亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

初中數(shù)學教案

時間:2024-07-17 14:10:38 秀雯 數(shù)學教案 我要投稿

初中數(shù)學教案(精選15篇)

  作為一位杰出的教職工,總歸要編寫教案,借助教案可以有效提升自己的教學能力。那要怎么寫好教案呢?下面是小編收集整理的初中數(shù)學教案,歡迎大家借鑒與參考,希望對大家有所幫助。

初中數(shù)學教案(精選15篇)

  初中數(shù)學教案 1

  一、目的要求

  1、使學生初步理解一次函數(shù)與正比例函數(shù)的概念。

  2、使學生能夠根據(jù)實際問題中的條件,確定一次函數(shù)與正比例函數(shù)的解析式。

  二、內(nèi)容分析

  1、初中主要是通過幾種簡單的函數(shù)的初步介紹來學習函數(shù)的,前面三小節(jié),先學習函數(shù)的概念與表示法,這是為學習后面的幾種具體的函數(shù)作準備的,從本節(jié)開始,將依次學習一次函數(shù)(包括正比例函數(shù))、二次函數(shù)與反比例函數(shù)的有關知識,大體上,每種函數(shù)是按函數(shù)的解析式、圖象及性質(zhì)這個順序講述的,通過這些具體函數(shù)的學習,學生可以加深對函數(shù)意義、函數(shù)表示法的認識,并且,結合這些內(nèi)容,學生還會逐步熟悉函數(shù)的知識及有關的數(shù)學思想方法在解決實際問題中的應用。

  2、舊教材在講幾個具體的函數(shù)時,是按先講正反比例函數(shù),后講一次、二次函數(shù)順序編排的,這是適當照顧了學生在小學數(shù)學中學了正反比例關系的知識,注意了中小學的銜接,新教材則是安排先學習一次函數(shù),并且,把正比例函數(shù)作為一次函數(shù)的特例予以介紹,而最后才學習反比例函數(shù),為什么這樣安排呢?第一,這樣安排,比較符合學生由易到難的認識規(guī)津,從函數(shù)角度看,一次函數(shù)的解析式、圖象與性質(zhì)都是比較簡單的,相對來說,反比例函數(shù)就要復雜一些了,特別是,反比例函數(shù)的圖象是由兩條曲線組成的,先學習反比例函數(shù)難度可能要大一些。第二,把正比例函數(shù)作為一次函數(shù)的特例介紹,既可以提高學習效益,又便于學生了解正比例函數(shù)與一次函數(shù)的關系,從而,可以更好地理解這兩種函數(shù)的概念、圖象與性質(zhì)。

  3、“函數(shù)及其圖象”這一章的重點是一次函數(shù)的概念、圖象和性質(zhì),一方面,在學生初次接觸函數(shù)的有關內(nèi)容時,一定要結合具體函數(shù)進行學習,因此,全章的主要內(nèi)容,是側(cè)重在具體函數(shù)的講述上的。另一方面,在大綱規(guī)定的幾種具體函數(shù)中,一次函數(shù)是最基本的,教科書對一次函數(shù)的討論也比較全面。通過一次函數(shù)的學習,學生可以對函數(shù)的'研究方法有一個初步的認識與了解,從而能更好地把握學習二次函數(shù)、反比例函數(shù)的學習方法。

  三、教學過程

  復習提問:

  1、什么是函數(shù)?

  2、函數(shù)有哪幾種表示方法?

  3、舉出幾個函數(shù)的例子。

  新課講解:

  可以選用提問時學生舉出的例子,也可以直接采用教科書中的四個函數(shù)的例子。然后讓學生觀察這些例子(實際上均是一次函數(shù)的解析式),y=x,s=3t等。觀察時,可以按下列問題引導學生思考:

  (1)這些式子表示的是什么關系?(在學生明確這些式子表示函數(shù)關系后,可指出,這是函數(shù)。)

  (2)這些函數(shù)中的自變量是什么?函數(shù)是什么?(在學生分清后,可指出,式子中等號左邊的y與s是函數(shù),等號右邊是一個代數(shù)式,其中的字母x與t是自變量。)

  (3)在這些函數(shù)式中,表示函數(shù)的自變量的式子,分別是關于自變量的什么式呢?(這題牽扯到有關整式的基本概念,表示函數(shù)的自變量的式子也就是等號右邊的式子,都是關于自變量的一次式。)

  (4)x的一次式的一般形式是什么?(結合一元一次方程的有關知識,可以知道,x的一次式是kx+b(k≠0)的形式。)

  由以上的層層設問,最后給出一次函數(shù)的定義。

  一般地,如果y=kx+b(k,b是常數(shù),k≠0)那么,y叫做x的一次函數(shù)。

  對這個定義,要注意:

  (1)x是變量,k,b是常數(shù);

  (2)k≠0 (當k=0時,式子變形成y=b的形式。b是x的0次式,y=b叫做常數(shù)函數(shù),這點,不一定向?qū)W生講述。)

  由一次函數(shù)出發(fā),當常數(shù)b=0時,一次函數(shù)kx+b(k≠0)就成為:y=kx(k是常數(shù),k≠0)我們把這樣的函數(shù)叫正比例函數(shù)。

  在講述正比例函數(shù)時,首先,要注意適當復習小學學過的正比例關系,小學數(shù)學是這樣陳述的:

  兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。

  寫成式子是(一定)

  需指出,小學因為沒有學過負數(shù),實際的例子都是k>0的例子,對于正比例函數(shù),k也為負數(shù)。

  其次,要注意引導學生找出一次函數(shù)與正比例函數(shù)之間的關系:正比例函數(shù)是特殊的一次函數(shù)。

  課堂練習:

  教科書13、4節(jié)練習第1題.

  初中數(shù)學教案 2

  教學目標:

  1、通過解題,使學生了解到數(shù)學是具有趣味性的。

  2、培養(yǎng)學生勤于動腦的習慣。

  教學過程:

  一、出示趣味題

  師:老師這里有一些有趣的問題,希望大家開動腦筋,積極思考。

  1、小衛(wèi)到文具店買文具,他買毛筆用去了所帶錢的一半,買鉛筆用去了剩下錢的一半,最后用去剩下的8分,問小衛(wèi)原有( )錢?

  2、蘋蘋做加法,把一個加數(shù)22錯寫成12,算出結果是48,問正確結果是( )。

  3、小明做減法,把減數(shù)30寫成20,這樣他算出的得數(shù)比正確得數(shù)多( ),如果小明算出的'結果是10,正確結果是( )。

  4、同學們種樹,要把9棵樹分3行種,每一行都是4棵,你能想出幾種辦法來用△表示。

  5、把一段布5米,一次剪下1米,全部剪下要( )次。

  6、李小松有10本本子,送給小剛2本后,兩人本子數(shù)同樣多,小剛原來有( )本本子。

  二、小組討論

  三、指名講解

  四、評價

  1、同學互評

  2、老師點評

  五、小結

  師:通過今天的學習,你有哪些收獲呢?

  初中數(shù)學教案 3

  教學目標:

  1、經(jīng)歷收集數(shù)據(jù)、分析數(shù)據(jù)的活動,體會統(tǒng)計在實際生活中的應用。

  2、收集統(tǒng)計在生活中應用的例子,整理收集數(shù)據(jù)的方法。

  3、在解決問題的過程中,整理所學習的統(tǒng)計圖,和統(tǒng)計量,能用自己的語言描述過各種統(tǒng)計圖的特點,掌握整理收集數(shù)據(jù)的方法。

  教學過程:

  一、課前預習,出示預習提綱:

  1、我們學習了哪幾種統(tǒng)計圖?

  2、這幾種統(tǒng)計圖各有什么特點?

  3、概率的知識有哪些?

  二、展示與交流

  (一)提出問題

  1、(出示問題情境)我們班要和希望小學的六(1)班建立手拉手班級,怎么樣向他們介紹我們班的一些情況呢?(指名回答)

  2、師:先獨立列出幾個你想調(diào)查的問題。(寫在練習本上)

  3、四人小組交流,整理出你們小組都比較感興趣的,又能實施的3個問題。(小組匯報、交流、整理)

  4、接著全班匯報交流(師羅列在黑板上)

  師:大家想調(diào)查這么多的問題,現(xiàn)在我們班選擇其中有價值又能實施的問題進行調(diào)查。(師根據(jù)生的回答進行歸納、整理)

  (二)收集數(shù)據(jù)和整理數(shù)據(jù)

  1、師:調(diào)查這幾個問題,你需要收集哪些數(shù)據(jù)?怎么樣收集這些數(shù)據(jù)?與同伴交流收集數(shù)據(jù)的方法。

  2、師:開展實際調(diào)查的話,如何進行調(diào)查比較有效?在調(diào)查的.時候,大家需要注意什么?

