亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

高三數學教案

時間:2023-01-16 14:47:25 數學教案 我要投稿

人教版高三數學教案

  作為一位無私奉獻的人民教師,很有必要精心設計一份教案,借助教案可以恰當地選擇和運用教學方法,調動學生學習的積極性。來參考自己需要的教案吧!下面是小編收集整理的人教版高三數學教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

人教版高三數學教案

人教版高三數學教案1

  教學目標

  掌握等差數列與等比數列的性質,并能靈活應用等差(比)數列的性質解決有關等差(比)數列的綜合性問題。

  教學重難點

  掌握等差數列與等比數列的性質,并能靈活應用等差(比)數列的性質解決有關等差(比)數列的.綜合性問題。

  教學過程

  【示范舉例】

  例1:數列是首項為23,公差為整數,

  且前6項為正,從第7項開始為負的等差數列

  (1)求此數列的公差d;

  (2)設前n項和為Sn,求Sn的值;

  (3)當Sn為正數時,求n的值.

人教版高三數學教案2

  一、目標

  知識與技能:了解可導函數的單調性與其導數的關系;能利用導數研究函數的單調性,會求函數的單調區間。

  過程與方法:多讓學生舉命題的例子,培養他們的辨析能力;以及培養他們的分析問題和解決問題的能力;

  情感、態度與價值觀:通過學生的參與,激發學生學習數學的興趣。

  二、重點難點

  教學重點:利用導數研究函數的單調性,會求不超過4次的多項式函數的單調區間

  教學難點:利用導數研究函數的單調性,會求不超過4次的多項式函數的單調區間

  三、教學過程:

  函數的贈與減、增減的快與慢以及函數的最大值或最小值等性質是非常重要的通過研究函數的這些性質,我們可以對數量的變化規律有一個基本的了解.我們以導數為工具,對研究函數的增減及極值和最值帶來很大方便.

  四、學情分析

  我們的學生屬于平行分班,沒有實驗班,學生已有的知識和實驗水平有差距。需要教師指導并借助動畫給予直觀的認識。

  五、教學方法

  發現式、啟發式

  新授課教學基本環節:預習檢查、總結疑惑→情境導入、展示目標→合作探究、精講點撥→反思總結、當堂檢測→發導學案、布置預習。

  六、課前準備

  1.學生的學習準備:

  2.教師的教學準備:多媒體課件制作,課前預習學案,課內探究學案,課后延伸拓展學案。

  七、課時安排:

  1課時

  八、教學過程

  (一)預習檢查、總結疑惑

  檢查落實了學生的預習情況并了解了學生的疑惑,使教學具有了針對性。

  提問

  1.判斷函數的單調性有哪些方法?

  (引導學生回答“定義法”,“圖象法”。)

  2.比如,要判斷y=x2的單調性,如

  何進行?(引導學生回顧分別用定義法、圖象法完成。)

  3.還有沒有其它方法?如果遇到函數:

  y=x3-3x判斷單調性呢?(讓學生短時

  間內嘗試完成,結果發現:用“定義法”,

  作差后判斷差的符號麻煩;用“圖象法”,圖象很難畫出來。)

  4.有沒有捷徑?(學生疑惑,由此引出課題)這就要用到咱們今天要學的導數法。

  以問題形式復習相關的舊知識,同時引出新問題:三次函數判斷單調性,定義法、圖象法很不方便,有沒有捷徑?通過創設問題情境,使學生產生強烈的問題意識,積極主動地參與到學習中來。

  (二)情景導入、展示目標。

  設計意圖:步步導入,吸引學生的注意力,明確學習目標。

  (探索函數的單調性和導數的關系)問:函數的單調性和導數有何關系呢?

  教師仍以y=x2為例,借助幾何畫板動態演示,讓學生記錄結果在課前發的表格第二行中:

  函數及圖象單調性切線斜率k的正負導數的正負

  問:有何發現?(學生回答)

  問:這個結果是否具有一般性呢?

  (三)合作探究、精講點撥。

  我們來考察兩個一般性的例子:

  (教師指導學生動手實驗:把準備的牙簽放在表中曲線y=f(x)的圖象上,作為曲線的切線,移動切線并記錄結果在上表第三、四行中。)

  問:能否得出什么規律?

