。5千克,今年40歲.我們的班級是七(13)班,有60個同學,其中男同學有22個,占全班總人數的37%…

  問題1:老師剛才的介紹中出現了幾個數?分別是什么?你能將這些數按以前學過的數的分類方法進行分類嗎?

  學生活動:思考,交流

  師:以前學過的數,實際上主要有兩大類,分別是整數和分數(包括小數).

  問題2:在生活中,僅有整數和分數夠用了嗎?

  請同學們看書(觀察本節前面的幾幅圖中用到了什么數,讓學生感受引入負數的必要性)并思考討論,然后進行交流。

  (也可以出示氣象預報中的氣溫圖,地圖中表示地形高低地形圖,工資卡中存取錢的記錄頁面等)

  學生交流后,教師歸納:以前學過的數已經不夠用了,有時候需要一種前面帶有“-”的新數。先回顧小學里學過的數的類型,歸納出我們已經學了整數和分數,然后,舉一些實際生活中共有相反意義的量,說明為了表示相反意義的量,我們需要引入負數,這樣做強調了數學的嚴密性,但對于學生來說,更多地感到了數學的枯燥乏味為了既復習小學里學過的數,又能激發學生的學習興趣,所以創設如下的問題情境,以盡量貼近學生的實際.

  這個問題能激發學生探究的欲望,學生自己看書學習是培養學生自主學習的重要途徑,都應予以重視。

  以上的情境和實例使學生體會生活中處處有數學,通過實例,使學生獲取大量的感性材料,為正確建立相反意義的量奠定基礎。

  分析問題

  探究新知問題3:前面帶有“一”號的新數我們應怎樣命名它呢?為什么要引人負數呢?通常在日常生活中我們用正數和負數分別表示怎樣的量呢?

  這些問題都必須要求學生理解.

  教師可以用多媒體出示這些問題,讓學生帶著這些問題看書自學,然后師生交流.

  這階段主要是讓學生學會正數和負數的表示.

  強調:用正,負數表示實際問題中具有相反意義的量,而相反意義的量包含兩個要素:一是它們的意義相反,如向東與向西,收人與支出;二是它們都是數量,而且是同類的量.這些問題是這節課的主要知識,教師要清楚地向學生說明,并且要注意語言的準確與規范,要舍得花時間讓學充分發表想法。

  舉一反三思維拓展經過上面的討論交流,學生對為什么要引人負數,對怎樣用正數和負數表示兩種相反意義的量有了初步的理解,教師可以要求學生舉出實際生活中類似的.例子,以加深對正數和負數概念的理解,并開拓思維.

  問題4:請同學們舉出用正數和負數表示的例子.

  問題5:你是怎樣理解“正整數”“負整數,,’’正分數”和“負分數”的呢?請舉例說明.

  能否舉出例子是學生對知識掌握程度的體現,也能進一步幫助學生理解引負數的必要性

  課堂練習教科書第5頁練習

  小結與作業

  課堂小結圍繞下面兩點,以師生共同交流的方式進行:

  1,0由于實際問題中存在著相反意義的量,所以要引人負數,這樣數的范圍就擴大了;

  2,正數就是以前學過的0以外的數(或在其前面加“+”),負數就是在以前學過的0以外的數前面加“-”。

  本課作業教科書第7頁習題1。1第1,2,4,5(第3題作為下節課的思考題。

  作業可設必做題和選做題,體現要求的層次性,以滿足不同學生的需要

  本課教育評注(課堂設計理念,實際教學效果及改進設想)

  密切聯系生活實際,創設學習情境.本課是有理數的第一節課時.引人負數是數的范圍的一次重要擴充,學生頭腦中關于數的結構要做重大調整(其實是一次知識的順應過程),而負數相對于以前的數,對學生來說顯得更抽象,因此,這個概念并不是一下就能建立的.為了接受這個新的數,就必須對原有的數的結構進行整理,引人幣的舉例就是這個目的.

  負數的產生主要是因為原有的數不夠用了(不能正確簡潔地表示數量),書本的例子

  或圖片中出現的負數就是讓學生去感受和體驗這一點.使學生接受生活生產實際中確實

  存在著兩種相反意義的量是本課的教學難點,所以在教學中可以多舉幾個這方面的例

  子,并且所舉的例子又應該符合學生的年齡和思維特點。當學生接受了這個事實后,引入負數(為了區分這兩種相反意義的量)就是順理成章的事了.