  (三)開展調(diào)查

  1、針對學生提出的某個問題,先組織小組有效的開展收集和整理數(shù)據(jù)的活動,然后把數(shù)據(jù)記錄下來,并進行整理。

  2、師:誰來說一說你們小組是怎么樣分工,怎么樣調(diào)查和記錄數(shù)據(jù)的?(指名匯報)

  3、全班匯總、整理、歸納各小組數(shù)據(jù)。(板書)

  4、師:分析上面的數(shù)據(jù),你能得到哪些信息?

  5、師:根據(jù)整理的數(shù)據(jù),想一想繪制什么統(tǒng)計圖比較好呢?

  6、師:根據(jù)這些信息,你還能提出什么數(shù)學問題?

  (四)回顧統(tǒng)計活動

  1、師:在剛才的統(tǒng)計活動,我們都做了些什么?你能按順序說一說嗎?

  師板書:提出問題——收集數(shù)據(jù)——整理數(shù)據(jù)——分析數(shù)據(jù)——作出決策。

  2、收集在生活中應用統(tǒng)計的例子,并說說這些例子中的數(shù)據(jù)告訴人們哪些信息。(全班交流)

  指名同學匯報,其他同學注意聽,并指出這個同學舉的例子中你可以獲得什么信息?

  3、結合生活中的例子說說收集數(shù)據(jù)有哪些方法?

  (1)先讓學生在小組內(nèi)交流,引導學生結合例子(充分利用第2題中收集來

  的實例)來說說自己的方法。

  (2)師歸納:常用的收集數(shù)據(jù)的方法有:查閱資料、詢問他人、調(diào)查實驗等。

  4、師:同學們,我們已經(jīng)對統(tǒng)計表和統(tǒng)計圖進行了系統(tǒng)的學習,回憶一下我們已經(jīng)學過了哪些統(tǒng)計圖,對這些統(tǒng)計圖,你已經(jīng)知道了哪些知識?

  初中數(shù)學教案 4

  教學目標

  1.經(jīng)歷不同的拼圖方法驗證公式的過程,在此過程中加深對因式分解、整式運算、面積等的認識。

  2.通過驗證過程中數(shù)與形的結合,體會數(shù)形結合的思想以及數(shù)學知識之間內(nèi)在聯(lián)系,每一部分知識并不是孤立的。

  3.通過豐富有趣的拼圖活動,經(jīng)歷觀察、比較、拼圖、計算、推理交流等過程,發(fā)展空間觀念和有條理地思考和表達的能力,獲得一些研究問題與合作交流方法與經(jīng)驗。

  4.通過獲得成功的體驗和克服困難的經(jīng)歷,增進數(shù)學學習的信心。通過豐富有趣拼的圖活動增強對數(shù)學學習的興趣。

  重點

  1.通過綜合運用已有知識解決問題的過程,加深對因式分解、整式運算、面積等的.認識。

  2.通過拼圖驗證公式的過程,使學習獲得一些研究問題與合作交流的方法與經(jīng)驗。

  難點

  利用數(shù)形結合的方法驗證公式

  教學方法

  動手操作,合作探究課型新授課教具投影儀

  教師活動學生活動

  情景設置:

  你已知道的關于驗證公式的拼圖方法有哪些?(教師在此給予學生獨立思考和討論的時間,讓學生回想前面拼圖。)

  新課講解:

  把幾個圖形拼成一個新的圖形,再通過圖形面積的計算,常常可以得到一些有用的式子。美國第二十任總統(tǒng)伽菲爾德就由這個圖(由兩個邊長分別為a、b、c的直角三角形和一個兩條直角邊都是c的直角三角形拼成一個新的圖形)得出:c2=a2+b2他的證法在數(shù)學史上被傳為佳話。他是這樣分析的,如圖所示:

  教師接著在介紹教材第94頁例題的拼法及相關公式

  提問:還能通過怎樣拼圖來解決以下問題

  (1)任意選取若干塊這樣的硬紙片,嘗試拼成一個長方形,計算它的面積,并寫出相應的等式;

  (2)任意寫出一個關于a、b的二次三項式,如a2+4ab+3b2

  試用拼一個長方形的方法,把這個二次三項式因式分解。

  這個問題要給予學生充足的時間和空間進行討論和拼圖,教師在這要引導適度,不要限制學生思維,同時鼓勵學生在拼圖過程中進行交流合作

  了解學生拼圖的情況及利用自己的拼圖驗證的情況。教師在巡視過程中,及時指導,并讓學生展示自己的拼圖及讓學生講解驗證公式的方法,并根據(jù)不同學生的不同狀況給予適當?shù)囊龑В龑W生整理結論。

  小結:

  從這節(jié)課中你有哪些收獲?

  (教師應給予學生充分的時間鼓勵學生暢所欲言,只要是學生的感受和想法,教師要多鼓勵、多肯定。最后,教師要對學生所說的進行全面的總結。)

  學生回答

  a(b+c+d)=ab+ac+ad

  (a+b)(c+d)=ac+ad+bc+bd

  (a+b)2=a2+2ab+b2

  學生拿出準備好的硬紙板制作

  給學生充分的時間進行拼圖、思考、交流經(jīng)驗,對于有困難的學生教師要給予適當引導。

  初中數(shù)學教案 5

  學習目標:

  1、通過具體動手操作得出矩形的概念,知道矩形與平行四邊形的區(qū)別與聯(lián)系

  2、通過類比平行四邊形的性質(zhì)定理,推導并掌握矩形的性質(zhì)定理,會用定理進行一些簡單的計算證明、

  3、通過矩形的對角線相等這一性質(zhì)能推導出直角三角形斜邊上的中線等于斜邊的一半,感受直角三角形與矩形之間的內(nèi)在聯(lián)系,發(fā)展學生的合理推理的能力

  學習重難點:

  重點:矩形的性質(zhì)定理

  難點:靈活應用矩形的.性質(zhì)進行有關的計算與證明

  課前準備

  教具準備:活動平行四邊形框架、教師準備PPT課件

  教學過程:

  知識回顧

  1、什么叫平行四邊形?

  2、平行四邊形有哪些性質(zhì)?

  【設計意圖】:

  通過對舊知的復習,一方面鞏固就知,另一方面為學習新知做好鋪墊

  合作探究一:矩形的定義

  閱讀課本第17-18頁,“實驗與探究”,思考:什么叫做矩形?

  用四根木條制作一個平行四邊形教具。利用平行四邊形的不穩(wěn)定性,演示下圖,當平行四邊形的一個內(nèi)角由銳角變?yōu)殁g角的過程中,會發(fā)生怎樣的特殊情況,這時的圖形是什么圖形、從上面的演示過程可以發(fā)現(xiàn):平行四邊形具備什么條件時,就成了矩形?

  【設計意圖】:

  通過小組合作觀察,討論平行四邊形具備什么條件時,就成了矩形,自己歸納出矩形的定義、給學生更多的思考空間,促進學生積極思考,發(fā)展學生的思維

  歸納:有一個角是直角的平行四邊形叫做矩形、

  合作探究二:矩形的性質(zhì)定理

  1、自主完成18頁的觀察與思考,通過實際操作回答提出的問題

  2、小組合作:完成對性質(zhì)的證明過程

  【設計意圖】:

  通過利用手中的矩形紙片動手操作使學生對矩形的性質(zhì)獲得豐富的直觀體驗,為總結矩形的性質(zhì)定理打下堅實基礎

  矩形的性質(zhì)定理1:矩形的四個角都是直角

  矩形的性質(zhì)定理2:矩形的兩條對角線相等

  合作探究三:直角三角形的性質(zhì)定理3

  設矩形的對角線AC與BD交于點O,那么,BE是Rt△AB中一條怎樣的特殊線段

  (BO是Rt△ABC中斜邊AC上的中線)它與AC有什么大小關系,為什么?

  【設計意圖】:

  根據(jù)圖形學生很容易猜想結果,關鍵是從數(shù)學的角度證明留足充分的時間讓學生交流,教師適時引導,明確論證方法、學生獨立完成證明,以培養(yǎng)學生的推理能力、讓學生感受數(shù)學結論的確定性和證明的必要性

  結論:直角三角形斜邊上的中線等于斜邊的一半

  例題講解:

  例1、如圖,矩形ABCD的兩條對角線相交于點O,∠AOB=60°,AB=6㎝,求矩形對角線AC的長?

  當堂檢測:

  1、矩形具有而平行四邊形不具有的性質(zhì)()

  (A)對角相等(B)對邊相等(C)對角線相等(D)對角線互相平分

  2、已知Rt△ ABC中,∠ABC=900,BD是斜邊AC上的中線

  (1)若BD=3㎝,則AC=㎝

  (2)若∠C=30°,AB=5㎝,則AC=㎝,BD=㎝

  3、在矩形ABCD中,若已知∠DOC=120°,AC=8㎝,求AD的長

  4、工人師傅做鋁合金窗框分下面三個步驟進行:

  (1)先截出兩對符合規(guī)格的鋁合金窗料(如圖1),使AB=CD,EF=GH;

  (2)擺放成如圖(2)的四邊形,則這時窗框的形狀是_____,根據(jù)的數(shù)學道理是__________;

  (3)將直角尺靠緊窗框的一個角(如圖3)調(diào)整窗框的邊框,當直角尺的兩條直角邊與窗框無縫隙時(如圖4),說明窗框合格,這時窗框是____,根據(jù)的數(shù)學道理是________________。

  課堂小結:

  請說出你本節(jié)課的收獲,與大家一塊分享!!

