初中數學教案
作為一名人民教師,時常要開展教案準備工作,教案是教學藍圖,可以有效提高教學效率。教案應該怎么寫呢?以下是小編為大家整理的初中數學教案,希望對大家有所幫助。
初中數學教案1
一學期的工作結束了,可以說緊張忙碌卻收獲多多。回顧這學期的工作,我教九(4)班的數學,我總是在不斷地摸索和學習中進行教學,工作中有收獲和快樂,也有不盡如人意的地方,為了更好地總結經驗,吸取教訓,使以后的工作能夠有效、有序地進行,現將教學所得總結如下:
一、在備課方面
在上課前我總是查閱很多教參、教輔,力求深入理解教材,準確把握難重點,總是要經過深思熟慮之后才寫教案,力爭做到熟知知識要點,心中有數。
二、在教學過程方面
在課堂教學中我一直注重學生的參與。讓學生參與到課堂教學中來,讓他們自主的去探究問題,發現知識。波利亞說:“學習任何知識的最佳途徑都是由自己去發現,因為這種發現理解最深刻,也最容易掌握其中的內在規律、性質和聯系。”只有充分發揮學生的主體作用,讓學生人人參與,才能最大限度地促進學生的發展。但還是難免受傳統教學觀念的影響,加之經驗不足,不太敢放手,怕完成不了當趟課的教學任務。后來在學校“”的教學模式下,才開始進一步嘗試,并在不斷的嘗試中總結經驗。
三、工作中存在的問題
1)、教材挖掘不深入。
2)、教法不靈活,不能吸引學生學習,對學生的引導、啟發不足。
3)、新課標下新的教學思想學習不深入。對學生的自主學習,合作學習,缺乏理論指導
4)、差生末抓在手。由于對學生的了解不夠,對學生的學習態度、思維能力不太清楚。上課和復習時該講的都講了,學生掌握的情況怎樣,教師心中無數。導致了教學中的盲目性。
四、今后努力的方向
1)、加強學習,學習新教學模式下新的教學思想。
2)、熟讀初一到初三的數學教材,深入挖掘教材,進一步把握知識點和考點。
3)、多聽課,學習老教師對知識點的處理和對教材的把握,以及他們處理突發事件方法。
4)、加強轉差培優力度。
5)、加強教學反思,加大教學投入。
一學期的教學工作即將結束,這半年的教學工作很苦,很累,但在不斷的摸索中,自己學到了很多東西。今后我會更加努力提高自己的業務水平。
初中數學教案2
教學目標:
(一)知識與技能
理解單項式及單項式系數、次數的概念;能準確迅速地確定一個單項式的系數和次數;會用含字母的式子表示實際問題中的數量關系。
(二)過程與方法
1.在經歷用字母表示數量關系的過程中,發展符號感;
2. 通過小組討論、合作學習等方式,經歷概念的形成過程,培養學生自主探索知識和合作交流能力
(三)情感態度價值觀
1.通過豐富多彩的現實情景,讓學生經歷從具體問題中抽象出數量關系,在解決問題中了解數學的價值,增長“用數學”的信心.
2.通過用含字母的式子描述現實世界中的數量關系,認識到它是解決實際問題的重要數學工具之一。
教學重、難點:
重點:單項式及單項式系數、次數的概念。
難點:單項式次數的概念;單項式的書寫格式及注意點。
教學方法:
引導——探究式
在感性材料的基礎上,學生自主探究現實情景中用字母表示數的問題,通過觀察、分析、比較,找出材料中個體的共同點,教師引導學生共同抽象、概括單項式及相關的概念.
教具準備:
多媒體課件、小黑板.
教學過程:
一、 創設情境,引入新課
出示一張奔馳在青藏鐵路線上的列車照片,并配上歌曲《天路》,邊欣賞邊向學生介紹青藏鐵路所創造的歷史之最。
情境問題:
青藏鐵路西線上,在格爾木到拉薩之間有一段很長的凍土地段。列車在凍土地段的行駛速度是100千米/時,在非凍土地段的行駛速度可以達到120千米/時,請根據這些數據回答:列車在凍土地段行駛時,2小時能行駛多少千米?3小時呢?t小時呢?
設計意圖:從學生熟悉的情境出發,創設情境,讓學生感受青藏鐵路的偉大成就,激發
愛國主義情感,得到一次情感教育。
解:根據路程、速度、時間之間的關系:路程=速度×時間
2小時行駛的路程是:100×2=200(千米)
3小時行駛的路程是:100×3=300(千米)
t小時行駛的路程是:100×t=100t(千米)
注意:在含有字母的式子中若出現乘號,通常將乘號寫作“ · ”或省略不寫。
如:100×a可以寫成100a或100a。
代數式:用基本的運算符號(運算包括加、減、乘除、乘方等)把數和表示數的字母連接起來的式子。
代數式可以簡明地表示數量和數量的關系,本節我們就來學習最基本也是最重要的一類代數式整式。
設計意圖:從學生已有的數學經驗:路程=速度×時間出發,建立新舊知識之間的聯系
讓學生歷一個從一般到特殊再到一般的認識過程,發展學生的認知觀念。
二、合作交流,探究新知
探究
思考:用含字母的式子填空(獨立完成),并觀察列出的式子有什么共同特點(小組可交流討論)。
1、邊長為a的正方體的表面積是__,體積是__.
2、鉛筆的單價是x元,圓珠筆的單價是鉛筆的2.5倍,則圓珠筆的單價是___元。
3、一輛汽車的速度是v千米∕小時,它t小時行駛的路程為__千米。
4、數n的相反數是__。
解:(1)6a2、 a3 (2)2.5x (3) vt (4)-n
思考:它們有什么共同的特點?
6a 2=6·a·a a3=a·a·a 2.5x=2.5·x vt=v·t -n=-1·n
單項式:數與字母、字母與字母的乘積。
注意:單獨的一個數或字母也是單項式。
設計意圖:從熟悉的實際背景出發,充分讓學生自己觀察、自己發現、自己描述,進行自主學習和合作交流,獲得數學猜想和數學經驗,滿足學生的表現欲和探究欲,使學生學得輕松愉快,充分體現課堂教學的開放性。
火眼金睛
下列各代數式中哪些是單項式哪些不是?
(1)a (2) 0 (3) a2
(4) 6a (5)
(6)
(7)3a+2b (8)xy2
設計意圖:加強學生對不同形式的單項式的直觀認識。
解剖單項式
系數:單項式中的數字因數。
如:-3x的系數是 ,-ab的系數是 , 的系數是 。
次數:一個單項式中的所有字母的指數的和。
如:-3x的次數是 ,ab的次數是 。
小試身手
單項式 2a 2 -1.2h xy2 -t2 -32x2y
系數
次數
設計意圖:了解學生對單項式系數、次數的概念是否理解,找出存在的問題,從而進一步鞏固概念。
單項式的注意點:
(1)數與字母相乘時,數應寫在字母的___,且乘號可_________;
(2)帶分數作為系數時,應改寫成_______的形式;
(3)式子中若出現相除時,應把除號寫成____的形式;
(4)把“1”或“-1”作為項的系數時,“1”可以__不寫。
行家看門道
①1x ②-1x
③a×3 ④a÷2
⑤ ⑥m的系數為1,次數為0
⑦ 的系數為2,次數為2
設計意圖:單項式的書寫和表示有其特有的格式和注意點,通過以上兩個題目讓學生進一步明確注意點。
三、例題講解,鞏固新知
例1:用單項式填空,并指出它們的系數和次數:
(1)每包書有12冊,n包書有 冊;
(2)底邊長為a,高為h的三角形的面積 ;
(3)一個長方體的長和寬都是a,高是h,它的體積是 ;
(4)一臺電視機原價a元,現按原價的9折出售,這臺電視機現在的售價
為 元;
(5)一個長方形的長0.9,寬是a,這個長方形的面積是 .
