亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

高三數(shù)學三角函數(shù)復習教案

時間:2023-01-15 15:21:23 數(shù)學教案 我要投稿

高三數(shù)學三角函數(shù)復習教案

  作為一位不辭辛勞的人民教師,通常需要用到教案來輔助教學,借助教案可以提高教學質(zhì)量,收到預期的教學效果。教案應該怎么寫才好呢?下面是小編精心整理的高三數(shù)學三角函數(shù)復習教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

高三數(shù)學三角函數(shù)復習教案

高三數(shù)學三角函數(shù)復習教案1

  一、指導思想與理論依據(jù)

  數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科。因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。所以在學生為主體,教師為主導的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構主義的“創(chuàng)設問題情境——提出數(shù)學問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導、探索相結合的教學方法。在教學手段上,則采用多媒體輔助教學,將抽象問題形象化,使教學目標體現(xiàn)的更加完美。

  二、教材分析

  三角函數(shù)的誘導公式是普通高中課程標準實驗教科書(人教a版)數(shù)學必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導公式中的公式(二)至公式(六).本節(jié)是第一課時,教學內(nèi)容為公式(二)、(三)、(四).教材要求通過學生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導公式(一)的基礎上,利用對稱思想發(fā)現(xiàn)任意角與終邊的對稱關系,發(fā)現(xiàn)他們與單位圓的交點坐標之間關系,進而發(fā)現(xiàn)他們的三角函數(shù)值的關系,即發(fā)現(xiàn)、掌握、應用三角函數(shù)的誘導公式公式(二)、(三)、(四).同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學思想方法,為培養(yǎng)學生養(yǎng)成良好的學習習慣提出了要求.為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.

  三、學情分析

  本節(jié)課的授課對象是本校高一(1)班全體同學,本班學生水平處于中等偏下,但本班學生具有善于動手的良好學習習慣,所以采用發(fā)現(xiàn)的教學方法應該能輕松的完成本節(jié)課的教學內(nèi)容.

  四、教學目標

  (1).基礎知識目標:理解誘導公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導公式;

  (2).能力訓練目標:能正確運用誘導公式求任意角的正弦、余弦、正切值,以及進行簡單的三角函數(shù)求值與化簡;

  (3).創(chuàng)新素質(zhì)目標:通過對公式的推導和運用,提高三角恒等變形的能力和滲透化歸、數(shù)形結合的數(shù)學思想,提高學生分析問題、解決問題的能力;

  (4).個性品質(zhì)目標:通過誘導公式的學習和應用,感受事物之間的普通聯(lián)系規(guī)律,運用化歸等數(shù)學思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學生的唯物史觀.

  五、教學重點和難點

  1.教學重點

  理解并掌握誘導公式.

  2.教學難點

  正確運用誘導公式,求三角函數(shù)值,化簡三角函數(shù)式.

  六、教法學法以及預期效果分析

  “授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學生數(shù)學知識,更重要的是傳授給學生數(shù)學思想方法,如何實現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認真探究.下面我從教法、學法、預期效果等三個方面做如下分析.

  1.教法

  數(shù)學教學是數(shù)學思維活動的教學,而不僅僅是數(shù)學活動的結果,數(shù)學學習的目的不僅僅是為了獲得數(shù)學知識,更主要作用是為了訓練人的思維技能,提高人的思維品質(zhì).

  在本節(jié)課的教學過程中,本人以學生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結合等數(shù)學思想方法,采用提出問題、啟發(fā)引導、共同探究、綜合應用等教學模式,還給學生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學習環(huán)境,讓學生體味學習的快樂和成功的喜悅.

  2.學法

  “現(xiàn)代的文盲不是不識字的人,而是沒有掌握學習方法的人”,很多課堂教學常常以高起點、大容量、快推進的做法,以便教給學生更多的知識點,卻忽略了學生接受知識需要時間消化,進而泯滅了學生學習的興趣與熱情.如何能讓學生最大程度的消化知識,提高學習熱情是教者必須思考的問題.

  在本節(jié)課的教學過程中,本人引導學生的學法為思考問題共同探討解決問題簡單應用重現(xiàn)探索過程練習鞏固.讓學生參與探索的全部過程,讓學生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學習轉(zhuǎn)化為主動的自主學習.