  這個教學設計突出了數學與實際生活的緊密聯系,使學生體會到數學的應用價值,

  體現了學生自主學習、合作交流的教學理念,書本中的圖片和例子都是生活生產中常見

  的事實,學生容易接受,所以應該讓學生自己看書、學習,并且鼓勵學生討論交流,教師作適當引導就可以了。

七年級數學上冊教案9

  教學目標

  1.會利用合并同類項的方法解一元一次方程;(重點)

  2.通過對實例的分析、體會一元一次方程作為實際問題的數學模型的作用.(難點)

  教學過程

  一、情境導入

  1.等式的基本性質有哪些?

  2.解方程:(1)x-9=8; (2)3x+1=4.

  3.下列各題中的兩個項是不是同類項?

  (1)3xy與-3xy;  (2)0.2ab與0.2ab;

  (3)2abc與9bc; (4)3mn與-nm;

  (5)4xyz與4xyz; (6)6與x.

  4.能把上題中的同類項合并成一項嗎?如何合并?

  5.合并同類項的法則是什么?依據是什么?

  二、合作探究

  探究點一:利用合并同類項解簡單的一元一次方程

  例1解下列方程:

  (1)9x-5x=8;

  (2)4x-6x-x=15.

  解析:先將方程左邊的'同類項合并,再把未知數的系數化為1.

  解:(1)合并同類項,得4x=8.

  系數化為1,得x=2.

  (2)合并同類項,得-3x=15.

  系數化為1,得x=-5.

  方法總結:解方程的實質就是利用等式的性質把方程變形為x=a的形式.

  探究點二:根據“總量=各部分量的和”列方程解決問題

  例2足球表面是由若干個黑色五邊形和白色六邊形皮塊圍成的,黑、白皮塊數目的比為3∶5,一個足球表面一共有32個皮塊,黑色皮塊和白色皮塊各有多少個?

  解析:遇到比例問題時可設其中的每一份為x,本題中已知黑、白皮塊數目比為3∶5,可設黑色皮塊有3x個,則白色皮塊有5x個,然后利用相等關系“黑色皮塊數+白色皮塊數=32”列方程.

  解:設黑色皮塊有3x個,則白色皮塊有5x個,根據題意列方程3x+5x=32,解得x=4,則黑色皮塊有3x=12(個),白色皮塊有5x=20(個).

  答:黑色皮塊有12個,白色皮塊有20個.

  方法總結:解題關鍵是要讀懂題目的意思,根據題目給出的條件,找出合適的數量關系,列出方程,再求解.此題的關鍵是要知道相等關系為:黑色皮塊數+白色皮塊數=32,并能用x和比例關系把黑皮與白皮的數量表示出來.

  三、板書設計

  1.用合并同類項的方法解簡單的一元一次方程.

  解方程的步驟:

  (1)合并同類項;

  (2)系數化為1(等式的基本性質2).

  2.找等量關系列一元一次方程.

  列方程解應用題的步驟:

  (1)設未知數;

  (2)分析題意找出等量關系;

  (3)根據等量關系列方程;

  (4)解方程并作答.

  教學反思

  本節從復習入手,幫助學生回顧合并同類項的相關知識,為學習用合并同類項解方程做好鋪墊.教學中采用引導發現的方法,課堂訓練中鼓勵自己動手,體現學生在課堂上的主體地位;整個教學過程中充分調動學生學習積極性,培養學生合作學習,主動探究的習慣.

七年級數學上冊教案10

  教學目標

  1,掌握相反數的概念,進一步理解數軸上的點與數的對應關系;

  2,通過歸納相反數在數軸上所表示的點的特征,培養歸納能力;

  3,體驗數形結合的思想。

  教學難點

  歸納相反數在數軸上表示的點的特征

  知識重點

  相反數的概念

  教學過程

  (師生活動)設計理念

  設置情境

  引入課題問題1:請將下列4個數分成兩類,并說出為什么要這樣分類

  4,-2,-5,+2

  允許學生有不同的分法,只要能說出道理,都要難予鼓勵,但教師要做適當的引導,逐漸得出5和-5,+2和-2分別歸類是具有較特征的分法。

  (引導學生觀察與原點的距離)

  思考結論:教科書第13頁的思考

  再換2個類似的數試一試。

  歸納結論:教科書第13頁的歸納。以開放的形式創設情境,以學生進行討論,并培養分類的能力

  培養學生的觀察與歸納能力,滲透數形思想

  深化主題提煉定義給出相反數的定義

  問題2:你怎樣理解相反數定義中的“只有符號不同”和“互為”一詞的含義?零的相反數是什么?為什么?