解:(1)12n,它的系數是12,次數是1
(2) ,它的系數是 , 次數是2;
(3)a2h,它的系數是1,次數是3;
(4)0.9a,它的系數是0.9,次數是1;
(5)0.9a,它的系數是0.9,次數是1。
設計意圖:學生能用單項式表示簡單的實際問題中的數量關系,并進一步鞏固單項式的系數、次數的概念。
試一試
你還能賦予0.9a一個含義嗎?
設計意圖:同一個式子可以表示不同的含義,通過這個例子讓學生進一步體會式子更具有一般性,而且發散學生思維。
大膽嘗試
寫出一個單項式,使它的系數是2,次數是3.
設計意圖:充分發揮學生的想象力,讓每一個學生都有獲得成功的體驗,為不同程度的學生一個展示自我的機會,激發他們的學習興趣。
四、拓展提高
嘗試應用
用單項式填空,并指出它們的系數和次數:
(1)全校學生總數是x,其中女生占總數48%,則女生人數是 ,男生人數是 ;
(2)一輛長途汽車從楊柳村出發,3小時后到達相距s千米的溪河鎮,這輛長途汽車的平均速度是 ;
(3)產量由m千克增長10%,就達到 千克;
設計意圖:讓學生感受單項式在實際生活中的應用,進一步掌握單項式及單項式系數、次數的概念。
能力提升
1、已知-xay是關于x、y的三次單項式,那么a= ,b= .
2、若-ax2yb+1是關于x、y的五次單項式,且系數為-3,則a= ,b= .
設計意圖:照顧學有余力的學生,拓展學生思維,讓學生體會跳一跳、摘桃子的樂趣。
五、小結:
本節課你感受到了嗎?
生活中處處有數學
本節課我們學了什么?你能說說你的收獲嗎?
1、單項式的概念: 數與字母、字母與字母的乘積。
2、單項式的系數、次數的概念。
系數:單項中的數字因數;
次數:單項中所有字母的指數和。
3、會用單項式表示實際問題中的數量關系,注意列式時式子要規范書寫。
設計意圖:通過回顧和反思,讓學生看到自己的進步,激勵學生,使學生相信自己在今后的學習中不斷進步,不斷積累數學活動經驗,促進學生形成良好的心理品質。
結束寄語
悟性的高低取決于有無悟“心”,其實,人與人的差別就在于你是否去思考,去發現!
設計意圖:這是對學生的激勵也是對學生的一種期盼,可以增進師生間的情感交流。
六、板書設計
2.1 整式
單項式概念 探究 例1 多
單項式的系數概念 觀察交流 嘗試應用 媒
單項式的次數概念 能力提升 體
七、作業:
1.作業本(必做)。
2. 請下面圖片設計一個故事情境,要求其中包含的數量關系能夠用單項式表示,并且指出它們的系數和次數(選做)。
設計意圖:布置分層作業,既讓學生掌握基礎知識,又使學有余力的學生有所提高。讓學生自行編題是一種創造性的思維活動,它可以改變一味由教師出題的形式,活躍學生思維,使學生能夠透徹理解知識,同時培養同學之間的競爭意識。
八、設計理念:
本節課是研究整式的起始課,它是進一步學習多項式的基礎,因此對單項式有關概念的理解和掌握情況,將直接影響到后續學習。為突出重點,突破難點,教學中要加強直觀性,即為學生提供足夠的感知材料,豐富學生的感性認識,幫助學生認識概念,同時也要注重分析,亦即在剖析單項式結構時,借助反例練習,抓住概念易混淆處和判斷易出錯處,強化認識,幫助學生理解單項式系數、次數,為進一步學習新知做好鋪墊。
針對七年級學生學習熱情高,但觀察、分析、認識問題能力較弱的特點,教學時將提供大量感性材料,以啟發引導為主,同時輔之以討論、練習、合作交流等學習活動,達到掌握知識的目的,并逐步培養起學生觀察、分析、抽象、概括的能力,同時注重培養學生由感性認識上升到理性認識,為進一步學習同類項打下堅實的基礎。
初中數學教案3
【學習目標】
1.了解圓周角的概念.
2.理解圓周角的定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.
3.理解圓周角定理的推論:半圓(或直徑)所對的圓周角是直角,90的圓周角所對的弦是直徑.
4.熟練掌握圓周角的定理及其推理的靈活運用.
設置情景,給出圓周角概念,探究這些圓周角與圓心角的關系,運用數學分類思想給予邏輯證明定理,得出推導,讓學生活動證明定理推論的正確性,最后運用定理及其推導解決一些實際問題
【學習過程】
一、 溫故知新:
(學生活動)同學們口答下面兩個問題.
1.什么叫圓心角?
2.圓心角、弦、弧之間有什么內在聯系呢?
二、 自主學習:
自學教材P90---P93,思考下列問題:
1、 什么叫圓周角?圓周角的兩個特征: 。
2、 在下面空里作一個圓,在同一弧上作一些圓心角及圓周角。通過圓周角的概念和度量的方法回答下面的問題.
(1)一個弧上所對的圓周角的個數有多少個?
(2).同弧所對的圓周角的度數是否發生變化?
(3).同弧上的圓周角與圓心角有什么關系?
3、默寫圓周角定理及推論并證明。
4、能去掉同圓或等圓嗎?若把同弧或等弧改成同弦或等弦性質成立嗎?
5、教材92頁思考?在同圓或等圓中,如果兩個圓周角相等,它們所對的弧一定相等嗎?為什么?
三、 典型例題:
例1、(教材93頁例2)如圖, ⊙O的直徑AB為10cm,弦AC為6cm,,ACB的平分線交⊙O于D,求BC、AD、BD的長。
例2、如圖,AB是⊙O的直徑,BD是⊙O的弦,延長BD到C,使AC=AB,BD與CD的大小有什么關系?為什么?
四、 鞏固練習:
1、(教材P93練習1)
解:
2、(教材P93練習2)
3、(教材P93練習3)
證明:
4、(教材P95習題24.1第9題)
五、 總結反思:
【達標檢測】
1.如圖1,A、B、C三點在⊙O上,AOC=100,則ABC等于( ).