  作業(yè):

  課本P、20第2題

  初中數(shù)學教案 6

  一、教材的地位與作用

  《二元一次方程》是九年義務教育人教版教材七年級下冊第四章《二元一次方程組》的第一節(jié)。在此之前學生已經(jīng)學習了一元一次方程,這為本節(jié)的學習起了鋪墊的作用。本節(jié)內(nèi)容是二元一次方程的起始部分,因此,在本章的教學中,起著承上啟下的地位。

  二、教學目標

  (一)知識與技能:

  1.了解二元一次方程概念;

  2.了解二元一次方程的解的概念和解的不唯一性;

  3.會將一個二元一次方程變形成用關于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式。

  (二)數(shù)學思考:

  體會學習二元一次方程的必要性,學會獨立思考,體會數(shù)學的轉(zhuǎn)化思想和主元思想。

  (三)問題解決:

  初步學會利用二元一次方程來解決實際問題,感受二元一次方程解的不唯一性。獲得求二元一次方程解的思路方法。

  (四)情感態(tài)度:

  培養(yǎng)學生發(fā)現(xiàn)意識和能力,使其具有強烈的好奇心和求知欲。

  三、教學重點與難點

  教學重點:二元一次方程及其解的概念。

  教學難點:二元一次方程的概念里“含未知數(shù)的項的次數(shù)”的理解;把一個二元一次方程變形成用關于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式。

  四、教法與學法分析

  教法:情境教學法、比較教學法、閱讀教學法。

  學法:閱讀、比較、探究的學習方式。

  五、教學過程

  1.創(chuàng)設情境,引入新課

  從學生熟悉的姚明受傷事件引入。

  師:火箭隊最近取得了20連勝,姚明參加了前面的12場比賽,是球隊的頂梁柱。

  (1)連勝的第12場,火箭對公牛,在這場比賽中,姚明得了12分,其中罰球得了2分,你知道姚明投中了幾個兩分球?(本場比賽姚明沒投中三分球)師:能用方程解決嗎?列出來的方程是什么方程?

  (2)連勝的第1場,火箭對勇士,在這場比賽中,姚明得了36分,你知道姚明投中了幾個兩分球,罰進了幾個球嗎?(罰進1球得1分,本場比賽姚明沒投中三分球)師:這個問題能用一元一次方程解決嗎?,你能列出方程嗎?

  設姚明投進了x個兩分球,罰進了y個球,可列出方程。

  (3)在雄鹿隊與火箭隊的比賽中易建聯(lián)全場總共得了19分,其中罰球得了3分。你知道他分別投進幾個兩分球、幾個三分球嗎?

  設易建聯(lián)投進了x個兩分球,y個三分球,可列出方程。

  師:對于所列出來的三個方程,后面兩個你覺的是一元一次方程嗎?那這兩個方程有什么相同點嗎?你能給它們命一個名稱嗎?

  從而揭示課題。

  (設計意圖:第一個問題主要是讓學生體會一元一次方程是解決實際問題的數(shù)學模型,從而回顧一元一次方程的概念;第二、三問題設置的主要目的是讓學生體會到當實際問題不能用一元一次方程來解決的時候,我們可以試著列出二元一次方程,滲透方程模型的通用性。另外,數(shù)學來源于生活,又應用于生活,通過創(chuàng)設輕松的問題情境,點燃學習新知識的“導火索”,引起學生的學習興趣,以“我要學”的主人翁姿態(tài)投入學習,而且“會學”“樂學”。)

  2.探索交流,汲取新知

  概念思辨,歸納二元一次方程的特征

  師:那到底什么叫二元一次方程?(學生思考后回答)

  師:翻開書本,請同學們把這個概念劃起來,想一想,你覺得和我們自己歸納出來的概念有什么區(qū)別嗎?(同學們思考后回答)

  師:根據(jù)概念,你覺得二元一次方程應具備哪幾個特征?

  活動:你自己構造一個二元一次方程。

  快速判斷:下列式子中哪些是二元一次方程?

  ①x2+y=0②y=2x+

  4③2x+1=2x ④ab+b=4

  (設計意圖:這一環(huán)節(jié)是本課設計的重點,為加深學生對“含有未知數(shù)的項的次數(shù)”的內(nèi)涵的理解,我采取的是閱讀書本中二元一次方程的概念,形成學生的認知沖突,激發(fā)學生對“項的次數(shù)”的思考,進而完善學生對二元一次方程概念的理解,通過學生自己舉例子的活動去把“項的次數(shù)”形象化。)

  二元一次方程解的概念

  師:前面列的兩個方程2x+y=36,2x+3y=16真的是二元一次方程嗎?通過方程2x+3y=16,你知道易建聯(lián)可能投中幾個兩分球,幾個三分球嗎?

  師:你是怎么考慮的?(讓學生說說他是如何得到x和y的值的,怎么證明自己的這對未知數(shù)的取值是對的)利用一個學生合理的解釋,引導學生類比一元一次方程的解的概念,讓學生歸納出二元一次方程的解的概念及其記法。(學生看書本上的記法)

  使二元一次方程兩邊的值相等的一對未知數(shù)的值,叫做二元一次方程的一個解。(設計意圖:通過引導學生自主取值,猜x和y的值,從而更深刻的體會二元一次方程解的`本質(zhì):使方程左右兩邊相等的一對未知數(shù)的取值。引導學生看書本,目的是讓學生在記法上體會“一對未知數(shù)的取值”的真正含義。)

  二元一次方程解的不唯一性

  對于2x+3y=16,你覺得這個方程還有其它的解嗎?你能試著寫幾個嗎?師:這些解你們是如何算出來的?

  (設計意圖:設計此環(huán)節(jié),目的有三個:首先,是讓學生學會如何檢驗一對未知數(shù)的取值是二元一次方程的解;其次是讓學生體會到二元一次方程的解的不唯一性;最后讓學生感受如何得到一個正確的解:只要取定一個未知數(shù)的取值,就可以代入方程算出另一個未知數(shù)的值,這也就是求二元一次方程的解的方法。)如何去求二元一次方程的解

  例:已知方程3x+2y=10,

  (1)當x=2時,求所對應的y的值;

  (2)取一個你自己喜歡的數(shù)作為x的值,求所對應的y的值;

  (3)用含x的代數(shù)式表示y;

  (4)用含y的代數(shù)式表示x;

  (5)當x=負2,0時,所對應的y的值是多少?

  (6)寫出方程3x+2y=10的三個解.

  (設計意圖:此處設計主要是想讓學生形成求二元一次方程的解的一般方法,先讓學生展示他們的思維過程,再從他們解一元一次方程的重復步驟中提煉出用一個未知數(shù)的代數(shù)式表示另一個未知數(shù),然后把它與原方程比較,把一個未知數(shù)的值代入哪一個方程計算會更簡單,形成“正遷移”,引導學生體會“用關于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)”的過程,實質(zhì)是解一個關于y的一元一次方程,滲透數(shù)學的主元思想。以此突破本節(jié)課的難點。)

  大顯身手:

  課內(nèi)練習第2題

  梳理知識,課堂升華

  本節(jié)課你有收獲嗎?能和大家說說你的感想嗎?3.作業(yè)布置

  必做題:書本作業(yè)題1、2、3、4。

  選做題:書本作業(yè)題5、6。

  設計說明

  本節(jié)授課內(nèi)容屬于概念課教學。數(shù)學學科的內(nèi)容有其固有的組成規(guī)律和邏輯結構,它總是由一些最基本的數(shù)學概念作為核心和邏輯起點,形成系統(tǒng)的數(shù)學知識,所以數(shù)學概念是數(shù)學課程的核心。只有真正理解數(shù)學概念,才能理解數(shù)學。二元一次方程作為初中階段接觸的第二類方程,形成概念并不難,關鍵如何理解它的概念,因此本節(jié)課采用先讓同學自己試著下定義,然后與教材中的完整定義相互比較,發(fā)現(xiàn)不同點,進而理解“含有未知數(shù)的項的次數(shù)都是一次”這句話的內(nèi)涵。在二元一次方程的解的教學過程中,采用的是讓學生體會“一個解、不止一個解、無數(shù)個解”的漸進過程,感受到用一個二元一次方程并不能求出一對確定的未知數(shù)的取值,從而讓學生產(chǎn)生有后續(xù)學習的愿望。

  在講授用含一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的時候,采用“特殊、一般、特殊”的教學流程,以期突破難點。首先拋出問題“這幾個解你是如何求的”,