  3.預期效果

  本節(jié)課預期讓學生能正確理解誘導公式的發(fā)現(xiàn)、證明過程,掌握誘導公式,并能熟練應用誘導公式了解一些簡單的化簡問題.

  七.教學流程設計

  (一)創(chuàng)設情景

  1.復習銳角300,450,600的三角函數(shù)值;

  2.復習任意角的三角函數(shù)定義;

  3.問題:由,你能否知道sin2100的值嗎?引如新課.

  設計意圖

  自信的鼓勵是增強學生學習數(shù)學的自信,簡單易做的題加強了每個學生學習的熱情,具體數(shù)據(jù)問題的出現(xiàn),讓學生既有好像會做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機會證明我能行,從而思考解決的辦法.

  (二)新知探究

  1.讓學生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關系;

  2.讓學生發(fā)現(xiàn)300角的終邊和2100角的終邊與單位圓的交點為、的坐標有什么關系;

  3.sin2100與sin300之間有什么關系.

  設計意圖

  由特殊問題的引入,使學生容易了解,實現(xiàn)教學過程的平淡過度,為同學們探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關系做好鋪墊.

  (三)問題一般化

  探究一

  1.探究發(fā)現(xiàn)任意角的終邊與的終邊關于原點對稱;

  2.探究發(fā)現(xiàn)任意角的終邊和角的終邊與單位圓的交點坐標關于原點對稱;

  3.探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關系.

  設計意圖

  首先應用單位圓,并以對稱為載體,用聯(lián)系的觀點,把單位圓的性質(zhì)與三角函數(shù)聯(lián)系起來,數(shù)形結合,問題的設計提問從特殊到一般,從線對稱到點對稱到三角函數(shù)值之間的關系,逐步上升,一氣呵成誘導公式二.同時也為學生將要自主發(fā)現(xiàn)、探索公式三和四起到示范作用,下面練習設計為了熟悉公式一,讓學生感知到成功的喜悅,進而敢于挑戰(zhàn),敢于前進

  (四)練習

  利用誘導公式(二),口答下列三角函數(shù)值.

  (1). ;(2). ;(3). .

  喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問題.

  (五)問題變形

  由sin300=出發(fā),用三角的定義引導學生求出sin(-300),sin1500值,讓學生聯(lián)想若已知sin =,能否求出sin( ),sin( )的值.

  學生自主探究

  1.探究任意角與的三角函數(shù)又有什么關系;

  2.探究任意角與的三角函數(shù)之間又有什么關系.

  設計意圖

  遺忘的規(guī)律是先快后慢,過程的再現(xiàn)是深刻記憶的重要途徑,在經(jīng)歷思考問題-觀察發(fā)現(xiàn)-到一般化結論的探索過程,從特殊到一般,數(shù)形結合,學生對知識的理解與掌握以深入腦中,此時以類同問題的提出,大膽的放手讓學生分組討論,重現(xiàn)了探索的整個過程,加深了知識的深刻記憶,對學生無形中鼓舞了氣勢,增強了自信,加大了挑戰(zhàn).而新知識點的自主探討,對教師駕馭課堂的能力也充滿了極大的挑戰(zhàn).彼此相信,彼此信任,產(chǎn)生了師生的默契,師生共同進步.

  展示學生自主探究的結果

  給出本節(jié)課的課題

  三角函數(shù)誘導公式

  設計意圖

  標題的后出,讓學生在經(jīng)歷整個探索過程后,還回味在探索,發(fā)現(xiàn)的成功喜悅中,猛然回頭,哦,原來知識點已經(jīng)輕松掌握,同時也是對本節(jié)課內(nèi)容的小結.

  (六)概括升華

  的三角函數(shù)值,等于的同名函數(shù)值,前面加上一個把看成銳角時原函數(shù)值的符合.(即:函數(shù)名不變,符號看象限.)

  設計意圖

  簡便記憶公式.

  (七)練習強化

  求下列三角函數(shù)的值:(1).sin( ); (2). cos(-20400).

