《勾股定理》的說課稿范文
作為一名教學(xué)工作者,就有可能用到說課稿,說課稿可以幫助我們提高教學(xué)效果。那么應(yīng)當(dāng)如何寫說課稿呢?下面是小編為大家收集的《勾股定理》的說課稿范文,歡迎大家分享。
《勾股定理》的說課稿范文1
一、教材分析
勾股定理就是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它就是直角三角形的一條非常重要的性質(zhì),就是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計算問題,就是解直角三角形的主要根據(jù)之一,在實際生活中用途很大。教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學(xué)生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)行運用。
據(jù)此,制定教學(xué)目標(biāo)如下:
1、理解并掌握勾股定理及其證明。
2、能夠靈活地運用勾股定理及其計算。
3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。
4、通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。
教學(xué)重點:勾股定理的證明和應(yīng)用。
教學(xué)難點:勾股定理的證明。
二、教法和學(xué)法
教法和學(xué)法就是體現(xiàn)在整個教學(xué)過程中的,本課的教法和學(xué)法體現(xiàn)如下特點:
1、以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動,讓學(xué)生主動參與學(xué)習(xí)全過程。
2、切實體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動手操作能力,以及分析問題和解決問題的能力。
3、通過演示實物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。
三、教學(xué)程序
本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動手、動腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計如下:
(一)創(chuàng)設(shè)情境以古引新
1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾就是3,股就是4,那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。
2、就是不就是所有的直角三角形都有這個性質(zhì)呢?教師要善于激疑,使學(xué)生進(jìn)入樂學(xué)狀態(tài)。
3、板書課題,出示學(xué)習(xí)目標(biāo)。
(二)初步感知理解教材
教師指導(dǎo)學(xué)生自學(xué)教材,通過自學(xué)感悟理解新知,體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識,鍛煉學(xué)生主動探究知識,養(yǎng)成良好的自學(xué)習(xí)慣。
(三)質(zhì)疑解難討論歸納
1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學(xué)生通過自學(xué),中等以上的學(xué)生基本掌握,這時能激發(fā)學(xué)生的表現(xiàn)欲。
2、教師引導(dǎo)學(xué)生按照要求進(jìn)行拼圖,觀察并分析;
(1)這兩個圖形有什么特點?
(2)你能寫出這兩個圖形的面積嗎?
(3)如何運用勾股定理?就是否還有其他形式?
這時教師組織學(xué)生分組討論,調(diào)動全體學(xué)生的積極性,達(dá)到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進(jìn)行富有啟發(fā)性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。
(四)鞏固練習(xí)強化提高
1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動靜結(jié)合,以免引起學(xué)生的疲勞。
2、出示例1學(xué)生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現(xiàn)鞏固練習(xí),進(jìn)一步提高學(xué)生運用知識的能力,對練習(xí)中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點。
(五)歸納總結(jié)練習(xí)反饋
引導(dǎo)學(xué)生對知識要點進(jìn)行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨立完成。
本課意在創(chuàng)設(shè)愉悅和諧的樂學(xué)氣氛,優(yōu)化教學(xué)手段,借助電教手段提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強師生間的合作,營造一種學(xué)生敢想、感說、感問的課堂氣氛,讓全體學(xué)生都能生動活潑、積極主動地教學(xué)活動,在學(xué)習(xí)中創(chuàng)新精神和實踐能力得到培養(yǎng)。
《勾股定理》的說課稿范文2
一、說教材分析