  此時注意的聚焦點是二元一次方程;其次學生歸納先定一個未知數(shù)的取值,代入原方程求另一個未知數(shù)的值,此時注意的聚焦點是一元一次方程;然后教師引導回到二元一次方程,假如x是一個常數(shù),那么這個方程可以看成是一個關于誰的一元一次方程,此時注意的聚焦點是原來的二元一次方程;最后代入求值,此時注意的聚焦點是等號右邊的那個算式,體會“用含一個未知數(shù)的代數(shù)式表示另一個未知數(shù)”在求值過程中的簡潔性,強化這種代數(shù)形式。另外,在引導學生推導“用含一個未知數(shù)的代數(shù)式表示另一個未知數(shù)”的過程中,滲透數(shù)學的主元思想和轉(zhuǎn)化思想。

  初中數(shù)學教案 7

  一、教學目標

  1、了解二次根式的意義;

  2、掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;

  3、掌握二次根式的性質(zhì)和,并能靈活應用;

  4、通過二次根式的計算培養(yǎng)學生的邏輯思維能力;

  5、通過二次根式性質(zhì)和的介紹滲透對稱性、規(guī)律性的數(shù)學美。

  二、教學重點和難點

  重點:

  (1)二次根的意義;

  (2)二次根式中字母的取值范圍。

  難點:確定二次根式中字母的取值范圍。

  三、教學方法

  啟發(fā)式、講練結合。

  四、教學過程

  (一)復習提問

  1、什么叫平方根、算術平方根?

  2、說出下列各式的意義,并計算

  (二)引入新課

  新課:二次根式

  定義:式子叫做二次根式。

  對于請同學們討論論應注意的問題,引導學生總結:

  (1)式子只有在條件a≥0時才叫二次根式,是二次根式嗎?呢?

  若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分。

  (2)是二次根式,而,提問學生:2是二次根式嗎?顯然不是,因此二次

  根式指的是某種式子的“外在形態(tài)”。請學生舉出幾個二次根式的例子,并說明為什么是二次根式。下面例題根據(jù)二次根式定義,由學生分析、回答。

  例1當a為實數(shù)時,下列各式中哪些是二次根式?

  例2 x是怎樣的'實數(shù)時,式子在實數(shù)范圍有意義?

  解:略。

  說明:這個問題實質(zhì)上是在x是什么數(shù)時,x—3是非負數(shù),式子有意義。

  例3當字母取何值時,下列各式為二次根式:

  分析:由二次根式的定義,被開方數(shù)必須是非負數(shù),把問題轉(zhuǎn)化為解不等式。

  解:(1)∵a、b為任意實數(shù)時,都有a2+b2≥0,∴當a、b為任意實數(shù)時,是二次根式。

  (2)—3x≥0,x≤0,即x≤0時,是二次根式。

  (3),且x≠0,∴x>0,當x>0時,是二次根式。

  (4),即,故x—2≥0且x—2≠0,∴x>2。當x>2時,是二次根式。

  例4下列各式是二次根式,求式子中的字母所滿足的條件:

  分析:這個例題根據(jù)二次根式定義,讓學生分析式子中字母應滿足的條件,進一步鞏固二次根式的定義,。即:只有在條件a≥0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零。

  解:(1)由2a+3≥0,得。

  (2)由,得3a—1>0,解得。

  (3)由于x取任何實數(shù)時都有|x|≥0,因此,|x|+0。1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實數(shù)。

  (4)由—b2≥0得b2≤0,只有當b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0。

  初中數(shù)學教案 8

  教學目標

  1、進一步掌握有理數(shù)的運算法則和運算律;

  2、使學生能夠熟練地按有理數(shù)運算順序進行混合運算;

  3、注意培養(yǎng)學生的運算能力。

  教學重點和難點

  重點:有理數(shù)的混合運算。

  難點:準確地掌握有理數(shù)的運算順序和運算中的符號問題。

  課堂教學過程設計

  一、從學生原有認知結構提出問題

  1、計算(五分鐘練習:

  (5)-252;(6)(-2)3;(7)-7+3-6;(8)(-3)×(-8)×25;

  (13)(-616)÷(-28);(14)-100-27;(15)(-1)101;(16)021;

  (17)(-2)4;(18)(-4)2;(19)-32;(20)-23;

  (24)3.4×104÷(-5)。

  2、說一說我們學過的有理數(shù)的運算律:

  加法交換律:a+b=b+a;

  加法結合律:(a+b)+c=a+(b+c);

  乘法交換律:ab=ba;

  乘法結合律:(ab)c=a(bc);

  乘法分配律:a(b+c)=ab+ac.

  二、講授新課

  前面我們已經(jīng)學習了有理數(shù)的加、減、乘、除、乘方等運算,若在一個算式里,含有以上的混合運算,按怎樣的順序進行運算?

  1、在只有加減或只有乘除的同一級運算中,按照式子的順序從左向右依次進行。

  審題:

  (1)運算順序如何?

  (2)符號如何?

  說明:含有帶分數(shù)的加減法,方法是將整數(shù)部分和分數(shù)部分相加,再計算結果。帶分數(shù)分成整數(shù)部分和分數(shù)部分時的符號與原帶分數(shù)的符號相同。

  課堂練習

  審題:運算順序如何確定?

  注意結果中的.負號不能丟。

  課堂練習

  計算:(1)-2.5×(-4.8)×(0.09)÷(-0.27);

  2、在沒有括號的不同級運算中,先算乘方再算乘除,最后算加減。

  例3計算:

  (1)(-3)×(-5)2;

  (2)[(-3)×(-5)]2;

  (3)(-3)2-(-6);

  (4)(-4×32)-(-4×3)2。

  審題:運算順序如何?

  解:(1)(-3)×(-5)2=(-3)×25=-75。

  (2)[(-3)×(-5)]2=(15)2=225。

  (3)(-3)2-(-6)=9-(-6)=9+6=15。

  (4)(-4×32)-(-4×3)2

  =(-4×9)-(-12)2

  =-36-144

  =-180。

  注意:搞清(1),(2)的運算順序,(1)中先乘方,再相乘,(2)中先計算括號內(nèi)的,然后再乘方。(3)中先乘方,再相減,(4)中的運算順序要分清,第一項(-4×32)里,先乘方再相乘,第二項(-4×3)2中,小括號里先相乘,再乘方,最后相減。

  課堂練習

  計算:

  (1)-72;(2)(-7)2;(3)-(-7)2;

  (7)(-8÷23)-(-8÷2)3。

  例4計算

  (-2)2-(-52)×(-1)5+87÷(-3)×(-1)4。

  審題:(1)存在哪幾級運算?

  (2)運算順序如何確定?

  解:(-2)2-(-52)×(-1)5+87÷(-3)×(-1)4

  =4-(-25)×(-1)+87÷(-3)×1(先乘方)

  =4-25-29(再乘除)

  =-50。(最后相加)

  注意:(-2)2=4,-52=-25,(-1)5=-1,(-1)4=1。

  課堂練習

  計算:

  (1)-9+5×(-6)-(-4)2÷(-8);

  (2)2×(-3)3-4×(-3)+15。

  3、在帶有括號的運算中,先算小括號,再算中括號,最后算大括號。

  課堂練習

  計算:

  三、小結

  教師引導學生一起總結有理數(shù)混合運算的規(guī)律。

  1、先乘方,再乘除,最后加減;

  2、同級運算從左到右按順序運算;

  3、若有括號,先小再中最后大,依次計算。

  四、作業(yè)

  1、計算:

  2、計算:

  (1)-8+4÷(-2);(2)6-(-12)÷(-3);

  (3)3·(-4)+(-28)÷7;(4)(-7)(-5)-90÷(-15);

  3、計算:

  4、計算:

  (7)1÷(-1)+0÷4-(-4)(-1);(8)18+32÷(-2)3-(-4)2×5。

  5、計算(題中的字母均為自然數(shù)):

  (1)(-12)2÷(-4)3-2×(-1)2n-1;

  (4)[(-2)4+(-4)2·(-1)7]2m·(53+35)。

  初中數(shù)學教案 9

  教學目標

  (1)認知目標

  理解并掌握分式的乘除法法則,能進行簡單的分式乘除法運算,能解決一些與分式乘除有關的實際問題。

  (2)技能目標

  經(jīng)歷從分數(shù)的乘除法運算到分式的乘除法運算的過程,培養(yǎng)學生類比的探究能力,加深對從特殊到一般數(shù)學的思想認識。

  (3)情感態(tài)度與價值觀

  教學中讓學生在主動探究,合作交流中滲透類比轉(zhuǎn)化的思想,使學生在學知識的同時感受探索的樂趣和成功的體驗。

  教學重難點

  重點:運用分式的乘除法法則進行運算。

  難點:分子、分母為多項式的分式乘除運算。

  教學過程

  (一)提出問題,引入課題

  俗話說:“好的開端是成功的一半”同樣,好的引入能激發(fā)學生興趣和求知欲。因此我用實際出發(fā)提出現(xiàn)實生活中的問題:

  問題1:求容積的高是,(引出分式乘法的學習需要)。

  問題2:求大拖拉機的工作效率是小拖拉機的工作效率的倍,(引出分式除法的學習需要)。

  從實際出發(fā),引出分式的乘除的實在存在意義,讓學生感知學習分式的乘法和除法的實際需要,從而激發(fā)學生興趣和求知欲。

  (二)類比聯(lián)想,探究新知

  從學生熟悉的分數(shù)的乘除法出發(fā),引發(fā)學生的學習興趣。

  解后總結概括:

  (1)式是什么運算?依據(jù)是什么?