  設計意圖

  本練習的設置重點體現(xiàn)一題多解,讓學生不僅學會靈活運用應用三角函數(shù)的誘導公式,還能養(yǎng)成靈活處理問題的良好習慣.這里還要給學生指出課本中的“負角”化為“正角”是針對具體負角而言的

  學生練習

  化簡:.

  設計意圖

  重點加強對三角函數(shù)的誘導公式的綜合應用.

  (八)小結

  1.小結使用誘導公式化簡任意角的三角函數(shù)為銳角的步驟.

  2.體會數(shù)形結合、對稱、化歸的思想.

  3.“學會”學習的習慣.

  (九)作業(yè)

  1.課本p-27,第1,2,3小題;

  2.附加課外題略.

  設計意圖

  加強學生對三角函數(shù)的誘導公式的記憶及靈活應用,附加題的設置有利于有能力的同學“更上一樓”.

  (十)板書設計:(略)

高三數(shù)學三角函數(shù)復習教案2

  一、教材分析及處理

  函數(shù)是高中數(shù)學的重要內(nèi)容之一,函數(shù)的基礎知識在數(shù)學和其他許多學科中有著廣泛的應用;函數(shù)與代數(shù)式、方程、不等式等內(nèi)容聯(lián)系非常密切;函數(shù)是近一步學習數(shù)學的重要基礎知識;函數(shù)的概念是運動變化和對立統(tǒng)一等觀點在數(shù)學中的具體體現(xiàn);函數(shù)概念及其反映出的數(shù)學思想方法已廣泛滲透到數(shù)學的各個領域,《函數(shù)》教學設計。

  對函數(shù)概念本質(zhì)的理解,首先應通過與初中定義的比較、與其他知識的`聯(lián)系以及不斷地應用等,初步理解用集合與對應語言刻畫的函數(shù)概念.其次在后續(xù)的學習中通過基本初等函數(shù),引導學生以具體函數(shù)為依托、反復地、螺旋式上升地理解函數(shù)的本質(zhì)。

  教學重點是函數(shù)的概念,難點是對函數(shù)概念的本質(zhì)的理解。

  學生現(xiàn)狀

  學生在第一章的時候已經(jīng)學習了集合的概念,同時在初中時已學過一次函數(shù)、反比例函數(shù)和二次函數(shù),那么如何用集合知識來理解函數(shù)概念,結合原有的知識背景,活動經(jīng)驗和理解走入今天的課堂,如何有效地激活學生的學習興趣,讓學生積極參與到學習活動中,達到理解知識、掌握方法、提高能力的目的,使學生獲得有益有效的學習體驗和情感體驗,是在教學設計中應思考的。

  二、教學三維目標分析

  1、知識與技能(重點和難點)

  (1)、通過實例讓學生能夠進一步體會到函數(shù)是描述變量之間的依賴關系的重要數(shù)學模型。并且在此基礎上學習應用集合與對應的語言來刻畫函數(shù),體會對應關系在刻畫函數(shù)概念中的作用。不但讓學生能完成本節(jié)知識的學習,還能較好的復習前面內(nèi)容,前后銜接。

  (2)、了解構成函數(shù)的三要素,缺一不可,會求簡單函數(shù)的定義域、值域、判斷兩個函數(shù)是否相等等。

  (3)、掌握定義域的表示法,如區(qū)間形式等。

  (4)、了解映射的概念。

  2、過程與方法

  函數(shù)的概念及其相關知識點較為抽象,難以理解,學習中應注意以下問題:

  (1)、首先通過多媒體給出實例,在讓學生以小組的形式開展討論,運用猜想、觀察、分析、歸納、類比、概括等方法,探索發(fā)現(xiàn)知識,找出不同點與相同點,實現(xiàn)學生在教學中的主體地位,培養(yǎng)學生的創(chuàng)新意識。

  (2)、面向全體學生,根據(jù)課本大綱要求授課。

  (3)、加強學法指導,既要讓學生學會本節(jié)知識點,也要讓學生會自我主動學習。

  3、情感態(tài)度與價值觀

  (1)、通過多媒體給出實例,學生小組討論,給出自己的結論和觀點,加上老師的輔助講解,培養(yǎng)學生的實踐能力和和大膽創(chuàng)新意識,教案《《函數(shù)》教學設計》。