  學生思考討論交流,教師歸納總結。

  規律:一般地,數a的相反數可以表示為-a

  思考:數軸上表示相反數的兩個點和原點有什么關系?

  練一練:教科書第14頁第一個練習體驗對稱的圖形的特點,為相反數在數軸上的特征做準備。

  深化相反數的'概念;“零的相反數是零”是相反數定義的一部分。

  強化互為相反數的數在數軸上表示的點的幾何意義

  給出規律

  解決問題問題3:-(+5)和-(-5)分別表示什么意思?你能化簡它們嗎?

  學生交流。

  分別表示+5和-5的相反數是-5和+5

  練一練:教科書第14頁第二個練習利用相反數的概念得出求一個數的相反數的方法

  小結與作業

  課堂小結

  1,相反數的定義

  2,互為相反數的數在數軸上表示的點的特征

  3,怎樣求一個數的相反數?怎樣表示一個數的相反數?

  本課作業

  1,必做題教科書第18頁習題1。2第3題

  2,選做題教師自行安排

  本課教育評注(課堂設計理念,實際教學效果及改進設想)

  1,相反數的概念使有理數的各個運算法則容易表述,也揭示了兩個特殊數的特征。這兩個特殊數在數量上具有相同的絕對值,它們的和為零,在數軸上表示時,離開原點的距離相等等性質均有廣泛的應用。所以本教學設計圍繞數量和幾何意義展開,滲透數形結合的思想。

  2,教學引人以開放式的問題人手,培養學生的分類和發散思維的能力;把數在數軸上表示出來并觀察它們的特征,在復習數軸知識的同時,滲透了數形結合的數學方法,數與形的相互轉化也能加深對相反數概念的理解;問題2能幫助學生準確把握相反數的概念;問題3實際上給出了求一個數的相反數的方法。

  3,本教學設計體現了新課標的教學理念,學生在教師的引導下進行自主學習,自主探究,觀察歸納,重視學生的思維過程,并給學生留有發揮的余地。

七年級數學上冊教案11

  一:說教材:

  1教材的地位和作用

  本節課是在學習了有理數加減法及乘除法法則的基礎上學習的。本節課對前面所學知識是一個很好的小結,同時也為后面的有理數混合運算做好鋪墊,很好地鍛煉了學生的運算能力,并在現實生活中有比較廣泛的應用。

  3教育目標

  (1)、知識與能力

  ①能按照有理數加減乘除的運算順序,正確熟練地進行運算。

  ②培養學生的觀察能力、分析能力和運算能力。

  (2)、過程與方法

  培養學生在解決應用題前認真審題,觀察題目已知條件,確定解題思路,列出代數式,并確定運算順序,計算中按步驟進行,最后要驗算的好習慣。

  (3)、情感態度價值觀

  通過本例的學習,學生認識到如何利用有理數的四則運算解決實際問題,并認識到小學算術里的四則混合運算順序同樣適用于有理數系,學生會感受到知識普適性美。

  4教學重點和難點

  重點和難點是如何利用有理數列式解決實際問題及正確而

  合理地進行計算。

  二:說教法

  鑒于七年級學生的年齡特點,他們對概念的理解能力不強,精神不能長時間集中,但思維比較活躍。嘗試指導法,以學生為主體,以訓練為主線。為了突出學生的主體性,使學生積極參與到數學活動中來,采用了問題性教學模式。“以學生為主體、以問題為中心、以活動為基礎、以培養分析問題和解決問題能力為目標。

  三:說學法指導

  本例將指導學生通過觀察、討論、動手等活動,主動探索,發現問題;互動合作,解決問題;歸納概括,形成能力。增強數學應用意識,合作意識,養成及時歸納總結的良好學習習慣。

  四:師生互動活動設計

  教師用投影儀出示例題,學生用搶答等多種形式完成最終的解題。

  五:說教學程序

  (課本36頁)例9:某公司去年1~3月份平均每月虧損1。5萬元,4~6月份平均每月盈利2萬元,7~10月份平均每月盈利1。7萬元,11~12月份平均每月虧損2。3萬元,這個公司去年盈虧情況如何?