  (2)式又是什么運算?依據(jù)是什么?能說出具體內(nèi)容嗎?(如果有困難教師應給于引導,學生應該能說出依據(jù)的是:分數(shù)的乘法和除法法則)教師加以肯定,并指出與分數(shù)的乘除法法則類似,引導學生類比分數(shù)的乘除法則,猜想出分式的乘除法則。

  (分式的乘除法法則)

  乘法法則:分式乘以分式,用分子的積作為積的.分子,分母的積作為積的分母。

  除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。

  (三)例題分析,應用新知

  師生活動:教師參與并指導,學生獨立思考,并嘗試完成例題。

  P11的例1,在例題分析過程中,為了突出重點,應多次回顧分式的乘除法法則,使學生耳熟能詳。P11例2是分子、分母為多單項式的分式乘除法則的運用,為了突破本節(jié)課的難點我采取板演的形式,和學生一起詳細分析,提醒學生關注易錯易漏的環(huán)節(jié),學會解題的方法。

  (四)練習鞏固,培養(yǎng)能力

  P13練習第2題的(1)、(3)、(4)與第3題的(2)。

  師生活動:教師出示問題,學生獨立思考解答,并讓學生板演或投影展示學生的解題過程。

  通過這一環(huán)節(jié),主要是為了通過課堂跟蹤反饋,達到鞏固提高的目的,進一步熟練解題的思路,也遵循了鞏固與發(fā)展相結合的原則。讓學生板演,一是為了暴露問題,二是為了規(guī)范解題格式和結果。

  (五)課堂小結,回扣目標

  引導學生自主進行課堂小結:

  1、本節(jié)課我們學習了哪些知識?

  2、在知識應用過程中需要注意什么?

  3、你有什么收獲呢?

  師生活動:學生反思,提出疑問,集體交流。

  (六)布置作業(yè)

  教科書習題6.2第1、2(必做)練習冊P(選做),我設計了必做題和選做題,必做題是對本節(jié)課內(nèi)容的一個反饋,選做題是對本節(jié)課知識的一個延伸。

  板書設計

  在本節(jié)課中我將采用提綱式的板書設計,因為提綱式—條理清楚、從屬關系分明,給人以清晰完整的印象,便于學生對教材內(nèi)容和知識體系的理解和記憶。

  初中數(shù)學教案 10

  教學目標:

  1.在具體情境中了解鄰補角、對頂角,能找出圖形中的一個角的鄰補角和對頂角.

  2.理解對頂角相等,并能運用它解決一些問題.

  重點:

  鄰補角、對頂角的概念,對頂角的性質(zhì)與應用.

  難點:

  理解對頂角相等的性質(zhì)的探索.

  教學過程:

  一、創(chuàng)設情境,引入新課

  引導語:

  我們生活的世界中,蘊涵著大量的相交線和平行線.

  本章要研究相交線所成的角和它的特征,相交線的一種特殊形式即垂直,垂線的性質(zhì),研究平行線的性質(zhì)和平行線的判定以及圖形的平移問題.

  二、嘗試活動,探索新知

  教師出示一塊布片和一把剪刀,表演剪刀剪布的過程.

  教師提出問題:剪布時,用力握緊把手,發(fā)生了什么變化?進而使什么也發(fā)生了變化?

  學生觀察、思考、回答,得出:

  握緊把手時,隨著兩個把手之間的角逐漸變小,剪刀刀刃之間的角相應變小.如果改變用力方向,隨著兩個把手之間的角逐漸變大,剪刀刀刃之間的角也相應變大.

  教師提問:我們可以把剪刀抽象成什么簡單的圖形?

  學生回答:畫成兩條相交的直線,學生畫直線AB、CD相交于點O,并說出圖中4個角.

  教師提問:兩兩相配共能組成幾對角?各對角的位置關系如何?根據(jù)不同的位置怎么將它們分類?

  學生用量角器分別量一量各角的度數(shù),發(fā)現(xiàn)各對角的度數(shù)有什么關系?(學生得出結論:相鄰的兩個角互補,對頂?shù)膬蓚角相等)

  學生根據(jù)觀察和度量完成下表:

  兩條直線相交、所形成的角、分類、位置關系、數(shù)量關系

  教師提問:

  如果改變∠AOC的大小,會改變它與其他角的位置關系和數(shù)量關系嗎?

  學生思考回答:

  只會改變數(shù)量關系而不會改變位置關系.

  師生共同定義鄰補角、對頂角:

  有一條公共邊,而且另一邊互為反向延長線的兩個角叫做鄰補角.

  如果兩個角有一個公共頂點,而且一個角的兩邊分別是另一個角的兩邊的反向延長線,那么這兩個角叫做對頂角.

  教師提問:

  你同意下列說法嗎?如果錯誤,如何訂正?

  1.鄰補角的“鄰”就是“相鄰”,就是它們有一條“公共邊”,“補”就是“互補”,就是這兩個角的另一條邊在同一條直線上.

  2.鄰補角可看成是平角被過它的頂點的一條射線分成的兩個角.

  3.鄰補角是互補的兩個角,互補的兩個角也是鄰補角.

  學生思考回答:1、2是對的,3是錯的.

  第3個應改成:鄰補角是互補的兩個角,互補的兩個角不一定是鄰補角.

  教師讓學生說一說在學習對頂角的`概念后,通過實際操作獲得的直觀體驗.

  教師把說理過程規(guī)范地板書:

  在右圖中,∠AOC的鄰補角是∠BOC和∠AOD,所以∠AOC與∠BOC互補,∠AOC與∠AOD互補,根據(jù)“同角的補角相等”,可以得出∠AOD=∠BOC,類似地有∠AOC=∠BOD.

  教師板書對頂角的性質(zhì):

  對頂角相等.

  強調(diào)對頂角的概念與對頂角的性質(zhì)不能混淆:

  對頂角的概念是確定兩角的位置關系,對頂角的性質(zhì)是確定互為對頂角的兩角的數(shù)量關系.

  三、例題講解

  【例】 如圖,直線a,b相交,∠1=40°,求∠2,∠3,∠4的度數(shù).

  【答案】 由鄰補角的定義,得∠2=180°-∠1=180°-40°=140°;由對頂角相等,得∠3=∠1=40°,∠4=∠2=140°.

  四、鞏固練習

  1.判斷下列圖中是否存在對頂角.

  2.按要求完成下列各題.

  (1)兩條直線相交,構成哪兩種特殊位置關系的角?指出下圖中具有這兩種位置關系的角.

  eq o(sup7(,圖(1)) ,圖(2))

  (2)如圖,若∠AOD= 90°,那么直線AB與CD的位置關系如何?

  【答案】

  1.都不存在對頂角.

  2.(1)對頂角,鄰補角.

  對頂角:∠AOC和∠BOD,∠AOD和∠BOC.

  鄰補角:∠AOC和∠AOD,∠AOC和∠BOC,∠AOD和∠BOD,∠BOC和∠BOD.

  (2)垂直.

  五、課堂小結

  教師引導學生進行本節(jié)課的小結并強調(diào)對頂角的概念與對頂角的性質(zhì)不能混淆:對頂角的概念是確定兩角的位置關系,對頂角的性質(zhì)是確定互為對頂角的兩角的數(shù)量關系.