A.140 B.110 C.120 D.130
(1) (2) (3)
2.如圖2,1、2、3、4的大小關系是( )
A.3 B.32
C.2 D.2
3.如圖3,(中考題)AB是⊙O的直徑,BC,CD,DA是⊙O的弦,且BC=CD=DA,則BCD等于( )
A.100 B.110 C.120 D.130
4.半徑為2a的⊙O中,弦AB的長為2 a,則弦AB所對的圓周角的度數是________.
5.如圖4,A、B是⊙O的直徑,C、D、E都是圓上的點,則2=_______.
(4) (5)
6.(中考題)如圖5, 于 ,若 ,則
7.如圖,弦AB把圓周分成1:2的兩部分,已知⊙O半徑為1,求弦長AB.
【拓展創新】
1.如圖,已知AB=AC,APC=60
(1)求證:△ABC是等邊三角形.
(2)若BC=4cm,求⊙O的面積.
3、教材P95習題24.1第12、13題。
【布置作業】教材P95習題24.1第10、11題。
初中數學教案4
一、教學目標:
1、知識目標:能熟練掌握簡單圖形的移動規律,能按要求作出簡單平面圖形平移后的圖形,能夠探索圖形之間的平移關系;
2、能力目標:
①,在實踐操作過程中,逐步探索圖形之間的平移關系;
②,對組合圖形要找到一個或者幾個“基本圖案”,并能通過對“基本圖案”的平移,復制所求的圖形;
3、情感目標:經歷對圖形進行觀察、分析、欣賞和動手操作、畫圖等過程,發展初步的審美能力,增強對圖形欣賞的意識。
二、重點與難點:
重點:圖形連續變化的特點;
難點:圖形的劃分。
三、教學方法:
講練結合。使用多媒體課件輔助教學。
四、教具準備:
多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。
五、教學設計:
創設情景,探究新知:
(演示課件):教材上小狗的圖案。提問:
(1)這個圖案有什么特點?
(2)它可以通過什么“基本圖案”,經過怎樣的平移而形成?
(3)在平移過程中,“基本圖案”的大小、形狀、位置是否發生了變化?
小組討論,派代表回答。(答案可以多種)
讓學生充分討論,歸納總結,老師給予適當的指導,并對每種答案都要肯定。
看磁性黑板,展示教材64頁圖3-9,提問:左圖是一個正六邊形,它經過怎樣的平移能得到右圖?誰到黑板做做看?
小組討論,派代表到臺上給大家講解。
氣氛要熱烈,充分調動學生的積極性,發掘他們的想象力。
暢所欲言,互相補充。
課堂小結:
在教師的引導下學生總結本節課的主要內容,并啟發學生在我們周圍尋找平移的例子。
課堂練習:
小組討論。
小組討論完成。
例子一定要和大家接觸緊密、典型。
答案不惟一,對于每種答案,教師都要給予充分的肯定。
六、教學反思:
本節的內容并不是很復雜,借助多媒體進行直觀、形象,內容貼近生活,學生興致較高,課堂氣氛活躍,參與意識較強,學生一般都能在教師的指導下掌握。教學過程中滲透數學美學思想,促進學生綜合素質的提高。
初中數學教案5
教學目標:
1、進一步理解函數的概念,能從簡單的實際事例中,抽象出函數關系,列出函數解析式;
2、使學生分清常量與變量,并能確定自變量的取值范圍.
3、會求函數值,并體會自變量與函數值間的對應關系.
4、使學生掌握解析式為只含有一個自變量的簡單的整式、分式、二次根式的函數的自變量的取值范圍的求法.
5、通過函數的教學使學生體會到事物是相互聯系的.是有規律地運動變化著的.
教學重點:了解函數的意義,會求自變量的取值范圍及求函數值.
教學難點:函數概念的抽象性.
教學過程:
(一)引入新課:
上一節課我們講了函數的概念:一般地,設在一個變化過程中有兩個變量x、y,如果對于x的每一個值,y都有唯一的值與它對應,那么就說x是自變量,y是x的函數.
生活中有很多實例反映了函數關系,你能舉出一個,并指出式中的自變量與函數嗎?
1、學校計劃組織一次春游,學生每人交30元,求總金額y(元)與學生數n(個)的關系.
2、為迎接新年,班委會計劃購買100元的小禮物送給同學,求所能購買的總數n(個)與單價(a)元的關系.
解:1、y=30n
y是函數,n是自變量
2、n是函數,a是自變量.
(二)講授新課
剛才所舉例子中的函數,都是利用數學式子即解析式表示的.這種用數學式子表示函數時,要考慮自變量的取值必須使解析式有意義.如第一題中的學生數n必須是正整數.
例1、求下列函數中自變量x的取值范圍.
(1)(2)
(3)(4)
(5)(6)
分析:在(1)、(2)中,x取任意實數,與都有意義.
(3)小題的是一個分式,分式成立的條件是分母不為0.這道題的分母是,因此要求.
同理(4)小題的也是分式,分式成立的條件是分母不為0,這道題的分母是,因此要求且.
第(5)小題,是二次根式,二次根式成立的條件是被開方數大于、等于零.的被開方數是.
同理,第(6)小題也是二次根式,是被開方數,
小結:從上面的例題中可以看出函數的解析式是整數時,自變量可取全體實數;函數的解析式是分式時,自變量的取值應使分母不為零;函數的解析式是二次根式時,自變量的取值應使被開方數大于、等于零.
注意:有些同學沒有真正理解解析式是分式時,自變量的取值應使分母不為零,片面地認為,凡是分母,只要即可.教師可將解題步驟設計得細致一些.先提問本題的分母是什么?然后再要求分式的分母不為零.求出使函數成立的自變量的取值范圍.二次根式的問題也與次類似.
但象第(4)小題,有些同學會犯這樣的錯誤,將答案寫成或.在解一元二次方程時,方程的兩根用“或者”聯接,在這里就直接拿過來用.限于初中學生的接受能力,教師可聯系日常生活講清“且”與“或”.說明這里與是并且的關系.即2與-1這兩個值x都不能取.
例2、自行車保管站在某個星期日保管的自行車共有3500輛次,其中變速車保管費是每輛一次0.5元,一般車保管費是每次一輛0.3元.
(1)若設一般車停放的輛次數為x,總的保管費收入為y元,試寫出y關于x的函數關系式;
(2)若估計前來停放的3500輛次自行車中,變速車的輛次不小于25%,但不大于40%,試求該保管站這個星期日收入保管費總數的范圍.
解:(1)
(x是正整數,
(2)若變速車的輛次不小于25%,但不大于40%,
則收入在1225元至1330元之間
總結:對于反映實際問題的函數關系,應使得實際問題有意義.這樣,就要求聯系實際,具體問題具體分析.
對于函數,當自變量時,相應的函數y的值是.60叫做這個函數當時的函數值.
例3、求下列函數當時的函數值:
(1)————(2)—————
(3)————(4)——————
注:本例既鍛煉了學生的計算能力,又創設了情境,讓學生體會對于x的每一個值,y都有唯一確定的值與之對應.以此加深對函數的理解.