  師生共析:認真審題,觀察、分析本題的問題共同回答以下問題:

  1全年哪幾個月是虧損的?哪幾個月是的盈利的?

  2各月虧損與盈利情況又如何?

  3如果盈利記為“ ”,虧損記為“—”,那么全年虧損多少?

  盈利多少?

  6你能將虧損情況與盈利情況用算式列出來嗎?

  (5)通過算式你能說出這個公司去年盈虧情況如何嗎?

  【師生行為】:由教師指導學生列出算式并指出運算順序(有理數加減乘除混合運算,如無括號,則按“先乘除后加減”的順序進行。)再由學生自主完成運算。

  【教法說明】:此題一方面可以復習加法運算,另一方面為以后學習有理數混合運算做準備,特別注意運算順序。同時訓練了學生的觀察,分析題目的能力。為以后解決實際問題做準備。

  (三):歸納小結

  今天我們通過例9的學習懂得了遇到實際問題應把實際問題通過“觀察—分析—動手”的`過程用數學的形式表現出來,直觀準確的解決問題。

  六:說板書設計

  板書要少而精,直觀性要強。能使學生清楚的看到本節課的重點,模仿示范例題熟練而準確的完成練習。也能體現出學生做題時出現的問題,便于及時糾正。

七年級數學上冊教案12

  一、教材分析

  (一)教材的地位和作用

  本節內容是一元一次方程應用的延伸與拓展,它進一步讓學生親身經歷將實際問題抽象成數學模型并進行解釋與應用的過程,同時又滲透了函數與不等式的思想,為以后內容學習奠定了必要的數學基礎,本節內容具有承上啟下的作用.學生能深刻地認識到方程是刻畫現實世界有效的數學模型,領悟到“方程”的數學思想方法.總之,本節內容無論在知識上還是在數學思想方法上,都是十分很好的素材,能很好培養學生的探索精神、應用意識以及創新能力.

  (二)教材的重難點

  本節的重點是探索并掌握列一元一次方程解決實際問題的方法.而方程的建模思想學生還是初步接觸,尋找相等關系對學生來說仍相當困難,所以確定“找出已知量與未知量之間的關系,尤其是相等關系”為本節的難點之一,列方程解應用題的最終目標是運用方程的解對客觀現實作出合理的解釋,這是本節的難點之二.

  二、教學目標分析

  (一)知識技能目標

  1.目標內容

  (1) 結合生活實際,會在獨立思考后與他人合作,結合估算和試探,列出一元一次方程解決本節的三個實際問題,并能解釋結果的實際意義及其合理性.

  (2) 培養學生建立方程模型來分析、解決實際問題的能力以及探索精神、合作意識.

  2.目標分析

  (1) 本節的內容就是通過列方程、解方程來解決實際問題,這是必須掌握的知識,估算與試探的思維方法也很重要,這是發現和解決問題的有效途徑.

  (2) 七年級的學生對數學建模還比較陌生,建模能突出應用數學的意識,而探索精神和合作意識又是課標所大力倡導的,因而必須加強培養學生這方面的能力.

  (二)過程目標

  1.目標內容

  在活動中感受方程思想在數學中的作用,進一步增強應用意識.

  2.目標分析

  利用方程解決問題是有用的數學方法,學生在前兩節的數學活動中,有了一些初步的經驗,但是更接近生活,更富有挑戰性的問題則需要師生合作,探索解決.

  (三)情感目標

  1.目標內容

  (1) 在探索中獲得成功的體驗,激發學生學習數學的熱情,享受與他人合作的樂趣,建立自信心.

  (2) 通過對實際問題的解決,進一步體會“數學來源于生活,且服務于生活”的辯證思想.

  2.目標分析

  七年級學生的年齡特征決定了他們好奇心強、思想活躍、求知心切.利用教材培養學生良好的學習習慣、方法和品質,這是落實新課標倡導的教育理念的關鍵.

  三、教材處理與教法分析

  本節內容擬定兩課時完成,今天說課的內容是第一課時(探究Ⅰ、探究Ⅱ).根據本節課的特點及七年級學生的心理特征和認知特征,本節課采用探索發現法進行教學,在活動中充分體現學生是學習的主人,教師是學習的組織者、引導者、合作者.本課借助多媒體輔助教學,給學生以直觀形象的演示,增強感性認識,增強教學效果.課中以設疑提問、分組活動等方式,激發學生的興趣,引導學生自主探索與合作交流,主動獲得知識.