  教學反思

  通過本節(jié)課的學習,大部分學生能積極主動地參與到學習活動中來,并能積極主動地提出各類問題并解決問題,達到了基本的教學效果.但是由于對新概念的理解不是很深刻,所以在應用方面存在不足,針對這一情況,教師應選擇典型的例題,詳細講解,指導學生探求解題的思路和方法,加深對概念的理解,做到熟練的應用。

  初中數(shù)學教案 11

<title>  垂線</title>

  教學自標

  1.了解兩條直線互相垂直的概念;知道過一點有且僅有一條直線垂直于已知直線,會用三角尺或量角器過一點畫一條直線的垂線。

  2.培養(yǎng)提高觀察、理解能力,幾何語言能力,畫圖能力,抽象思維能力和運用知識解決實際問題的能力。

  3.培養(yǎng)辯證唯物主義思想及不斷發(fā)現(xiàn)、探索新知識的精神。

  4.通過創(chuàng)設情境,利用變式訓練和多種教學手段來激發(fā)學生學習興趣,給學生創(chuàng)造成功的機會,使他們愛學、會學、學會,營造學生可持續(xù)發(fā)展的氛圍。

  教學重點:

  兩直線互相垂直的有關性質(zhì)。

  教學難點:

  過直線上(外)一點作已知直線的垂線。

  【學習目標是從基礎知識教學、基本技能訓練、數(shù)學能力培養(yǎng)和德育目標四個方面,依據(jù)《數(shù)學課程標準》關于“垂線”的具體教學要成和各種教學原則,以及本節(jié)的教材內(nèi)容與學生的實際確定的。】

  課前準備

  課前準備教具:多媒體、投影儀、自制的可旋轉(zhuǎn)的兩根木條等。

  生活經(jīng)驗準備:旗桿與旗臺邊線線的垂直關系;紅十字會標志。

  以往知識準備:兩條直線相交,產(chǎn)生兩對對頂角,且對頂角相等。

  教學流程

  一、創(chuàng)設問題情境。

  師:這是兩幅草坪的圖案。在綠色的草坪上,畫著兩條交叉的道路。你覺得甲圖、乙圖哪一幅更漂亮、更勻稱?這是什么原因?(教師用多媒體或投影儀展示。)

  (學生眾說紛紜,教師應給予充分的肯定。)

  師:圖甲是兩條直線相交的一種特殊情況,它在生活、生產(chǎn)實際中應用比較廣。請你再舉一些類似的例子。

  生:……

  師:讓我們共同探索圖甲這種特殊情況。

  【借助于教具、模型、實物、圖形及幻燈等教學手段,使學生先得到直觀的感性認識,培養(yǎng)學生從感性到理性的認知方式。】

  二、回顧再現(xiàn)。

  對頂角相等兩條直線相交只有一個交點。如圖1,直線AB和CD相交,交點為點O,有四個小于平角的角,且。

  三、提高。

  教師演示自制教具,要求學生觀察當一根木條繞著另一根木條旋轉(zhuǎn)時的變化情況,并用數(shù)學語言進行描述。

  【教師應鼓勵學生大膽描述自己的觀察結果,并及時予以肯定。】

  師:兩直線相交,有兩組分別相等的角,當一個角等于90°時,其他三個角有什么變化?可能產(chǎn)生四個相等的角嗎?如圖2,同時演示教具,將直線CD繞著點O旋轉(zhuǎn),當時,是多少度?

  生:……

  師:你們的依據(jù)是什么?

  生:……

  (學生的答案很豐富:用度量的方法;利用對頂角相等;互補的概念……學生回答過程中,只要有道理就應予以鼓勵。)

  【這里希望在感性認識的基礎上進行抽象概念的教學,培養(yǎng)學生的抽象思維能力。】

  四、提升。

  教師引導學生歸納出:兩條直線互相垂直,兩條直線相交所構成的四個角中有一個角是直角時,稱這兩條直線互相垂直。

  師:(1)如圖2,直線AB和CD相交,交點為O,,記為,垂足為點O。“ ”讀作“AB垂直于CD”或“CD垂直于AB”。

  (2)兩條直線,垂足為點O,則。

  【實現(xiàn)數(shù)學的三大語言、文字語言、符號語言和幾何語言之間的切換,并板書,以突出其重要性。】

  五、再探究。

  師:請同學們舉一些日常生活中互相垂直的直線的例子;

  生:……

  【希望實現(xiàn)將數(shù)學知識在實際生活中的運用,并為后繼學習數(shù)學知識增加感性認知。】

  師:請同學們用三角尺或量角器:

  (1)經(jīng)過直線 AB 外一點 P ,畫直線與已知直線 AB 垂直,且討論這樣的直線有幾條。

  (2)設這一點在直線 AB 上,重作上述過程。

  【學生分組或獨立探索,教師巡視指導。】

  教師引導學生歸納結論:在同一平面內(nèi),經(jīng)過直線外或直線上一點,有且只有一條直線與已知直線垂直。

  【通過學生動手操作畫圖,教師在巡視中及時指出、糾正學生發(fā)生的錯誤,訓練學生以嚴謹?shù)目茖W態(tài)度研究問題、解決問題。】

  師:請同學們互相交流且簡單描述一下,上述結論用三角尺的作法過程和“有且只有”的含義。

  (學生討論交流,教師巡視)

  教師引導歸納出:

  (1)靠已知直線、找待過定點、畫已知直線的垂線(一靠、二過、三垂直)。

  (2)有一條并且只有一條,沒有第二條。

  師:如圖5,請同學們相互比試,誰能更快地過直線CD上一點P作直線AB的垂線。并在小組間進行交流。

  【探究性活動是《數(shù)學課程標準》的一個重要舉措,并為培養(yǎng)學生的創(chuàng)新意識提供了一些機會。“做一做”進行小組交流,一方面是為了加強對學生動手操作能力的培養(yǎng),同時也培養(yǎng)了學生的合作意識和競爭意識,使學生更深入理解垂直、垂線的概念。】

  六、學生探索。

  學生分小組測量,討論,歸納。如圖6所示,點A與直線DC上各點的距離長短一樣嗎?誰最短?它具備什么條件?(抽小組代表發(fā)言。)

  七、總結歸納。

  教師總結歸納:只有線段AB最短,且當AB與DC垂直時,才最短。

  教師引導學生得出線段AB特征:A為直線外一點,B為過A向直線DC所引的垂線的垂足,

  提高:線段AB的長度就是點A到直線DC的距離。

  思考:點A到直線DC的距離與點A到點C的距離有什么區(qū)別?

  點A到直線DC的距離:線段AB的長度,A為直線外一點,B為過A向直線DC所引的垂線的垂足;點A到點C的距離:兩點之間線段的長度。

  【從生活實際.從學生感興趣、熟悉的問題引導學生發(fā)現(xiàn)里線的第二個性質(zhì),提高學生學數(shù)學的興趣,并適當體現(xiàn)學數(shù)學、用數(shù)學、發(fā)現(xiàn)教學的思想。】

  八、較量(練習)。

  1.第170頁第1、2、3題。

  2.應用。

  【帶有競爭性質(zhì)的練習使學生在相互競爭中,在實踐中應用本節(jié)課的知識,分享獲取成功的喜悅,并促進學生形成積極向上的心理品質(zhì)。】

  (1)某村莊在如圖7所示的小河邊,為解決村莊供水問題,需把河中的水引到村莊A處,在河岸CD的什么地方開溝,才能使溝最短?畫出圖來,并說明道理。

  (2)教材第170頁“做一做”。

  (3)體育課上怎樣測量跳遠成績。

  【學以致用,學生做個小小設計師.興趣盎然,把這節(jié)課引入高潮。】

  學生重溫“兩條直線互相垂直的概念”和“如何過已知直線上或已知直線外的一點作惟一的垂線”兩個知識點。

  3.第174頁第1、2題。

  4.學校的位置如圖8所示,請設計出學校到兩條公路的最短距離的方案,并在圖上標出來,并說明理由。

  課后反思

  1.本節(jié)課主要采用了“問題探究式”的教學方法,鼓勵學生去發(fā)現(xiàn)、分析并解決問題,使學生在自己動手的基礎上,發(fā)現(xiàn)垂線的性質(zhì),又借助于教具、實物、圖形、幻燈等,從直觀的感性認識中發(fā)現(xiàn)抽象的概念,使他們成為探求知識的`主體,同時還利用學生較量形式讓他們對學習內(nèi)容加以鞏固理解。并設計了變式訓練習題和開放性習題,來幫助學生逐步樹立轉(zhuǎn)化的思想和發(fā)展性思維,這對提高學生的能力是非常重要的。學生是課堂的主人,教師從引導學生設疑、感知、概括、應用的每一個環(huán)節(jié),注意學生的積極參與、積極思維,使學生從被動的學習到主動探索和發(fā)現(xiàn)的轉(zhuǎn)化中感受到學習與探索的樂趣,適合七年級學生的認知心理。

  2.本節(jié)課采用不同的反饋手段和反饋練習。

  (1)設計變式習題、圖形、開放性習題。每次較量主要解決一個重點問題,同時使教師及時了解學生對數(shù)學知識的掌握情況,及時發(fā)現(xiàn)問題并及時矯正,掃清后續(xù)學習的障礙。

  (2)較量方法。如:筆答、口答、板演、快速搶答等,以增加反饋層面。通過練習較量使大多數(shù)學生的學習情況都能及時反饋給教師,使教師心中有數(shù)。

  (3)及時矯正。對每次較量情況進行小組評定和教師點評,對學生中的創(chuàng)新解答及時給予肯定。創(chuàng)造了輕松、愉悅的學習環(huán)境。

  3.但筆者根據(jù)上述設計進行教學后,認為“點到直線的距離”放在這里,值得商榷。這是因為:

  (1)此部分內(nèi)容與小學距離過大。在小學學習中,對于“點到直線的距離”,學生僅通過一些特殊圖形有了一點感性認識,并未上升到點到線的距離的高度。

  (2)在本節(jié)內(nèi)容教學中,讓學生參與實踐、體驗,其難度較大。其理由是:本節(jié)教學內(nèi)容量大;設計了較多的動手實踐活動;作為學生課后實踐探索的習題,如能充分利用學生資源(如與家長、同伴),在實際生活中交流、感悟,收效會更好。

  初中數(shù)學教案 12

  教學目標:

  1、經(jīng)歷收集數(shù)據(jù)、分析數(shù)據(jù)的活動,體會統(tǒng)計在實際生活中的應用。

  2、收集統(tǒng)計在生活中應用的例子,整理收集數(shù)據(jù)的方法。

  3、在解決問題的過程中,整理所學習的統(tǒng)計圖,和統(tǒng)計量,能用自己的語言描述過各種統(tǒng)計圖的特點,掌握整理收集數(shù)據(jù)的方法。

  教學過程:

  一、課前預習,出示預習提綱:

  1、我們學習了哪幾種統(tǒng)計圖?