(二)小結:
這節課,我們進一步地研究了有關函數的概念.在研究函數關系時首先要考慮自變量的取值范圍.因此,要求大家能掌握解析式含有一個自變量的簡單的整式、分式、二次根式的函數的自變量取值范圍的求法,并能求出其相應的函數值.另外,對于反映實際問題的函數關系,要具體問題具體分析.
作業:習題13.2A組2、3、5
今天的內容就介紹到這里了。
初中數學教案6
初中數學分層次教學案例
【案例主題:】學生參與教學,體現了現代教學理念:活動、合作、自由、民主、創新。
【背景:】我在進行數學七年級上冊圖形的認識的應用教學時,處理定理時,隨著教學過程的深入,很有感想:??
例題:課本p123證明兩個角之間的關系,
請同學們總結一下他們可能出現的情況。
【活動過程】師:誰能總結一下判定兩個角比較大小的方法?(學生都在緊張的思考中)(突然間,我發現一名平時學習較困難的學生閆家銜這次第一個舉起了手,很驚奇,便馬上讓他發言了。也有了我思想上的一次飛躍。)
生:我認為前面,度量,而剛才第一條,第二條的疊合法。(這時,教室里鴉雀無聲,個別同學在譏笑,這位學生頓時有些難堪,想坐下去,我趕緊制止。)
師:很好!那你準備應該怎么做呢?生:嗯,(一下子來勁了):接著這位同學上黑板畫了圖,寫出自己度量的方法和自己的想法。
師:剛才閆家銜同學真的不錯,不但提出了新的方法,而且還給出了說理,我和全班同學都為你今天的表現感到非常高興(教室里響起一片掌聲)。要有勇氣展示自己,你今天的表現就非常非常地出色,你今后的表現一定會更出色。好,下面我就讓我們一同來總結一下菱形的證明方法。
在師生的共同研討下得出了這些方法。
師:今天的課程內容還有一項,那就是請閆家銜同學談談這堂課的感想。
生:??以前我不敢發言,我怕說的不對會被同學們笑話,而今天的他的方法恰好是我前幾天才預習過的,所以一下子??我今天才發現不是這樣??我今后還會努力發言的??
【理念反思】:從這一個學生的舉手發言到說得頭頭是道的“意外”中,我明白了:學生需要一個能充分展示自我的自由空間,作為老師,我們需要給學生一個自由的民主的氛圍,能充分培養學生的自信,使“學困生”也能產生發言的欲望,也能對問題暢所欲言,教師還應能及時捕捉到這一閃光點,給每一位學生都有展示的機會。也就是說要使學生全部積極參與教學,因為它集中體現了現代課程理念:活動、合作、自由、民主、創新。
1、活動、合作是現代課程中的新的理念,只有參與,才能合作創新。
2、民主是現代課程中的重要理念。民主最直接的體現是在課程實施中學生能夠平等地參與。沒有主動參與,只有被動接受,就沒有民主可言。相反,如果沒有民主,學生的參與
就不是主動性參與,而是被動的、消極的參與。
3、在提問時,應設計開放性的問題,如:“請你幫助設計一下,有幾種方案等問題?這樣才沒有限制學生的思維,給學生創設一個自由的空間,學生在這個空間中可以按自己的方式展開想象,才能暢所欲言。
4、在課堂上,老師應不只關注“優等生”,而應平等地對待每一個學生,讓學困生”和“學優生”同時享有尊嚴和擁有一份自信。特別是發現到一個學困生在舉了手時,應及時給“學困生”展示的機會,讓他們發言,學生在發言中,雖然有時不能把問題完全解決,老師也要充分的肯定這個學生的成績和能夠大膽發言的勇氣。
初中數學教案7
一、教學目標
(一)知識與技能
了解數軸的概念,能用數軸上的點準確地表示有理數。
(二)過程與方法
通過觀察與實際操作,理解有理數與數軸上的點的對應關系,體會數形結合的思想。
(三)情感、態度與價值觀
在數與形結合的過程中,體會數學學習的樂趣。
二、教學重難點
(一)教學重點
數軸的三要素,用數軸上的點表示有理數。
(二)教學難點
數形結合的思想方法。
三、教學過程
(一)引入新課
提出問題:通過實例溫度計上數字的意義,引出數學中也有像溫度計一樣可以用來表示數的軸,它就是我們今天學習的數軸。
(二)探索新知
學生活動:小組討論,用畫圖的形式表示東西向馬路上楊樹,柳樹,汽車站牌三者之間的關系:
提問1:上面的問題中,“東”與“西”、“左”與“右”都具有相反意義。我們知道,正數和負數可以表示具有相反意義的.量,那么,如何用數表示這些樹、電線桿與汽車站牌的相對位置呢?
學生活動:畫圖表示后提問。
提問2:“0”代表什么?數的符號的實際意義是什么?對照體溫計進行解答。
教師給出定義:在數學中,可以用一條直線上的點表示數,這條直線叫做數軸,它滿足:任取一個點表示數0,代表原點;通常規定直線上向右(或上)為正方向,從原點向左(或下)為負方向;選取合適的長度為單位長度。
提問3:你是如何理解數軸三要素的?
師生共同總結:“原點”是數軸的“基準”,表示0,是表示正數和負數的分界點,正方向是人為規定的,要依據實際問題選取合適的單位長度。
(三)課堂練習
如圖,寫出數軸上點A,B,C,D,E表示的數。
(四)小結作業
提問:今天有什么收獲?
引導學生回顧:數軸的三要素,用數軸表示數。
初中數學教案8
一、教學目標
1、了解公式的意義,使學生能用公式解決簡單的實際問題;
2、初步培養學生觀察、分析及概括的能力;
3、通過本節課的教學,使學生初步了解公式來源于實踐又反作用于實踐。
二、重難點
(一)教學重點、難點
重點:通過具體例子了解公式、應用公式。
難點:從實際問題中發現數量之間的關系并抽象為具體的公式,要注意從中反應出來的歸納的思想方法。
(二)重點、難點分析
人們從一些實際問題中抽象出許多常用的、基本的數量關系,往往寫成公式,以便應用。如本課中梯形、圓的面積公式。應用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數量關系,然后就可以利用公式由已知數求出所需的未知數。具體計算時,就是求代數式的值了。有的公式,可以借助運算推導出來;有的公式,則可以通過實驗,從得到的反映數量關系的一些數據(如數據表)出發,用數學方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。
三、知識結構
本節一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應用、公式的先推導后應用以及通過觀察歸納推導公式解決一些實際問題。整節內容滲透了由一般到特殊、再由特殊到一般的辨證思想。
四、教法建議
1、對于給定的可以直接應用的公式,首先在給出具體例子的前提下,教師創設情境,引導學生清晰地認識公式中每一個字母、數字的意義,以及這些數量之間的對應關系,在具體例子的基礎上,使學生參與挖倔其中蘊涵的思想,明確公式的應用具有普遍性,達到對公式的靈活應用。
2、在教學過程中,應使學生認識有時問題的解決并沒有現成的公式可套,這就需要學生自己嘗試探求數量之間的關系,在已有公式的基礎上,通過分析和具體運算推導新公式。
3、在解決實際問題時,學生應觀察哪些量是不變的,哪些量是變化的,明確數量之間的對應變化規律,依據規律列出公式,再根據公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學生分析問題、解決問題的能力。
五、教學目標
(一)知識教學點
1、使學生能利用公式解決簡單的實際問題。
2、使學生理解公式與代數式的關系。
(二)能力訓練點
1、利用數學公式解決實際問題的能力。
2、利用已知的公式推導新公式的能力。
(三)德育滲透點
數學來源于生產實踐,又反過來服務于生產實踐。
(四)美育滲透點
數學公式是用簡潔的數學形式來闡明自然規定,解決實際問題,形成了色彩斑斕的多種數學方法,從而使學生感受到數學公式的簡潔美。
六、教學步驟
(一)創設情景,復習引入
師:同學們已經知道,代數的一個重要特點就是用字母表示數,用字母表示數有很多應用,公式就是其中之一,我們在小學里學過許多公式,請大家回憶一下,我們已經學過哪些公式,教法說明,讓學生一開始就參與課堂教學,使學生在后面利用公式計算感到不生疏。
在學生說出幾個公式后,師提出本節課我們應在小學學習的基礎上,研究如何運用公式解決實際問題。
板書:公式
師:小學里學過哪些面積公式?