  (2)、讓學生自己討論給出結論,培養(yǎng)學生的自我動手能力和小組團結能力。

  三、教學器材

  多媒體ppt課件

  四、教學過程

  教學內(nèi)容教師活動學生活動設計意圖

  《函數(shù)》課題的引入(用時一分鐘)配著簡單的音樂,從簡單的例子引入函數(shù)應用的廣泛,將同學們的視線引入函數(shù)的學習上聽著悠揚的音樂,讓同學們的視線全注意在老師所講的內(nèi)容上從貼近學生生活入手,符合學生的認知特點。讓學生在領略大自然的美妙與和諧中進入函數(shù)的世界,體現(xiàn)了新課標的理念:從知識走向生活

  知識回顧:初中所學習的函數(shù)知識(用時兩分鐘)回顧初中函數(shù)定義及其性質(zhì),簡單回顧一次函數(shù)、二次函數(shù)、正比例函數(shù)、反比例函數(shù)的性質(zhì)、定義及簡單作圖認真聽老師回顧初中知識,發(fā)現(xiàn)異同在初中知識的基礎上引導學生向更深的內(nèi)容探索、求知。即復習了所學內(nèi)容又做了即將所學內(nèi)容的鋪墊

  思考與討論:通過給出的問題,引出本節(jié)課的主要內(nèi)容(用時四分鐘)給出兩個簡單的問題讓同學們思考,講述初中內(nèi)容無法給出正確答案,需要從新的高度來認識函數(shù)結合老師所回顧的知識,結合自己所掌握的知識,思考老師給出的問題,小組形式作討論,從簡單問題入手,循序漸進,引出本節(jié)主要知識,回顧前一節(jié)的集合感念,應用到本節(jié)知識,前后聯(lián)系、銜接

  新知識的講解:從概念開始講解本節(jié)知識(用時三分鐘)詳細講解函數(shù)的知識,包括定義域,值域等,回到開始提問部分作答做筆記,專心聽講講解函數(shù)概念,由知識講解回到問題身上,解決問題

  對提問的回答(用時五分鐘)引導學生自己解決開始所提的兩個問題,然后同個互動給出最后答案通過與老師共同討論回答開始問題,總結更好的掌握函數(shù)概念,通過問題來更好的掌握知識

  函數(shù)區(qū)間(用時五分鐘)引入函數(shù)定義域的表示方法簡潔明了的方法表示函數(shù)的定義域或值域,在集合表示方法的基礎上引入另一種方法

  注意點(用時三分鐘)做個簡單的的回顧新內(nèi)容,把難點重點提出來,讓同學們記住通過問題回答,概念解答,把重難點給出,提醒學生注意內(nèi)容和知識點

  習題(用時十分鐘)給出習題,分析題意在稿紙上簡單作答,回答問題通過習題練習明確重難點,把不懂的地方記住,課后學生在做進一步的聯(lián)系

  映射(用時兩分鐘)從概念方面講解映射的意義,象與原象在新知識的基礎上了解更多知識,映射的學習給以后的知識內(nèi)容做更好的鋪墊

  小結(用時五分鐘)簡單講述本節(jié)的知識點,重難點做筆記前后知識的連貫,總結,使學生更明白知識點

  五、教學評價

  為了使學生了解函數(shù)概念產(chǎn)生的背景,豐富函數(shù)的感性認識,獲得認識客觀世界的體驗,本課采用"突出主題,循序漸進,反復應用"的方式,在不同的場合考察問題的不同側面,由淺入深。本課在教學時采用問題探究式的教學方法進行教學,逐層深入,這樣使學生對函數(shù)概念的理解也逐層深入,從而準確理解函數(shù)的概念。函數(shù)引入中的三種對應,與初中時學習函數(shù)內(nèi)容相聯(lián)系,這樣起到了承上啟下的作用。這三種對應既是函數(shù)知識的生長點,又突出了函數(shù)的本質(zhì),為從數(shù)學內(nèi)部研究函數(shù)打下了基礎。