  四、教學過程分析

  (一)教學過程流程圖

  探究Ⅰ

  (二)教學過程Ⅰ

  (以探究為主線、形式多樣化)

  1.問題情境

  (1) 多媒體展示有關盈虧的新聞報道,感受生活實際.

  (2) 據此生活實例,展示探究Ⅰ,引入新課.

  考慮到學生不完全明白“盈利”、“虧損”這樣的商業術語,故針對性地播放相關新聞報道,然后引出要探索的問題Ⅰ.

  2.討論交流

  (1) 學生結合自己的生活實際,交流對“盈利”、“虧損”含義的理解.

  (2) 學生交流后,老師提出問題:某件商品的進價是40元,賣出后盈利25%,那么利潤是多少?如果賣出后虧損25%,利潤又是多少?(利潤是負數,是什么意思?)

  (3) 要求學生對探究Ⅰ中商店的盈虧進行估算,交流討論并說明理由.在討論中學生對商店盈虧可能出現不同的觀點,因此引導學生用數學方法解決問題,統一認識.

  (4) 師生互動,要知道究竟是盈是虧,必須先知道什么?從而引出要算出每件衣服的進價.

  讓學生討論盈利和虧損的含義,理解其概念,建立感性認識;乍一看,大多數學生可能在大體估算后得到不虧不盈,直覺上也是如此,但要解決實際問題,還要知其原價(未知量),從這一分析引入未知量,為后面建立模型,做了必要的鋪墊.

  3.建立模型

  (1) 學生自主探索,尋找已知量與未知量之間的關系,確定相等關系.

  (2) 學生分組,根據找出的相等關系列出方程,其中一組計算盈利25%的衣服的進價,另一組計算虧損25%的衣服的進價.

  (3) 師生互動:①兩件衣服的進價和為________;②兩件衣服的`售價和為________;③由于進價________售價,由此可知兩件衣服的盈虧情況.

  (教師及時給出完整的解答過程)

  學生分組、計算盈虧;教師參與、適當提示;師生互動、得到決策.這樣設計,讓學生體會到合作交流、互相評價、互相尊重的學習方式,有利于學生知識的形成與發展,也有利于學生健康人格的養成.這樣設計易于突出重點,突破難點,鞏固應用一元一次方程作工具來解決實際問題的方法,也很好地讓學生從已有的經驗中、活動中,有意義地構建自己的知識結構,獲得富有成效的學習體驗.

  4.小結

  一個感悟:估算與主觀判斷往往與實際情況大相徑庭,需要我們通過準確的計算來檢驗自己的判斷.

  培養學生科學的學習態度與嚴謹的學習作風.

  探究Ⅱ

  (三)教學過程Ⅱ

  1.在燈具店選購燈具時,由于兩種燈具價格、能耗的不同,引起矛盾沖突.

  恰當的問題情境激發學生探索的欲望,同時讓學生體會到數學來源于生活,又服務于生活的實用性.

  啟發:選擇的目的是節省費用,費用又是由哪些因素決定的?學生討論得出結論:

  2.列代數式

  費用=燈的售價+電費

  電費=0.5×燈的功率(千瓦)×照明時間(時)

  在此基礎上,用t表示照明時間(小時).要求學生列出代數式表示這兩種燈的費用.

  節能燈的費用(元):60+0.5×0.011t.

  白熾燈的費用(元):3+0.5×0.06t.

  分析各個量之間的關系,列出代數式,為后面列方程,并進一步探索提供了基礎.

  3.特值試探

  具體感知

  學生分組計算:

  t=1000、20xx、2500、3000時,這兩種燈具的使用費用,填入下表:

  時間(小時)

  1000

  20xx

  2500

  3000

  節能燈的費用(元)

  白熾燈的費用(元)

七年級數學上冊教案13

  教學目標

  1,掌握數軸的概念,理解數軸上的點和有理數的對應關系;

  2,會正確地畫出數軸,會用數軸上的點表示給定的有理數,會根據數軸上的點讀出所表示的有理數;

  3,感受在特定的條件下數與形是可以相互轉化的,體驗生活中的數學。

  教學難點 數軸的概念和用數軸上的點表示有理數

  知識重點

  教學過程(師生活動) 設計理念

  設置情境

  引入課題 教師通過實例、課件演示得到溫度計讀數.