  讓學生歸納總結,教師簡單板書:

  在某個區間(a,b)內,

  若f ' (x)>0,則f(x)在(a,b)上是增函數;

  若f ' (x)<0,則在f(x)(a,b)上是減函數。

  教師說明:

  要正確理解“某個區間”的含義,它必需是定義域內的某個區間。

  1.這一部分是后面利用導數求函數單調區間的理論依據,重要性不言而喻,而學生又只學習了導數的意義和一些基本運算,要想得到嚴格的證明是不現實的,因此,只要求學生能借助幾何直觀得出結論,這與新課標中的要求是相吻合的。

  2.教師對具體例子進行動態演示,學生對一般情況進行實驗驗證。由觀察、猜想到歸納、總結,讓學生體驗知識的發現、發生過程,變灌注知識為學生主動獲取知識,從而使之成為課堂教學活動的主體。

  3.得出結論后,教師強調正確理解“某個區間”的含義,它必需是定義域內的'某個區間。這一點將在例1的變式3具體體現。

  4.考慮到本節課堂容量較大,這里沒有提到函數在個別點處導數為零不影響單調性的情況(如y=x3在x=0處),這一問題將在后續課程中給學生補充。

  應用導數求函數的單調區間

  例1.求函數y=x2-3x的單調區間。

  (引導學生得出解題思路:求導→

  令f ' (x)>0,得函數單調遞增區間,令f ' (x)<0,得函數單調遞減區間→下結論)

  變式1:求函數y=3x3-3x2的單調區間。

  (競賽活動:將全班同學分成兩大組指定分別用單調性的定義,和用求導數的方法解答,每組各推薦一位同學的答案進行投影。)

  求單調區間是導數的一個重要應用,也是本節重點,為此,設計了例1及三個變式:

  設計例1可引導學生得出用導數法求單調區間的解題步驟

  設計變式1及競賽活動可以激發學生的學習熱情,讓他們學會比較,并深刻體驗導數法的優越性。

  鞏固提高

  變式2:求函數y=3e x -3x單調區間。

  (學生上黑板解答)

  變式3:求函數的單調區間。

  設計變式2且讓學生上黑板解答可以規范解題格式,同時使學生了解用導數法可以求更復雜的函數的單調區間。

  設計變式3是可使學生體會考慮定義域的必要性

  例1及三個變式,依次涉及二次,三次函數,含指數的函數、反比例函數,這樣一題多變,逐步深化,從而讓學生領會:如何應用及哪類單調性問題該應用“導數法”解決。

  多媒體展示探究思考題。

  在學生分組實驗的過程中教師巡回觀察指導。 (課堂實錄),

  (四)反思總結,當堂檢測。

  教師組織學生反思總結本節課的主要內容,并進行當堂檢測。

  設計意圖:引導學生構建知識網絡并對所學內容進行簡單的反饋糾正。(課堂實錄)

  (五)發導學案、布置預習。

  設計意圖:布置下節課的預習作業,并對本節課鞏固提高。教師課后及時批閱本節的延伸拓展訓練。

  九、板書設計

  例1.求函數y=3x2-3x的單調區間。

  變式1:求函數y=3x3-3x2的單調區間。

  變式2:求函數y=3e x -3x單調區間。

  變式3:求函數的單調區間。

  十、教學反思

  本課的設計采用了課前下發預習學案,學生預習本節內容,找出自己迷惑的地方。課堂上師生主要解決重點、難點、疑點、考點、探究點以及學生學習過程中易忘、易混點等,最后進行當堂檢測,課后進行延伸拓展,以達到提高課堂效率的目的。

  在后面的教學過程中會繼續研究本節課,爭取設計的更科學,更有利于學生的學習,也希望大家提出寶貴意見,共同完善,共同進步!

人教版高三數學教案3

  一、教學內容分析

  本小節是普通高中課程標準實驗教科書數學5(必修)第三章第3小節,主要內容是利用平面區域體現二元一次不等式(組)的解集;借助圖解法解決在線性約束條件下的二元線性目標函數的最值與解問題;運用線性規劃知識解決一些簡單的實際問題(如資源利用,人力調配,生產安排等)。突出體現了優化思想,與數形結合的思想。本小節是利用數學知識解決實際問題的典例,它體現了數學源于生活而用于生活的特性。

  二、學生學習情況分析

  本小節內容建立在學生學習了一元不等式(組)及其應用、直線與方程的基礎之上,學生對于將實際問題轉化為數學問題,數形結合思想有所了解.但從數學知識上看學生對于涉及多個已知數據、多個字母變量,多個不等關系的知識接觸尚少,從數學方法上看,學生對于圖解法還缺少認識,對數形結合的思想方法的掌握還需時日,而這些都將成為學生學習中的難點。