  在培養(yǎng)學生的能力上,本課也進行了整體設計,通過探究、思考,培養(yǎng)了學生的實踐能力、觀察能力、判斷能力;通過揭示對象之間的內(nèi)在聯(lián)系,培養(yǎng)了學生的辨證思維能力;通過實際問題的解決,培養(yǎng)了學生的分析問題、解決問題和表達交流能力;通過案例探究,培養(yǎng)了學生的創(chuàng)新意識與探究能力。

  雖然函數(shù)概念比較抽象,難以理解,但是通過這樣的教學設計,學生基本上能很好地理解了函數(shù)概念的本質(zhì),達到了課程標準的要求,體現(xiàn)了課改的教學理念。

高三數(shù)學三角函數(shù)復習教案3

  【高考要求】:三角函數(shù)的有關概念(B).

  【教學目標】:理解任意角的概念;理解終邊相同的角的意義;了解弧度的意義,并能進行弧度與角度的互化.

  理解任意角三角函數(shù)(正弦、余弦、正切)的定義;初步了解有向線段的概念,會利用單位圓中的三角函數(shù)線表示任意角的正弦、余弦、正切.

  【教學重難點】: 終邊相同的角的意義和任意角三角函數(shù)(正弦、余弦、正切)的定義.

  【知識復習與自學質(zhì)疑】

  一、問題.

  1、角的概念是什么?角按旋轉(zhuǎn)方向分為哪幾類?

  2、在平面直角坐標系內(nèi)角分為哪幾類?與 終邊相同的角怎么表示?

  3、什么是弧度和弧度制?弧度和角度怎么換算?弧度和實數(shù)有什么樣的關系?

  4、弧度制下圓的弧長公式和扇形的面積公式是什么?

  5、任意角的三角函數(shù)的定義是什么?在各象限的符號怎么確定?

  6、你能在單位圓中畫出正弦、余弦和正切線嗎?

  7、同角三角函數(shù)有哪些基本關系式?

  二、練習.

  1.給出下列命題:

  (1)小于 的角是銳角;(2)若 是第一象限的角,則 必為第一象限的角;

  (3)第三象限的角必大于第二象限的角;(4)第二象限的角是鈍角;

  (5)相等的角必是終邊相同的角;終邊相同的角不一定相等;

  (6)角2 與角 的終邊不可能相同;

  (7)若角 與角 有相同的終邊,則角( 的終邊必在 軸的非負半軸上。其中正確的命題的序號是

  2.設P 點是角終邊上一點,且滿足 則 的值是

  3.一個扇形弧AOB 的面積是1 ,它的周長為4 ,則該扇形的中心角= 弦AB長=

  4.若 則角 的終邊在 象限。

  5.在直角坐標系中,若角 與角 的終邊互為反向延長線,則角 與角 之間的關系是

  6.若 是第三象限的角,則- , 的終邊落在何處?

  【交流展示、互動探究與精講點撥】

  例1.如圖, 分別是角 的終邊.

  (1)求終邊落在陰影部分(含邊界)的所有角的集合;

  (2)求終邊落在陰影部分、且在 上所有角的集合;

  (3)求始邊在OM位置,終邊在ON位置的所有角的集合.

  例2.(1)已知角的終邊在直線 上,求 的值;

  (2)已知角的終邊上有一點A ,求 的值。

  例3.若 ,則 在第 象限.

  例4.若一扇形的周長為20 ,則當扇形的圓心角 等于多少弧度時,這個扇形的面積最大?最大面積是多少?

  【矯正反饋】

  1、若銳角 的終邊上一點的坐標為 ,則角 的弧度數(shù)為 .

  2、若 ,又 是第二,第三象限角,則 的取值范圍是 .

  3、一個半徑為 的扇形,如果它的周長等于弧所在半圓的弧長,那么該扇形的圓心角度數(shù)是 弧度或角度,該扇形的面積是 .

  4、已知點P 在第三象限,則 角終邊在第 象限.

  5、設角 的終邊過點P ,則 的值為 .

  6、已知角 的終邊上一點P 且 ,求 和 的值.

  【遷移應用】

  1、經(jīng)過3小時35分鐘,分針轉(zhuǎn)過的角的弧度是 .時針轉(zhuǎn)過的角的弧度數(shù)是 .