  2、這幾種統(tǒng)計圖各有什么特點?

  3、概率的知識有哪些?

  二、展示與交流

  (一)提出問題

  1、(出示問題情境)我們班要和希望小學的六(1)班建立手拉手班級,怎么樣向他們介紹我們班的一些情況呢?(指名回答)

  2、師:先獨立列出幾個你想調(diào)查的問題。(寫在練習本上)

  3、四人小組交流,整理出你們小組都比較感興趣的,又能實施的3個問題。(小組匯報、交流、整理)

  4、接著全班匯報交流(師羅列在黑板上)

  師:大家想調(diào)查這么多的問題,現(xiàn)在我們班選擇其中有價值又能實施的問題進行調(diào)查。(師根據(jù)生的回答進行歸納、整理)

  (二)收集數(shù)據(jù)和整理數(shù)據(jù)

  1、師:調(diào)查這幾個問題,你需要收集哪些數(shù)據(jù)?怎么樣收集這些數(shù)據(jù)?與同伴交流收集數(shù)據(jù)的'方法。

  2、師:開展實際調(diào)查的話,如何進行調(diào)查比較有效?在調(diào)查的時候,大家需要注意什么?

  (三)開展調(diào)查

  1、針對學生提出的某個問題,先組織小組有效的開展收集和整理數(shù)據(jù)的活動,然后把數(shù)據(jù)記錄下來,并進行整理。

  2、師:誰來說一說你們小組是怎么樣分工,怎么樣調(diào)查和記錄數(shù)據(jù)的?(指名匯報)

  3、全班匯總、整理、歸納各小組數(shù)據(jù)。(板書)

  4、師:分析上面的數(shù)據(jù),你能得到哪些信息?

  5、師:根據(jù)整理的數(shù)據(jù),想一想繪制什么統(tǒng)計圖比較好呢?

  6、師:根據(jù)這些信息,你還能提出什么數(shù)學問題?

  (四)回顧統(tǒng)計活動

  1、師:在剛才的統(tǒng)計活動,我們都做了些什么?你能按順序說一說嗎?

  師板書:提出問題——收集數(shù)據(jù)——整理數(shù)據(jù)——分析數(shù)據(jù)——作出決策。

  2、收集在生活中應用統(tǒng)計的例子,并說說這些例子中的數(shù)據(jù)告訴人們哪些信息。(全班交流)

  指名同學匯報,其他同學注意聽,并指出這個同學舉的例子中你可以獲得什么信息?

  3、結合生活中的例子說說收集數(shù)據(jù)有哪些方法?

  (1)先讓學生在小組內(nèi)交流,引導學生結合例子(充分利用第2題中收集來

  的實例)來說說自己的方法。

  (2)師歸納:常用的收集數(shù)據(jù)的方法有:查閱資料、詢問他人、調(diào)查實驗等。

  4、師:同學們,我們已經(jīng)對統(tǒng)計表和統(tǒng)計圖進行了系統(tǒng)的學習,回憶一下我們已經(jīng)學過了哪些統(tǒng)計圖,對這些統(tǒng)計圖,你已經(jīng)知道了哪些知識?

  初中數(shù)學教案 13

  一、素質(zhì)教育目標

  (一)知識教學點:

  使學生會用列一元二次方程的方法解有關面積、體積方面的應用問題

  (二)能力訓練點:

  進一步培養(yǎng)學生化實際問題為數(shù)學問題的能力和分析問題解決問題的能力,培養(yǎng)用數(shù)學的意識

  二、教學重點、難點

  1.教學重點:

  會用列一元二次方程的方法解有關面積、體積方面的應用題

  2.教學難點:

  找等量關系列一元二次方程解應用題時,應注意是方程的解,但不一定符合題意,因此求解后一定要檢驗,以確定適合題意的解.例如線段的長度不為負值,人的個數(shù)不能為分數(shù)等

  三、教學步驟

  (一)明確目標

  (二)整體感知

  (三)重點、難點的學習和目標完成過程

  1.復習提問

  (1)列方程解應用題的步驟?

  (2)長方形的周長、面積?長方體的體積?

  2.例1?現(xiàn)有長方形紙片一張,長19cm,寬15cm,需要剪去邊長是多少的小正方形才能做成底面積為77cm2的無蓋長方體型的紙盒?

  解:設需要剪去的小正方形邊長為xcm,則盒底面長方形的長為(19—2x)cm,寬為(15—2x)cm,

  據(jù)題意:(19—2x)(15—2x)=77

  整理后,得x2—17x+52=0,

  解得x1=4,x2=13

  ∴當x=13時,15—2x=—11(不合題意,舍去)

  答:截取的小正方形邊長應為4cm,可制成符合要求的無蓋盒子

  練習1章節(jié)前引例.

  學生筆答、板書、評價

  練習2教材P42中4

  學生筆答、板書、評價

  注意:全面積=各部分面積之和

  剩余面積=原面積—截取面積

  例2要做一個容積為750cm3,高是6cm,底面的長比寬多5cm的長方形匣子,底面的長及寬應該各是多少(精確到0.1cm)?

  分析:底面的長和寬均可用含未知數(shù)的代數(shù)式表示,則長×寬×高=體積,這樣便可得到含有未知數(shù)的等式——方程

  解:長方體底面的寬為xcm,則長為(x+5)cm,

  解:長方體底面的寬為xcm,則長為(x+5)cm,

  據(jù)題意,6x(x+5)=750,

  整理后,得x2+5x—125=0

  解這個方程x1=9.0,x2=—14.0(不合題意,舍去)

  當x=9.0時,x+17=26.0,x+12=21.0.

  答:可以選用寬為21cm,長為26cm的'長方形鐵皮

  教師引導,學生板書,筆答,評價

  (四)總結、擴展

  1.有關面積和體積的應用題均可借助圖示加以分析,便于理解題意,搞清已知量與未知量的相互關系

  2.要深刻理解題意中的已知條件,正確決定一元二次方程的取舍問題,例如線段的長不能為負

  3.進一步體會數(shù)字在實踐中的應用,培養(yǎng)學生分析問題、解決問題的能力

  四、布置作業(yè)

  教材P42中A3、6、7

  教材P41中3、4

  初中數(shù)學教案 14

  一、教學目標

  1.使學生初步掌握一元一次方程解簡單應用題的方法和步驟;并會列出一元一次方程解簡單的應用題;

  2.培養(yǎng)學生觀察能力,提高他們分析問題和解決問題的能力;

  3.使學生初步養(yǎng)成正確思考問題的良好習慣。

  二、教學重點和難點

  一元一次方程解簡單的應用題的方法和步驟。

  三、課堂教學過程設計

  (一)從學生原有的認知結構提出問題

  在小學算術中,我們學習了用算術方法解決實際問題的有關知識,那么,一個實際問題能否應用一元一次方程來解決呢?若能解決,怎樣解?用一元一次方程解應用題與用算術方法解應用題相比較,它有什么優(yōu)越性呢?

  為了回答上述這幾個問題,我們來看下面這個例題。

  例1 某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù)。

  (首先,用算術方法解,由學生回答,教師板書)

  解法1:(4+2)÷(3-1)=3。

  答:某數(shù)為3。

  (其次,用代數(shù)方法來解,教師引導,學生口述完成)

  解法2:設某數(shù)為x,則有3x-2=x+4。

  解之,得x=3。

  答:某數(shù)為3。

  縱觀例1的這兩種解法,很明顯,算術方法不易思考,而應用設未知數(shù),列出方程并通過解方程求得應用題的解的方法,有一種化難為易之感,這就是我們學習運用一元一次方程解應用題的目的之一。

  我們知道方程是一個含有未知數(shù)的等式,而等式表示了一個相等關系。因此對于任何一個應用題中提供的條件,應首先從中找出一個相等關系,然后再將這個相等關系表示成方程。

  本節(jié)課,我們就通過實例來說明怎樣尋找一個相等的關系和把這個相等關系轉(zhuǎn)化為方程的方法和步驟。

  (二)師生共同分析、研究一元一次方程解簡單應用題的方法和步驟

  例2 某面粉倉庫存放的面粉運出15%后,還剩余42500千克,這個倉庫原來有多少面粉?