  問題1:溫度計是我們日常生活中用來測量溫度的重要工具,你會讀溫度計嗎?請你嘗試讀出圖中三個溫度計所表示的溫度?

  (多媒體出示3幅圖,三個溫度分別為零上、零度和零下)

  問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3 m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3 m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.

  (小組討論,交流合作,動手操作) 創設問題情境,激發學生的學習熱情,發現生活中的數學

  點表示數的感性認識。

  點表示數的理性認識。

  合作交流

  探究新知 教師:由上述兩問題我們得到什么啟發?你能用一條直線上的點表示有理數嗎?

  讓學生在討論的基礎上動手操作,在操作的基礎上歸納出:可以表示有理數的直線必須滿足什么條件?

  從而得出數軸的三要素:原點、正方向、單位長度 體驗數形結合思想;只描述數軸特征即可,不用特別強調數軸三要求。

  從游戲中學數學 做游戲:教師準備一根繩子,請8個同學走上來,把位置調整為等距離,規定第4個同學為原點,由西向東為正方向,每個同學都有一個整數編號,請大家記住,現在請第一排的同學依次發出口令,口令為數字時,該數對應的同學要回答“到”;口令為該同學的名字時,該同學要報出他對應的`“數字”,如果規定第3個同學為原點,游戲還能進行嗎? 學生游戲體驗,對數軸概念的理解

  尋找規律

  歸納結論 問題3:

  1, 你能舉出一些在現實生活中用直線表示數的實際例子嗎?

  2, 如果給你一些數,你能相應地在數軸上找出它們的準確位置嗎?如果給你數軸上的點,你能讀出它所表示的數嗎?

  3, 哪些數在原點的左邊,哪些數在原點的右邊,由此你會發現什么規律?

  4, 每個數到原點的距離是多少?由此你會發現了什么規律?

  (小組討論,交流歸納)

  歸納出一般結論,教科書第12的歸納。 這些問題是本節課要求學會的技能,教學中要以學生探究學習為主來完成,教師可結合教科書給學生適當指導。

  鞏固練習

  教科書第12頁練習

  小結與作業

  課堂小結 請學生總結:

  1, 數軸的三個要素;

  2, 數軸的作以及數與點的轉化方法。

  本課作業 1, 必做題:教科書第18頁習題1.2第2題

  2,選做題:教師自行安排

  本課教育評注(課堂設計理念,實際教學效果及改進設想)

  1, 數軸是數形轉化、結合的重要媒介,情境設計的原型來源于生活實際,學生易于體驗和接受,讓學生通過觀察、思考和自己動手操作、經歷和體驗數軸的形成過程,加深對數軸概念的理解,同時培養學生的抽象和概括能力,也體出了從感性認識,到理性認識,到抽象概括的認識規律。

  2, 教學過程突出了情竟到抽象到概括的主線,教學方法體了特殊到一般,數形結合的數學思想方法。

  3, 注意從學生的知識經驗出發,充分發揮學生的主體意識,讓學生主動參與學習活,并引導學生在課堂上感悟知識的生成,發展與變化,培養學生自主探索的學習方法。

七年級數學上冊教案14

  一、教學目標

  (一)認知目標

  1.借助頻率或考慮實驗觀察到的結果,區分不可能發生、可能發生和必然發生這三個概念.

  2.借助頻數或頻率,初步體會隨機事件發生的可能性是有大有小的.

  (二)情感目標

  讓學生在解決現實問題的同時,能受到愛國主義教育,增進對數學價值的認識.

  二、教學重點

  正確區分“不可能”、“必然”和“可能”.

  三、教學難點

  怎樣分清不確定的現象和確定的現象.

  四、教學過程

  (一)導入新課

  同學們還記得拋擲硬幣的游戲嗎?再拋10次試一試,記錄一下,看看有________次正面朝上,有_______次反面朝上.

  提問:在剛才的拋擲硬幣游戲中,你發現正反面同時朝上有幾次?

  學生回答:0次;一次也沒有;不可能.

  回答得很好.在我們的周圍有很多事情有可能發生,也有不可能發生的.下面再請同學們拿出準備好的骰子.

  (二)新授

  骰子都是正方體,它有六個面,每一面的點數分別是從1到6這六個數字中的'一個.骰子的質地是均勻的,也就是說每個數字被擲得的機會都是一樣的.

  下面兩人一組做擲骰子的游戲.