板書:S=ah
(出示投影1)。解釋三角形,梯形面積公式。
初中數學教案9
教學內容:在學生初步了解,年月日、季度的概念后,尋找歷法與撲克之間的關系。
教學目標:1、通過對"撲克"有趣的研究,培養起學生對生活中平常小事的關注。
2、調動學生豐富的聯想,養成一種思考的習慣。
教學重難點:"撲克"與年月日、季度的聯系。
教學過程:
一、談話引入
師:同學們,這個你們一定見過吧!這是我們生活中比較常見的"撲克"。誰愿意告訴我們,你對撲克的了解呢?
生:......
(教師補充,引發學生的好奇心。)
師: "撲克"還有一種作用,而且與數學有關!
生:......
二、新課
1、桃、心、梅、方4種花色可以代表一年四季春、夏、秋、冬
2、大王=太陽 小王=月亮 紅=白天 黑=夜晚
3、A=1 2=2 3=3 4=4 5=5 6=6 7=7 8=8 9=9 10=10 J=11 Q=12 K=13 大王=1 小王=1
4、所有牌的和+小王=平年的天數
所有牌的和+小王+大王=閏年的天數
5、撲克中的K、Q、J共有12張,3×4=12,表示一年有12個月
6、365÷7≈52一年有52個星期。54張牌中除去大王、小王有52張是正牌,表示一年有52個星期。
7、一種花色的和=一個季度的天數
一種花色有13張牌=一個季度有13個星期
三、小結
生活中有很多的數學,他每時每刻都在我們的身邊出現,只是我們大家沒有注意到。請大家都要學會留心觀察,做生活的有心人。
初中數學教案10
一、教學目標
1.使學生初步掌握一元一次方程解簡單應用題的方法和步驟;并會列出一元一次方程解簡單的應用題;
2.培養學生觀察能力,提高他們分析問題和解決問題的能力;
3.使學生初步養成正確思考問題的良好習慣。
二、教學重點和難點
一元一次方程解簡單的應用題的方法和步驟。
三、課堂教學過程設計
(一)從學生原有的認知結構提出問題
在小學算術中,我們學習了用算術方法解決實際問題的有關知識,那么,一個實際問題能否應用一元一次方程來解決呢?若能解決,怎樣解?用一元一次方程解應用題與用算術方法解應用題相比較,它有什么優越性呢?
為了回答上述這幾個問題,我們來看下面這個例題。
例1 某數的3倍減2等于某數與4的和,求某數。
(首先,用算術方法解,由學生回答,教師板書)
解法1:(4+2)÷(3-1)=3。
答:某數為3。
(其次,用代數方法來解,教師引導,學生口述完成)
解法2:設某數為x,則有3x-2=x+4。
解之,得x=3。
答:某數為3。
縱觀例1的這兩種解法,很明顯,算術方法不易思考,而應用設未知數,列出方程并通過解方程求得應用題的解的方法,有一種化難為易之感,這就是我們學習運用一元一次方程解應用題的目的之一。
我們知道方程是一個含有未知數的等式,而等式表示了一個相等關系。因此對于任何一個應用題中提供的條件,應首先從中找出一個相等關系,然后再將這個相等關系表示成方程。
本節課,我們就通過實例來說明怎樣尋找一個相等的關系和把這個相等關系轉化為方程的方法和步驟。
(二)師生共同分析、研究一元一次方程解簡單應用題的方法和步驟
例2 某面粉倉庫存放的面粉運出 15%后,還剩余42500千克,這個倉庫原來有多少面粉?
師生共同分析:
1.本題中給出的已知量和未知量各是什么?
2.已知量與未知量之間存在著怎樣的相等關系?(原來重量-運出重量=剩余重量)
3.若設原來面粉有x千克,則運出面粉可表示為多少千克?利用上述相等關系,如何布列方程?
上述分析過程可列表如下:
解:設原來有x千克面粉,那么運出了15%x千克,由題意,得
x-15%x=42 500,
所以 x=50 000。
答:原來有 50 000千克面粉。
此時,讓學生討論:本題的相等關系除了上述表達形式以外,是否還有其他表達形式?若有,是什么?
(還有,原來重量=運出重量+剩余重量;原來重量-剩余重量=運出重量)
教師應指出:(1)這兩種相等關系的表達形式與“原來重量-運出重量=剩余重量”,雖形式上不同,但實質是一樣的,可以任意選擇其中的一個相等關系來列方程;
(2)例2的解方程過程較為簡捷,同學應注意模仿。
依據例2的分析與解答過程,首先請同學們思考列一元一次方程解應用題的方法和步驟;然后,采取提問的方式,進行反饋;最后,根據學生總結的情況,教師總結如下:
(1)仔細審題,透徹理解題意。即弄清已知量、未知量及其相互關系,并用字母(如x)表示題中的一個合理未知數;
(2)根據題意找出能夠表示應用題全部含義的一個相等關系。(這是關鍵一步);
(3)根據相等關系,正確列出方程.即所列的方程應滿足兩邊的量要相等;方程兩邊的代數式的單位要相同;題中條件應充分利用,不能漏也不能將一個條件重復利用等;
(4)求出所列方程的解;
(5)檢驗后明確地、完整地寫出答案.這里要求的檢驗應是,檢驗所求出的解既能使方程成立,又能使應用題有意義。
例3 (投影)初一2班第一小組同學去蘋果園參加勞動,休息時工人師傅摘蘋果分給同學,若每人3個還剩余9個;若每人5個還有一個人分4個,試問第一小組有多少學生,共摘了多少個蘋果?