  師生共同分析:

  1.本題中給出的已知量和未知量各是什么?

  2.已知量與未知量之間存在著怎樣的相等關系?(原來重量-運出重量=剩余重量)

  3.若設原來面粉有x千克,則運出面粉可表示為多少千克?利用上述相等關系,如何布列方程?

  上述分析過程可列表如下:

  解:設原來有x千克面粉,那么運出了15%x千克,由題意,得

  x-15%x=42 500,

  所以x=50 000。

  答:原來有50 000千克面粉。

  此時,讓學生討論:本題的相等關系除了上述表達形式以外,是否還有其他表達形式?若有,是什么?

  (還有,原來重量=運出重量+剩余重量;原來重量-剩余重量=運出重量)

  教師應指出:

  (1)這兩種相等關系的.表達形式與“原來重量-運出重量=剩余重量”,雖形式上不同,但實質(zhì)是一樣的,可以任意選擇其中的一個相等關系來列方程;

  (2)例2的解方程過程較為簡捷,同學應注意模仿。

  依據(jù)例2的分析與解答過程,首先請同學們思考列一元一次方程解應用題的方法和步驟;然后,采取提問的方式,進行反饋;最后,根據(jù)學生總結的情況,教師總結如下:

  (1)仔細審題,透徹理解題意。即弄清已知量、未知量及其相互關系,并用字母(如x)表示題中的一個合理未知數(shù);

  (2)根據(jù)題意找出能夠表示應用題全部含義的一個相等關系。(這是關鍵一步);

  (3)根據(jù)相等關系,正確列出方程.即所列的方程應滿足兩邊的量要相等;方程兩邊的代數(shù)式的單位要相同;題中條件應充分利用,不能漏也不能將一個條件重復利用等;

  (4)求出所列方程的解;

  (5)檢驗后明確地、完整地寫出答案.這里要求的檢驗應是,檢驗所求出的解既能使方程成立,又能使應用題有意義。

  例3 (投影)初一2班第一小組同學去蘋果園參加勞動,休息時工人師傅摘蘋果分給同學,若每人3個還剩余9個;若每人5個還有一個人分4個,試問第一小組有多少學生,共摘了多少個蘋果?

  (仿照例2的分析方法分析本題,如學生在某處感到困難,教師應做適當點撥.解答過程請一名學生板演,教師巡視,及時糾正學生在書寫本題時可能出現(xiàn)的各種錯誤。并嚴格規(guī)范書寫格式。)

  解:設第一小組有x個學生,依題意,得

  3x+9=5x-(5-4),

  解這個方程:2x=10,

  所以x=5。

  其蘋果數(shù)為3× 5+9=24。

  答:第一小組有5名同學,共摘蘋果24個。

  學生板演后,引導學生探討此題是否可有其他解法,并列出方程。

  (設第一小組共摘了x個蘋果,則依題意,得)

  (三)課堂練習

  1.買4本練習本與3支鉛筆一共用了1.24元,已知鉛筆每支0.12元,問練習本每本多少元?

  2.我國城鄉(xiāng)居民1988年末的儲蓄存款達到3 802億元,比1978年末的儲蓄存款的18倍還多4億元。求1978年末的儲蓄存款。

  3.某工廠女工人占全廠總?cè)藬?shù)的35%,男工比女工多252人,求全廠總?cè)藬?shù)。

  (四)師生共同小結

  首先,讓學生回答如下問題:

  1.本節(jié)課學習了哪些內(nèi)容?

  2.列一元一次方程解應用題的方法和步驟是什么?

  3.在運用上述方法和步驟時應注意什么?

  依據(jù)學生的回答情況,教師總結如下:

  (1)代數(shù)方法的基本步驟是:全面掌握題意;恰當選擇變數(shù);找出相等關系;布列方程求解;檢驗書寫答案.其中第三步是關鍵;

  (2)以上步驟同學應在理解的基礎上記憶。

  (五)作業(yè)

  1.買3千克蘋果,付出10元,找回3角4分。問每千克蘋果多少錢?

  2.用76厘米長的鐵絲做一個長方形的教具,要使寬是16厘米,那么長是多少厘米?

  3.某廠去年10月份生產(chǎn)電視機2050臺,這比前年10月產(chǎn)量的2倍還多150臺。這家工廠前年10月生產(chǎn)電視機多少臺?

  4.大箱子裝有洗衣粉36千克,把大箱子里的洗衣粉分裝在4個同樣大小的小箱里,裝滿后還剩余2千克洗衣粉.求每個小箱子里裝有洗衣粉多少千克?

  5.把1400獎金分給22名得獎者,一等獎每人200元,二等獎每人50元。求得到一等獎與二等獎的人數(shù)。

  初中數(shù)學教案 15

  一、素質(zhì)教育目標

  (一)知識教學點

  1.掌握的三要素,能正確畫出

  2.能將已知數(shù)在上表示出來,能說出上已知點所表示的數(shù)

  (二)能力訓練點

  1.使學生受到把實際問題抽象成數(shù)學問題的訓練,逐步形成應用數(shù)學的意識

  2.對學生滲透數(shù)形結合的思想方法

  (三)德育滲透點

  使學生初步了解數(shù)學來源于實踐,反過來又服務于實踐的辯證唯物主義觀點

  (四)美育滲透點

  通過畫,給學生以圖形美的教育,同時由于數(shù)形的結合,學生會得到和諧美的'享受

  二、學法引導

  1.教學方法:根據(jù)教師為主導,學生為主體的原則,始終貫穿“激發(fā)情趣—手腦并用—啟發(fā)誘導—反饋矯正”的教學方法

  2.學生學法:動手畫,動腦概括的三要素,動手、動腦做練習

  三、重點、難點、疑點及解決辦法

  1.重點:正確掌握畫法和用上的點表示有理數(shù)。

  2.難點:有理數(shù)和上的點的對應關系。

  四、課時安排

  1課時

  五、教具學具準備

  電腦、投影儀、自制膠片

  六、師生互動活動設計

  師生同步畫,學生概括三要素,師出示投影,生動手動腦練習

  七、教學步驟

  (一)創(chuàng)設情境,引入新課

  師:大家知識溫度計的用途是什么?

  生:溫度計可以測量溫度

  (出示投影1)

  三個溫度計.其中一個溫度計的液面在0上20個刻度,一個溫度計的液面在0下5個刻度,一個溫度計的液面在0刻度.

  師:三個溫度計所表示的溫度是多少?

  生:2℃,-5℃,0℃.

  我們能否用類似溫度計的圖形表示有理數(shù)呢?

  這種表示數(shù)的圖形就是今天我們要學的內(nèi)容—(板書課題)

  【教法說明】從溫度計用標有讀數(shù)的刻度來表示溫度的高低這個事實出發(fā),引出本節(jié)課所要學的內(nèi)容—。再從溫度計這個實物形象抽象出來研究。既激發(fā)了學生的學習興趣,又使學生受到把實際問題抽象成數(shù)學問題的訓練,培養(yǎng)了用數(shù)學的意識。

  (二)探索新知,講授新課

  第一步:畫直線定原點原點表示0(相當于溫度計上的0℃)

  第二步:規(guī)定從原點向右的為正方向那么相反的方向(從原點向左)則為負方向。(相當于溫度計上℃以上為正,0℃以下為負)

  第三步:選擇適當?shù)拈L度為單位長度(相當于溫度計上每1℃占1小格的長度)

  【教法說明】教師邊講解邊示范,學生跟著一起畫圖.培養(yǎng)學生動手、動腦和實際操作能力,同時,把類比作為一種重要方法貫穿于概念形成過程的始終,讓學生在認知過程中領悟這種思想方法。

  讓學生觀察畫好的直線,思考以下問題:

  (出示投影1)

  (1)原點表示什么數(shù)?

  (2)原點右方表示什么數(shù)?原點左方表示什么數(shù)?

  (3)表示+2的點在什么位置?表示-1的點在什么位置?

  (4)原點向右0.5個單位長度的A點表示什么數(shù)?原點向左個單位長度的B點表示什么數(shù)?

  根據(jù)老師畫圖的步驟,學生思考在一條水平的直線上都畫出什么?然后歸納出的定義。

  學生活動:同學們思考,并要求同桌相互敘述,互相糾正補充,語句通順后舉手回答.大家思考準備更正或補充。

【初中數(shù)學教案】相關文章:

初中數(shù)學教案04-22

初中數(shù)學教案12-22

關于初中數(shù)學教案10-11

初中數(shù)學教案模板08-10

【熱門】初中數(shù)學教案12-21

初中數(shù)學教案【熱】12-21

【薦】初中數(shù)學教案12-30

初中數(shù)學教案【精】12-30

初中數(shù)學教案【薦】12-30

初中數(shù)學教案【熱門】12-29