  三、設計思想

  以問題為載體,以學生為主體,以探究歸納為主要手段,以問題解決為目的,以多媒體為重要工具,激發學生的動手、觀察、思考、猜想探究的興趣。注重引導學生充分體驗“從實際問題到數學問題”的數學建模過程,體會“從具體到一般”的抽象思維過程,從“特殊到一般”的探究新知的過程;提高學生應用“數形結合”的思想方法解題的能力;培養學生的分析問題、解決問題的能力。

  四、教學目標

  1、知識與技能:了解二元一次不等式(組)的概念,掌握用平面區域刻畫二元一次不等式(組)的方法;了解線性規劃的意義,了解線性約束條件、線性目標函數、可行解、可行域和解等概念;理解線性規劃問題的圖解法;會利用圖解法求線性目標函數的最值與相應解;

  2、過程與方法:從實際問題中抽象出簡單的線性規劃問題,提高學生的數學建模能力;在探究的過程中讓學生體驗到數學活動中充滿著探索與創造,培養學生的數據分析能力、化歸能力、探索能力、合情推理能力;

  3、情態與價值:在應用圖解法解題的過程中,培養學生的化歸能力與運用數形結合思想的能力;體會線性規劃的基本思想,培養學生的數學應用意識;體驗數學來源于生活而服務于生活的特性.

  五、教學重點和難點

  重點:從實際問題中抽象出二元一次不等式(組),用平面區域刻畫二元一次不等式組的解集及用圖解法解簡單的二元線性規劃問題;

  難點:二元一次不等式所表示的平面區域的探究,從實際情境中抽象出數學問題的過程探究,簡單的二元線性規劃問題的圖解法的探究.

  六、教學基本流程

  第一課時,利用生動的情景激起學生求知的欲望,從中抽象出數學問題,引出二元一次不等式(組)的基本概念,并為線性規劃問題的引出埋下伏筆.通過學生的自主探究,分類討論,大膽猜想,細心求證,得出二元一次不等式所表示的平面區域,從而突破本小節的第一個難點;通過例1、例2的討論與求解引導學生歸納出畫二元一次不等式(組)所表示的平面區域的具體解答步驟(直線定界,特殊點定域);最后通過練習加以鞏固。

  第二課時,重現引例,在學生的回顧、探討中解決引例中的'可用方案問題,并由此歸納總結出從實際問題中抽象出數學問題的基本過程:理清數據關系(列表)→設立決策變量→建立數學關系式→畫出平面區域.讓學生對例3、例4進行分析與討論進一步完善這一過程,突破本小節的第二個難點。

  第三課時,設計情景,借助前兩個課時所學,設立決策變量,畫出平面區域并引出新的問題,從中引出線性規劃的相關概念,并讓學生思考探究,利用特殊值進行猜測,找到方案;再引導學生對目標函數進行變形轉化,利用直線的圖象對上述問題進行幾何探究,把最值問題轉化為截距問題,通過幾何方法對引例做出完美的解答;回顧整個探究過程,讓學生在討論中達成共識,總結出簡單線性規劃問題的圖解法的基本步驟.通過例5的展示讓學生從動態的角度感受圖解法。最后再現情景1,并對之作出完美的解答。

  第四課時,給出新的引例,讓學生體會到線性規劃問題的普遍性。讓學生討論分析,對引例給出解答,并綜合前三個課時的教學內容,連綴成線,總結出簡單線性規劃的應用性問題的一般解答步驟,通過例6,例7的分析與展示進一步完善這一過程。總結線性規劃的應用性問題的幾種類型,讓學生更深入的體會到優化理論,更好的認識到數學來源于生活而運用于生活的特點。

人教版高三數學教案4

  一、教材分析及處理

  函數是高中數學的重要內容之一,函數的基礎知識在數學和其他許多學科中有著廣泛的應用;函數與代數式、方程、不等式等內容聯系非常密切;函數是近一步學習數學的重要基礎知識;函數的概念是運動變化和對立統一等觀點在數學中的具體體現;函數概念及其反映出的數學思想方法已廣泛滲透到數學的各個領域,《函數》教學設計。

  對函數概念本質的理解,首先應通過與初中定義的比較、與其他知識的聯系以及不斷地應用等,初步理解用集合與對應語言刻畫的函數概念.其次在后續的學習中通過基本初等函數,引導學生以具體函數為依托、反復地、螺旋式上升地理解函數的本質。