(仿照例2的分析方法分析本題,如學生在某處感到困難,教師應做適當點撥.解答過程請一名學生板演,教師巡視,及時糾正學生在書寫本題時可能出現的各種錯誤。并嚴格規范書寫格式。)
解:設第一小組有x個學生,依題意,得
3x+9=5x-(5-4),
解這個方程: 2x=10,
所以 x=5。
其蘋果數為 3× 5+9=24。
答:第一小組有5名同學,共摘蘋果24個。
學生板演后,引導學生探討此題是否可有其他解法,并列出方程。
(設第一小組共摘了x個蘋果,則依題意,得 )
(三)課堂練習
1.買4本練習本與3支鉛筆一共用了1.24元,已知鉛筆每支0.12元,問練習本每本多少元?
2.我國城鄉居民 1988年末的儲蓄存款達到 3 802億元,比 1978年末的儲蓄存款的 18倍還多4億元。求1978年末的儲蓄存款。
3.某工廠女工人占全廠總人數的 35%,男工比女工多 252人,求全廠總人數。
(四)師生共同小結
首先,讓學生回答如下問題:
1.本節課學習了哪些內容?
2.列一元一次方程解應用題的方法和步驟是什么?
3.在運用上述方法和步驟時應注意什么?
依據學生的回答情況,教師總結如下:
(1)代數方法的基本步驟是:全面掌握題意;恰當選擇變數;找出相等關系;布列方程求解;檢驗書寫答案.其中第三步是關鍵;
(2)以上步驟同學應在理解的基礎上記憶。
(五)作業
1.買3千克蘋果,付出10元,找回3角4分。問每千克蘋果多少錢?
2.用76厘米長的鐵絲做一個長方形的教具,要使寬是16厘米,那么長是多少厘米?
3.某廠去年10月份生產電視機20xx臺,這比前年10月產量的2倍還多150臺。這家工廠前年10月生產電視機多少臺?
4.大箱子裝有洗衣粉36千克,把大箱子里的洗衣粉分裝在4個同樣大小的小箱里,裝滿后還剩余2千克洗衣粉.求每個小箱子里裝有洗衣粉多少千克?
5.把1400獎金分給22名得獎者,一等獎每人200元,二等獎每人50元。求得到一等獎與二等獎的人數。
初中數學教案11
平行線的判定(1)
課型:新課: 備課人:韓賀敏 審核人:霍紅超
學習目標
1.經歷觀察、操作、想像、推理、交流等活動,進一步發展推理能力和有條理表達能力.
2.掌握直線平行的條件,領悟歸納和轉化的數學思想
學習重難點:探索并掌握直線平行的條件是本課的重點也是難點.
一、探索直線平行的條件
平行線的判定方法1:
二、練一練1、判斷題
1.兩條直線被第三條直線所截,如果同位角相等,那么內錯角也相等.( )
2.兩條直線被第三條直線所截,如果內錯角互補,那么同旁內角相等.( )
2、填空1.如圖1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或筆________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.
(2)
(3)
2.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
三、選擇題
1.如圖3所示,下列條件中,不能判定AB∥CD的是( )
A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3
2.右圖,由圖和已知條件,下列判斷中正確的是( )
A.由∠1=∠6,得AB∥FG;
B.由∠1+∠2=∠6+∠7,得CE∥EI
C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;
D.由∠5=∠4,得AB∥FG
四、已知直線a、b被直線c所截,且∠1+∠2=180°,試判斷直線a、b的位置關系,并說明理由.
五、作業課本15頁-16頁練習的1、2、3、
5.2.2平行線的判定(2)
課型:新課: 備課人:韓賀敏 審核人:霍紅超
學習目標
1.經歷觀察、操作、想像、推理、交流等活動,進一步發展空
間觀念,推理能力和有條理表達能力.
毛2.分析題意說理過程,能靈活地選用直線平行的方法進行說理.
學習重點:直線平行的條件的應用.
學習難點:選取適當判定直線平行的方法進行說理是重點也是難點.
一、學習過程
平行線的判定方法有幾種?分別是什么?
二.鞏固練習:
1.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
(第1題) (第2題)
2.如圖,一個合格的變形管道ABCD需要AB邊與CD邊平行,若一個拐角∠ABC=72°,則另一個拐角∠BCD=_______時,這個管道符合要求.
二、選擇題.
1.如圖,下列判斷不正確的是( )
A.因為∠1=∠4,所以DE∥AB
B.因為∠2=∠3,所以AB∥EC
C.因為∠5=∠A,所以AB∥DE
D.因為∠ADE+∠BED=180°,所以AD∥BE
2.如圖,直線AB、CD被直線EF所截,使∠1=∠2≠90°,則( )
A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4
三、解答題.
1.你能用一張不規則的紙(比如,如圖1所示的四邊形的紙)折出兩條平行的直線嗎?與同伴說說你的折法.
2.已知,如圖2,點B在AC上,BD⊥BE,∠1+∠C=90°,問射線CF與BD平行嗎?試用兩種方法說明理由.
初中數學教案12
教學目標
1.使學生正確理解的意義,掌握的三要素;
2.使學生學會由上的已知點說出它所表示的數,能將有理數用上的點表示出來;
3.使學生初步理解數形結合的思想方法.
教學重點和難點
重點:初步理解數形結合的思想方法,正確掌握畫法和用上的點表示有理數.
難點:正確理解有理數與上點的對應關系.
課堂教學過程 設計
一、從學生原有認知結構提出問題
1.小學里曾用“射線”上的點來表示數,你能在射線上表示出1和2嗎?
2.用“射線”能不能表示有理數?為什么?
3.你認為把“射線”做怎樣的改動,才能用來表示有理數呢?
待學生回答后,教師指出,這就是我們本節課所要學習的內容——.
二、講授新課
讓學生觀察掛圖——放大的溫度計,同時教師給予語言指導:利用溫度計可以測量溫度,在溫度計上有刻度,刻度上標有讀數,根據溫度計的液面的不同位置就可以讀出不同的數,從而得到所測的溫度.在0上10個刻度,表示10℃;在0下5個刻度,表示-5℃.
與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數,用直線上的點表示正數、負數和零.具體方法如下(邊說邊畫):
1.畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數,也可偏向左邊)用這點表示0(相當于溫度計上的0℃);
2.規定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當于溫度計上0℃以上為正,0℃以下為負);
3.選取適當的長度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…
提問:我們能不能用這條直線表示任何有理數?(可列舉幾個數)
在此基礎上,給出的定義,即規定了原點、正方向和單位長度的直線叫做.
進而提問學生:在上,已知一點P表示數-5,如果上的原點不選在原來位置,而改選在另一位置,那么P對應的數是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢?
通過上述提問,向學生指出:的三要素——原點、正方向和單位長度,缺一不可.
三、運用舉例 變式練習
例1 畫一個,并在上畫出表示下列各數的點:
例2 指出上A,B,C,D,E各點分別表示什么數.
課堂練習
示出來.
2.說出下面上A,B,C,D,O,M各點表示什么數?
最后引導學生得出結論:正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,零用原點表示.
四、小結
指導學生閱讀教材后指出:是非常重要的數學工具,它使數和直線上的點建立了對應關系,它揭示了數和形之間的內在聯系,為我們研究問題提供了新的方法.