  要求:一個同學擲骰子,另一個同學做記錄,用“正”字法把每個點數出現的頻數記錄下來,填入備好的表里.擲完20次以后,兩人交換角色,再記錄下數據.

  提問:“點數7”出現了多少次?

  學生回答:0次.

  從每個小組的頻數表中,我們可以看到,不管如何,“點數7”出現的次數總是0.這并不是因為我們擲的時間還不夠長或擲的次數還不夠多,而是因為骰子上根本沒有“7”.所以,無論再挪多少次,“點數7”都不會出現.我們可以說“擲得的點數是7”這件事是不可能發生的.

  提問:在剛才的游戲中,還有什么事是不可能發生的?

  學生進行簡單討論.

  讓學生自由發言:大干“點數7”的點數,像8、9都不可能發生.

  那么,可能發生的事是什么呢?

七年級數學上冊教案15

  總課時:1課時

  一、教學目標:

  (一)教學知識點

  1.與身邊熟悉的 事物做比較 感受百萬分之一等較小的數據 并用科學記數法表示較小的數據.

  2 .近似數和有效數字 并按要求取近似數.

  3.從統計圖中獲取信息 并用統計圖形象地表示數據.

  (二)能力訓練要求

  1.體會描述較小 數據的方法 進一步發展數感.

  2.了解近似數和有效數字的概念 能按要求取近似數 體會近似數的意義在生活中的作用.

  3.能讀懂統計圖中的信息 并能收集、整理、描述和分析數據 有效、形象地用統計圖描述數據 發展統計觀念.

  (三)情感與價值觀要求:

  1.培養學生用數學的意識和信心 體會數學的.應用價值. 2.發展學生的創新能力和克服困難的勇氣.

  二、教學重點:

  1.感受較小的數據.

  2.用科學記數法表示較小的數.

  3.近似數和有效數字 并能按要求取近似數.

  4.讀懂統計圖 并能形象、有效地用統計圖描述數據.

  教學難點:形象、有效地用統計圖描述數據.

  教學過程:.創設情景 引入新課

  三.講授新課:

  請你用熟悉的事物描述 一些較小的數據:大象是世界上最大的陸棲動物 它的體重可達幾噸。世界第一高峰——珠穆朗瑪峰 它的海拔高度約為8848米。

  1.哪些數據用科學記數法表示比較方便?舉例說明.

  2.用科學記數法表示下列各數:

  (1)水由氫原子和氧原子組成 其中氫原子的直徑約為0.000 000 0001米.

  (2)生物學家發現一種病毒的長度約為0.000043毫米;

  (3)某種鯨的體重可達136 000 000千克;

  (4)20xx年5月19日 國家郵政局特別發行“萬眾一心 抗擊‘非典’”郵票 收入全部捐給 衛生部門 用以支持抗擊“非典”斗爭 其郵票的發行量為12 500 000枚.

  四.課時小結:我們這節課回顧了以下知識:

  1.又一次經 歷感受 了百萬分之一 進一步體會描述較小數據的方法:與身邊事物比較 進一步學習了利 用科學記數法表示較小的數據.

  2.在實際情景中進一步體會到了近似 數的意義和作用 并按要求取近似數和有效數字.

  3.又一次欣賞了形象的統計圖 并從中獲取有用的信息.

  (1)根據上表中的數據 制作統計圖表示這些主要河流的河長情況 你的統計圖要盡可能的形象.

  (2)從上表中的數據可以看出 河流的河長與流域面積有什么樣的聯系?

  (3)在中國地形圖上找出主要河流 你認為河流年徑流量與河流所處的地理位置有關系嗎?

  制作形象的統計圖 首先要處理好數據 即從表格中計算出這幾條河流長度的比例 然后選擇最大或最小作為基準量 按比例形象畫出即可.

  (1)形象統計圖(略)只要合理即可.

  (2)從表中的數據看出 河流越長 其流域面積越大.

  (3)河流的年徑流量與河流所處的位置有關系.

  五.課后作業:試卷

【七年級數學上冊教案】相關文章:

平移人教版數學七年級上冊教案10-14

七年級上冊數學教案10-15

實數數學七年級上冊教案10-14

七年級數學上冊教案01-19

七年級上冊數學教案07-02

七年級數學上冊教案07-02

七年級數學教案上冊模板10-14

七年級數學上冊教案模板10-14

七年級上冊數學優秀教案范文03-07

實數人教版數學七年級上冊教案12-22