  2、若點P 在第一象限,則在 內(nèi) 的取值范圍是 .

  3、若點P從(1,0)出發(fā),沿單位圓 逆時針方向運動 弧長到達Q點,則Q點坐標為 .

  4、如果 為小于360 的正角,且角 的7倍數(shù)的角的終邊與這個角的終邊重合,求角 的值.

高三數(shù)學三角函數(shù)復習教案4

  一、教學目標

  1、理解一次函數(shù)和正比例函數(shù)的概念,以及它們之間的關系。

  2、能根據(jù)所給條件寫出簡單的一次函數(shù)表達式。

  二、能力目標

  1、經(jīng)歷一般規(guī)律的探索過程、發(fā)展學生的抽象思維能力。

  2、通過由已知信息寫一次函數(shù)表達式的過程,發(fā)展學生的數(shù)學應用能力。

  三、情感目標

  1、通過函數(shù)與變量之間的關系的聯(lián)系,一次函數(shù)與一次方程的聯(lián)系,發(fā)展學生的數(shù)學思維。

  2、經(jīng)歷利用一次函數(shù)解決實際問題的過程,發(fā)展學生的數(shù)學應用能力。

  四、教學重難點

  1、一次函數(shù)、正比例函數(shù)的概念及關系。

  2、會根據(jù)已知信息寫出一次函數(shù)的表達式。

  五、教學過程

  1、新課導入有關函數(shù)問題在我們?nèi)粘I钪须S處可見,如彈簧秤有自然長度,在彈性限度內(nèi),隨著所掛物體的重量的'增加,彈簧的長度相應的會拉長,那么所掛物體的重量與彈簧的長度之間就存在某種關系,究竟是什么樣的關系,請看:某彈簧的自然長度為3厘米,在彈性限度內(nèi),所掛物體的質(zhì)量x每增加1千克、彈簧長度y增加0.5厘米。

  (1)計算所掛物體的質(zhì)量分別為1千克、 2千克、 3千克、 4千克、 5千克時彈簧的長度,

  (2)你能寫出x與y之間的關系式嗎?分析:當不掛物體時,彈簧長度為3厘米,當掛1千克物體時,增加0.5厘米,總長度為3.5厘米,當增加1千克物體,即所掛物體為2千克時,彈簧又增加0.5厘米,總共增加1厘米,由此可見,所掛物體每增加1千克,彈簧就伸長0.5厘米,所掛物體為x千克,彈簧就伸長0.5x厘米,則彈簧總長為原長加伸長的長度,即y=3+0.5x。

  2、做一做某輛汽車油箱中原有汽油100升,汽車每行駛50千克耗油9升。你能寫出x與y之間的關系嗎?(y=1000.18x或y=100 x)接著看下面這些函數(shù),你能說出這些函數(shù)有什么共同的特點嗎?上面的幾個函數(shù)關系式,都是左邊是因變量,右邊是含自變量的代數(shù)式,并且自變量和因變量的指數(shù)都是一次。

  3、一次函數(shù),正比例函數(shù)的概念若兩個變量x,y間的關系式可以表示成y=kx+b(k,b為常數(shù)k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當b=0時,稱y是x的正比例函數(shù)。

  4、例題講解例1:下列函數(shù)中,y是x的一次函數(shù)的是( )

  ①y=x6;②y= ;③y= ;④y=7x

  A、①②③ B、①③④ C、①②③④ D、②③④

  分析:這道題考查的是一次函數(shù)的概念,特別要強調(diào)一次函數(shù)自變量與因變量的指數(shù)都是1,因而②不是一次函數(shù),答案為B

【高三數(shù)學三角函數(shù)復習教案】相關文章:

高三數(shù)學復習教案09-29

高三數(shù)學的復習教案10-17

高三數(shù)學排列復習教案10-17

高三數(shù)學復習教案大全10-17

三角函數(shù)復習教案10-17

數(shù)學高三復習優(yōu)秀教案10-11

高三理科數(shù)學數(shù)列復習教案10-17

高三理科數(shù)學算法初步復習教案10-17

高三數(shù)學復習教案:古典概型10-17