本節課要求同學們能掌握的三要素,正確地畫出,在此還要提醒同學們,所有的有理數都可用上的點來表示,但是反過來不成立,即上的點并不是都表示有理數,至于上的哪些點不能表示有理數,這個問題以后再研究.
五、作業
1.在下面上:
(1)分別指出表示-2,3,-4,0,1各數的點.
(2)A,H,D,E,O各點分別表示什么數?
2.在下面上,A,B,C,D各點分別表示什么數?
3.下列各小題先分別畫出,然后在上畫出表示大括號內的一組數的點:
(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};
初中數學教案13
知識技能
會通過“移項”變形求解“ax+b=cx+d”類型的一元一次方程。
數學思考
1.經歷探索具體問題中的數量關系過程,體會一元一次方程是刻畫實際問題的有效數學模型。進一步發展符號意識。
2.通過一元一次方程的學習,體會方程模型思想和化歸思想。
解決問題
能在具體情境中從數學角度和方法解決問題,發展應用意識。
經歷從不同角度尋求分析問題和解決問題的方法的過程,體驗解決問題方法的多樣性。
情感態度
經歷觀察、實驗計算、交流等活動,激發求知欲,體驗探究發現的快樂。
教學重點
建立方程解決實際問題,會通過移項解 “ax+b=cx+d”類型的一元一次方程。
教學難點
分析實際問題中的相等關系,列出方程。
教學過程
活動一 知識回顧
解下列方程:
1. 3x+1=4
2. x-2=3
3. 2x+0.5x=-10
4. 3x-7x=2
提問:解這些方程時,方程的解一般化成什么形式?這些題你采用了那些變形或運算?
教師:前面我們學習了簡單的一元一次方程的解法,下面請大家解下列方程。
出示問題(幻燈片)。
學生:獨立完成,板演2、4題,板演同學講解所用到的變形或運算,共同講評。
教師提問:(略)
教師追問:變形的依據是什么?
學生獨立思考、回答交流。
本次活動中教師關注:
(1)學生能否準確理解運用等式性質和合并同列項求解方程。
(2)學生對解一元一次方程的變形方向(化成x=a的形式)的理解。
通過這個環節,引導學生回顧利用等式性質和合并同類項對方程進行變形,再現等式兩邊同時加上(或減去)同一個數、兩邊同時乘以(除以,不為0)同一個數、合并同類項等運算,為繼續學習做好鋪墊。
活動二 問題探究
問題2:把一些圖書分給某班學生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個班有多少學生?
教師:出示問題(投影片)
提問:在這個問題中,你知道了什么?根據現有經驗你打算怎么做?
(學生嘗試提問)
學生:讀題,審題,獨立思考,討論交流。
1.找出問題中的已知數和已知條件。(獨立回答)
2.設未知數:設這個班有x名學生。
3.列代數式:x參與運算,探索運算關系,表示相關量。(討論、回答、交流)
4.找相等關系:
這批書的總數是一個定值,表示它的兩個等式相等.(學生回答,教師追問)
5.列方程:3x+20=4x-25(1)
總結提問:通過列方程解決實際問題分析時,要經歷那些步驟?書寫時呢?
教師提問1:這個方程與我們前面解過的方程有什么不同?
學生討論后發現:方程的兩邊都有含x的項(3x與4x)和不含字母的常數項(20與-25).
教師提問2:怎樣才能使它向x=a的形式轉化呢?
學生思考、探索:為使方程的右邊沒有含x的項,等號兩邊同減去4x,為使方程的左邊沒有常數項,等號兩邊同減去20.
3x-4x=-25-20(2)
教師提問3:以上變形依據是什么?
學生回答:等式的性質1。
歸納:像上面那樣把等式一邊的某項變號后移到另一邊,叫做移項。
師生共同完成解答過程。
設問4:以上解方程中“移項”起了什么作用?
學生討論、回答,師生共同整理:
通過移項,含未知數的項與常數項分別位于方程左右兩邊,使方程更接近于x=a的形式。
教師提問5:解這個方程,我們經歷了那些步驟?列方程時找了怎樣的相等關系?
學生思考回答。
教師關注:
(1)學生對列方程解決實際問題的一般步驟:設未知數,列代數式,列方程,是否清楚?
在參與觀察、比較、嘗試、交流等數學活動中,體驗探究發現成功的快樂。
活動三 解法運用
例2解方程
3x+7=32-2x
教師:出示問題
提問:解這個方程時,第一步我們先干什么?
學生講解,獨立完成,板演。
提問:“移項”是注意什么?
學生:變號。
教師關注:學生“移項”時是否能夠注意變號。
通過這個例題,掌握“ax+b=cx+d”類型的一元一次方程的解法。體驗“移項”這種變形在解方程中的作用,規范解題步驟。
活動四 鞏固提高
1.第91頁練習(1)(2)
2.某貨運公司要用若干輛汽車運送一批貨物。如果每輛拉6噸,則剩余15噸;如果每輛拉8噸,則差5噸才能將汽車全部裝滿。問運送這批貨物的汽車多少量?
3.小明步行由A地去B地,若每小時走6千米,則比規定時間遲到1小時;若每小時走8千米,則比規定時間早到0.5小時。求A、B兩地之間的距離。
教師按順序出示問題。
學生獨立完成,用實物投影展示部分學而生練習。
教師關注:
1.學生在計算中可能出現的錯誤。
2.x系數為分數時,可用乘的辦法,化系數為1。
3.用實物投影展示學困生的完成情況,進行評價、鼓勵。
鞏固“ax+b=cx+d”類型的一元一次方程的解法,反饋學生對解方程步驟的掌握情況和可能出現的計算錯誤。
2、3題的重點是在新情境中引導學生利用已有經驗解決實際問題,達到鞏固提高的目的。
活動五
提問1:今天我們學習了解方程的那種變形?它有什么作用、應注意什么?
提問2:本節課重點利用了什么相等關系,來列的方程?