  教學重點是函數的概念,難點是對函數概念的本質的理解。

  學生現狀

  學生在第一章的時候已經學習了集合的概念,同時在初中時已學過一次函數、反比例函數和二次函數,那么如何用集合知識來理解函數概念,結合原有的知識背景,活動經驗和理解走入今天的課堂,如何有效地激活學生的學習興趣,讓學生積極參與到學習活動中,達到理解知識、掌握方法、提高能力的目的',使學生獲得有益有效的學習體驗和情感體驗,是在教學設計中應思考的。

  二、教學三維目標分析

  1、知識與技能(重點和難點)

  (1)、通過實例讓學生能夠進一步體會到函數是描述變量之間的依賴關系的重要數學模型。并且在此基礎上學習應用集合與對應的語言來刻畫函數,體會對應關系在刻畫函數概念中的作用。不但讓學生能完成本節知識的學習,還能較好的復習前面內容,前后銜接。

  (2)、了解構成函數的三要素,缺一不可,會求簡單函數的定義域、值域、判斷兩個函數是否相等等。

  (3)、掌握定義域的表示法,如區間形式等。

  (4)、了解映射的概念。

  2、過程與方法

  函數的概念及其相關知識點較為抽象,難以理解,學習中應注意以下問題:

  (1)、首先通過多媒體給出實例,在讓學生以小組的形式開展討論,運用猜想、觀察、分析、歸納、類比、概括等方法,探索發現知識,找出不同點與相同點,實現學生在教學中的主體地位,培養學生的創新意識。

  (2)、面向全體學生,根據課本大綱要求授課。

  (3)、加強學法指導,既要讓學生學會本節知識點,也要讓學生會自我主動學習。

  3、情感態度與價值觀

  (1)、通過多媒體給出實例,學生小組討論,給出自己的結論和觀點,加上老師的輔助講解,培養學生的實踐能力和和大膽創新意識。

  (2)、讓學生自己討論給出結論,培養學生的自我動手能力和小組團結能力。

  三、教學器材

  多媒體ppt課件

  四、教學過程

  教學內容教師活動學生活動設計意圖

  《函數》課題的引入(用時一分鐘)配著簡單的音樂,從簡單的例子引入函數應用的廣泛,將同學們的視線引入函數的學習上聽著悠揚的音樂,讓同學們的視線全注意在老師所講的內容上從貼近學生生活入手,符合學生的認知特點。讓學生在領略大自然的美妙與和諧中進入函數的世界,體現了新課標的理念:從知識走向生活

  知識回顧:初中所學習的函數知識(用時兩分鐘)回顧初中函數定義及其性質,簡單回顧一次函數、二次函數、正比例函數、反比例函數的性質、定義及簡單作圖認真聽老師回顧初中知識,發現異同在初中知識的基礎上引導學生向更深的內容探索、求知。即復習了所學內容又做了即將所學內容的鋪墊

  思考與討論:通過給出的問題,引出本節課的主要內容(用時四分鐘)給出兩個簡單的問題讓同學們思考,講述初中內容無法給出正確答案,需要從新的高度來認識函數結合老師所回顧的知識,結合自己所掌握的知識,思考老師給出的問題,小組形式作討論,從簡單問題入手,循序漸進,引出本節主要知識,回顧前一節的集合感念,應用到本節知識,前后聯系、銜接新知識的講解:從概念開始講解本節知識(用時三分鐘)詳細講解函數的知識,包括定義域,值域等,回到開始提問部分作答做筆記,專心聽講講解函數概念,由知識講解回到問題身上,解決問題對提問的回答(用時五分鐘)引導學生自己解決開始所提的兩個問題,然后同個互動給出最后答案通過與老師共同討論回答開始問題,總結更好的掌握函數概念,通過問題來更好的掌握知識