教師組織學生就本節課所學知識進行小結。
學生進行總結歸納、回答交流,相互完善補充。
教師關注:學生能否提煉出本節課的重點內容,如果不能,教師則提出具體問題,引導學生思考、交流。
引導學生對本節所學知識進行歸納、總結和梳理,以便于學生掌握和運用。
布置作業:
第93頁第3題
初中數學教案14
一年級學生認知水平處于啟蒙階段,尚未形成完整的知識結構體系。由于學生所特有的年齡特點,學生有意注意力占主要地位,以形象思維為主。從整體上看一年級學生都比較活躍,大多數學生上課基本上能夠跟上教師講課的思路,教師上課組織課堂紀律并不難,而且學生的學習積極性也很容易調動。但每個班都有個別的學生上課不注意聽講,我行我素。
對于他們數學知識和能力掌握情況的分析:
1、對于一年級的數學學習,新生無論在數學知識上還是數學能力上都有所準備。就數的認識來看,新生二十以內的數數非常流利和連貫,可以正數倒數。學生在這方面具有良好的知識準備的原因之一是學生受過這方面的訓練,在幼兒園中大部分學生學習過十以內的加減法,同時在一些家長在家中也進行過輔導,另一方面,數數和十以內數的分解組合學生在生活中有機會使用,因此這方面的準備比較好。
2、在數的計算中,學生對于十以內數的計算較為熟練,這和學生的生活需要、學習需要有關。
3、新生在數感方面的發展是不平衡的數感——學生對數的意義理解有一定困難。通過個別訪談,了解到學生對于蘊涵在實際生活中的數的意義的理解較為準確,例如對于“你的小組中有幾個小朋友,從前往后數,你是第幾個,從后往前數,你是第幾個,第幾個小朋友是誰”這樣的問題,學生的解答沒有問題,都能根據實際情況作出正確的回答,但是對于圖形,學生的理解有一定的困難。這可能是學生對圖形的認識造成了對數的基數序數意義理解的干擾。
4、概括能力和推理能力——普遍學生關注的范圍比較小,角度單一。全冊教材分析
本冊教材一共分為八個單元,本冊教材主要是通過各種各樣的活動對學生進行數感及觀察能力、思維能力、口頭表達能力、學習習慣、合作與交流的能力等方面的培養,讓學生對數學產生濃厚的學習興趣,同時鼓勵學生用自己喜歡的方式去學習自己有用的知識,對學生進行有效地思想品德教育,初步了解一定的學習方法、思考方式。
全冊教學目標
1、熟練地數出數量在20以內的物體的個數,會區分幾個和第幾個,掌握數的順序和大小,掌握10以內各數的組成,會讀、寫0――20各數。
2、初步知道加、減法的含義和加減法算式中各部分部分名稱,初步知道加法和減法的關系,比較熟練地計算一位數的加法和10以內的減法。
3、初步學會根據加、減法的含義和算法解決一些簡單的實際問題。
4、認識符號“=”“<”“>”,會使用這些符號表示數的大小。
5、直觀認識長方體、正方體、圓柱、球、長方形、正方形、三角形和圓。
6、初步了解分類的方法,會進行簡單的分類。
7、初步了解鐘表,會認識整時和半時。
8、體會學習數學的樂趣,提高學習數學的興趣,建立學好數學的信心。
9、認真作業、書寫整潔的良好習慣。
10、通過實踐活動體驗數學與日常生活的密切聯系。
全冊重、難點:
教材重點:在具體的情境中能熟練的認讀、寫、20以內的數,能用數表示物體的個數或事物的位置與順序;建立初步的空間觀念;能按照給定的標準或選擇某個標準對物體進行比較和分類。
教材難點:體會20以內加減法的意義,能熟練的口算20以內的數的加減法;初步形成空間觀念;經歷簡單的數據收集過程,形成初步的統計觀念。教學準備
畫有田字格的小黑板掛圖小棒圓片
多媒體課件視頻展示臺部分實物模型
智能培養
1、培養學生應用數學知識解決問題的能力。
2、培養學生獨立思考與合作交流的能力。
3、培養學生學習數學的良好情感。
4、培養學生學習數學的興趣和良好的學習習慣。
教學思路及措施
1.一年級學生的計算學習要和意義理解與思維訓練相結合。在小學數學課堂教學中要重視計算策略的優化和算理的滲透,同時在計算教學過程中要滲透思維的訓練。
2.數學教學中加強學生的生活經驗的積累和對學習對象的直接感知。學生的生活經驗和已有的知識能力對學生解決問題有著很大的幫助,甚至很多學生都是建立在生活經驗的基礎上進行學習的。因此,一年級的數學教學應該加強學生的實際感知,豐富學生的生活經驗,讓學生在現實情景中把握數的意義和運算的意義,發展數感和符號感。擴大學生的信息貯備,提供有利于學生理解數學、探究數學的生活情景,給學生機會在實際情景中感知、操作、認識數學知識,理解數學,學習數學。
3.空間觀念的培養要把握好度,在具體和抽象的空間觀念的建立,在低段
要緊密和學生的動手操作相聯系,可以通過觀察、接觸(摸、折、剪、拼等)等各種手段來讓學生認識幾何形體,建立空間觀念。同時,要將生活材料數學化,在具體、半抽象、抽象之間建立一座橋梁,發展學生的空間想象能力。
4.在教學中要逐步滲透重要的數學概念和數學思想方法。數學思想方法已經作為數學知識的一部分,教師在教學中要逐步隨著數學知識的學習進行滲透。例如一年級教材中有很多地方可以滲透一一對應思想、函數思想、符號化思想的,要在平時的教學中加以落實。
初中數學教案15
一、指導思想
教育教學工作是一個頭緒眾多的系統工程,在紛繁的頭緒中需要各項工作有序進展,尤為重要的是強化常規,做好細節,教學常規是對學校教學工作的基本要求,落實教學常規是學校教學工作得以正常有序開展的根本保證。只有搞好教學常規才有可能獲得成功的教育。教師教學水平的高低體現于教學各個步驟的細節中,空洞地談教學能力是蒼白的,只有用教師的備課情況、講課細節、作業批改情況。教學常規培養著教師的基本功,決定著教師的教學能力,可以說教師的教學水平就是在這些常規細節中培養起來。
二、檢查反饋
本次檢查大多數教師都比較重視,檢查內容完整、全面。現將檢查情況總結如下教案方面的特點與不足。
特點:
1、絕大多數教案設計完整,教學重點、難點突出,設置得當,緊緊圍繞新課標,例如:劉興華、孫菊、江文等能突出對學科素養的高度關注。教師撰寫的課后反思能體現教師對教材處理的新方法,能側重對自己教法和學生學法的指導,并且還能對自己不得法的教學手段、方式、方法進行深刻地解剖,能很好地體現課堂教學的反思意識,反思深刻、務實、有針對性。
2、教學環節齊全,注重引語與小結,使教學設計前后呼應,環節完整。
3、注重選擇恰當的教學方法,注重在靈活多樣的教學方法中培養學生的合作意識和創新精神。
4、教案能體現多媒體教學手段,注重培養學生的探究精神和創新能力。
不足:
1、教案后的教學反思不夠認真、不夠詳細,沒能對本堂課的得與失作出記錄與小結,從中也可以看出我們對課后反思還不夠重視。
2、個別教師教案過于簡單。
作業方面的特點與不足
特點:
1、能按進度布置作業,作業設置量度適中,難易適中,上交率較高,且都能做到全批全改。
2、作業批改公平、公正,有一定的等級評定。教師批改要求嚴格、細致,能夠反映學生作業中的錯誤做法及糾正措施。
不足:
1、對于學生書寫的工整性,還需加強教育。
2、教師在批閱作業時,要稍細心些,發現問題就讓學生當時改正,學生也就會逐漸養成做事認真的習慣。
【初中數學教案】相關文章:
初中數學教案模板08-05
初中數學教案(精選15篇)06-06
青島版初中數學教案范文04-11
初中數學教案教學計劃04-30
北京市初中數學教案12-06
初中數學教案(通用9篇)06-01
北師大初中數學教案04-16
坐標軸的平移初中數學教案06-18
初中平均數的數學教案06-23