  函數區間(用時五分鐘)引入函數定義域的表示方法簡潔明了的方法表示函數的定義域或值域,在集合表示方法的基礎上引入另一種方法

  注意點(用時三分鐘)做個簡單的的回顧新內容,把難點重點提出來,讓同學們記住通過問題回答,概念解答,把重難點給出,提醒學生注意內容和知識點

  習題(用時十分鐘)給出習題,分析題意在稿紙上簡單作答,回答問題通過習題練習明確重難點,把不懂的地方記住,課后學生在做進一步的聯系

  映射(用時兩分鐘)從概念方面講解映射的意義,象與原象在新知識的基礎上了解更多知識,映射的學習給以后的知識內容做更好的鋪墊

  小結(用時五分鐘)簡單講述本節的知識點,重難點做筆記前后知識的連貫,總結,使學生更明白知識點

  五、教學評價

  為了使學生了解函數概念產生的背景,豐富函數的感性認識,獲得認識客觀世界的體驗,本課采用"突出主題,循序漸進,反復應用"的方式,在不同的場合考察問題的不同側面,由淺入深。本課在教學時采用問題探究式的教學方法進行教學,逐層深入,這樣使學生對函數概念的理解也逐層深入,從而準確理解函數的概念。函數引入中的三種對應,與初中時學習函數內容相聯系,這樣起到了承上啟下的作用。這三種對應既是函數知識的生長點,又突出了函數的本質,為從數學內部研究函數打下了基礎。

  在培養學生的能力上,本課也進行了整體設計,通過探究、思考,培養了學生的實踐能力、觀察能力、判斷能力;通過揭示對象之間的內在聯系,培養了學生的辨證思維能力;通過實際問題的解決,培養了學生的分析問題、解決問題和表達交流能力;通過案例探究,培養了學生的創新意識與探究能力。

  雖然函數概念比較抽象,難以理解,但是通過這樣的教學設計,學生基本上能很好地理解了函數概念的本質,達到了課程標準的要求,體現了課改的教學理念。

人教版高三數學教案5

  一、教學目標

  1、理解一次函數和正比例函數的概念,以及它們之間的關系。

  2、能根據所給條件寫出簡單的一次函數表達式。

  二、能力目標

  1、經歷一般規律的探索過程、發展學生的抽象思維能力。

  2、通過由已知信息寫一次函數表達式的過程,發展學生的數學應用能力。

  三、情感目標1、通過函數與變量之間的關系的聯系,一次函數與一次方程的聯系,發展學生的數學思維。

  2、經歷利用一次函數解決實際問題的過程,發展學生的數學應用能力。

  四、教學重難點1、一次函數、正比例函數的概念及關系。   2、會根據已知信息寫出一次函數的表達式。

  五、教學過程

  1、新課導入有關函數問題在我們日常生活中隨處可見,如彈簧秤有自然長度,在彈性限度內,隨著所掛物體的重量的'增加,彈簧的長度相應的`會拉長,那么所掛物體的重量與彈簧的長度之間就存在某種關系,究竟是什么樣的關系,請看:某彈簧的自然長度為3厘米,在彈性限度內,所掛物體的質量x每增加1千克、彈簧長度y增加0.5厘米。

  (1)計算所掛物體的質量分別為1千克、 2千克、 3千克、 4千克、 5千克時彈簧的長度,

  (2)你能寫出x與y之間的關系式嗎?

  分析:當不掛物體時,彈簧長度為3厘米,當掛1千克物體時,增加0.5厘米,總長度為3.5厘米,當增加1千克物體,即所掛物體為2千克時,彈簧又增加0.5厘米,總共增加1厘米,由此可見,所掛物體每增加1千克,彈簧就伸長0.5厘米,所掛物體為x千克,彈簧就伸長0.5x厘米,則彈簧總長為原長加伸長的長度,即y=3+0.5x。

  2、做一做某輛汽車油箱中原有汽油100升,汽車每行駛50千克耗油9升。你能寫出x與y之間的關系嗎?(y=1000.18x或y=100 x)接著看下面這些函數,你能說出這些函數有什么共同的特點嗎?上面的幾個函數關系式,都是左邊是因變量,右邊是含自變量的代數式,并且自變量和因變量的指數都是一次。

  3、一次函數,正比例函數的概念若兩個變量x,y間的關系式可以表示成y=kx+b(k,b為常數k≠0)的形式,則稱y是x的一次函數(x為自變量,y為因變量)。特別地,當b=0時,稱y是x的正比例函數。

  4、例題講解例1:下列函數中,y是x的一次函數的是( )   ①y=x6;②y= ;③y= ;④y=7x   A、①②③ B、①③④ C、①②③④ D、②③④分析:這道題考查的是一次函數的概念,特別要強調一次函數自變量與因變量的指數都是1,因而②不是一次函數,答案為B

【高三數學教案】相關文章:

理科高三數學教案10-17

最新高三數學教案09-27

普通高中高三數學教案10-11

經典數學教案02-22

數學教案12-30

數學教案09-13

分類數學教案03-21

果子數學教案06-13

學校數學教案06-13