1.教材的地位和作用
華師大版八年級上直角三角形三邊關(guān)系是學(xué)生在學(xué)習(xí)數(shù)的開方和整式的乘除后的一段內(nèi)容,它是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它揭示了一個直角三角形三條邊之間的數(shù)量關(guān)系,為后面解直角三角形的作好鋪墊,它也是幾何中最重要的定理,它將形和數(shù)密切聯(lián)系起來,在數(shù)學(xué)的發(fā)展中起著重要的作用。
因此他的.教育教學(xué)價值就具體體現(xiàn)在如下三維目標(biāo)中:
知識與技能:
1、經(jīng)歷勾股定理的探索過程,體會數(shù)形結(jié)合思想。
2、理解直角三角形三邊的關(guān)系,會應(yīng)用勾股定理解決一些簡單的實際問題。
過程與方法:
1、經(jīng)歷觀察—猜想—歸納—驗證等一系列過程,體會數(shù)學(xué)定理發(fā)現(xiàn)的過程,由特殊到一般的解決問題的方法。
2、在觀察、猜想、歸納、驗證等過程中培養(yǎng)學(xué)生的數(shù)學(xué)語言表達(dá)能力和初步的邏輯推理能力。
情感、態(tài)度與價值觀:
1、通過對勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣。
2、在探究活動中,體驗解決問題方法的多樣性,培養(yǎng)學(xué)生的合作意識和然所精神。
3、讓學(xué)生通過動手實踐,增強探究和創(chuàng)新意識,體驗研究過程,學(xué)習(xí)研究方法,逐步養(yǎng)成一種積極的生動的,自助合作探究的學(xué)習(xí)方式。
由于八年級的學(xué)生具有一定分析能力,但活動經(jīng)驗不足,所以
本節(jié)課教學(xué)重點:勾股定理的探索過程,并掌握和運用它。
教學(xué)難點:分割,補全法證面積相等,探索勾股定理。
二、說教法學(xué)法分析:
要上好一堂課,就是要把所確定的三維目標(biāo)有機地溶入到教學(xué)過程中去,所以我采用了“引導(dǎo)探究式”的教學(xué)方法:
先從學(xué)生熟知的生活實例出發(fā),以生活實踐為依托,將生活圖形數(shù)學(xué)化,然后由特殊到一般地提出問題,引導(dǎo)學(xué)生在自主探究與合作交流中解決問題,同時也真正體現(xiàn)了數(shù)學(xué)課堂是學(xué)生自己的課堂。
學(xué)法:我想通過“操作+思考”這樣方式,有效地讓學(xué)生在動手、動腦、自主探究與合作交流中來發(fā)現(xiàn)新知,同時讓學(xué)生感悟到:學(xué)習(xí)任何知識的最好方法就是自己去探究。
三、說教學(xué)程序設(shè)計
1、故事引入新課,激起學(xué)生學(xué)習(xí)興趣。
牛頓,瓦特的故事,讓學(xué)生科學(xué)家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來。畢達(dá)哥拉斯的發(fā)現(xiàn)引入新課。
2、探索新知
在這里我設(shè)計了四個內(nèi)容:
①探索等腰直角三角形三邊的關(guān)系
②邊長為3、4、5為邊長的直角三角形的三邊關(guān)系
③學(xué)生畫兩直角邊為2,6的直角三角形,探索三邊的關(guān)系
④三邊為a、b、c的直角三角形的三邊的關(guān)系,(證明)
⑤勾股定理歷史介紹,讓學(xué)生體會勾股定理的文化價值。
體現(xiàn)從特殊到一般的發(fā)現(xiàn)問題的過程。
3、新知運用:
①舉出勾股定理在生活中的運用。(老師講解勾股定理在生活中的運用)
②在直角三角形中,已知∠B=90°,AB=6,BC=8,求AC.
③要做一個人字梯,要求人字梯的跨度為6米,高為4米,請問怎么做?
④如圖,學(xué)校有一塊長方形花鋪,有極少數(shù)人為了避開拐角走“捷徑”,在花鋪內(nèi)走出了一條“路”.他們僅僅少走了步路(假設(shè)2步為1米),卻踩傷了花草.
4、小結(jié)本課:
學(xué)完了這節(jié)課,你有什么收獲?
老師補充:科學(xué)家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來。數(shù)學(xué)來源于實踐,而又應(yīng)用于實踐。解決一個問題的方法是多樣性的,我們要多思考。勾股定是數(shù)學(xué)史上的明珠,證明方法有很多種,我們將在下一節(jié)課學(xué)習(xí)它。
反思:
教學(xué)設(shè)計主要是體現(xiàn)從特殊到一般的知識形成過程,探索問題的設(shè)計上有點難,第二個問題應(yīng)加個3,3為直角邊的等腰直角三角形讓學(xué)生分割或者補全,這樣過度,降低3,4為直角邊的探索探索;在2,6為直角邊時,這個問題可以不用設(shè)計進(jìn)去,就為后面的練習(xí)留足時間。探索時間較長,整個課程推行進(jìn)度較慢,練習(xí)較少。
對學(xué)生的啟發(fā)不夠,對學(xué)生的關(guān)注不夠,學(xué)生對問題的思考不能及時想出來,沒有及時很好的引導(dǎo),啟發(fā),應(yīng)讓學(xué)生多一些思考的空間,并及時交給思考的方法。學(xué)生反應(yīng)不是太好,能力差,也或許是因為問題設(shè)計的較難,沒有很好的體現(xiàn)出探究。
預(yù)期的目標(biāo)沒有很好的達(dá)成,學(xué)生雖然掌握了勾股定理,但探索熱情沒有點燃,思維能力,動手能力,探索精神沒有很好的得到發(fā)展。
《勾股定理》的說課稿范文3
本節(jié)課設(shè)計力求讓學(xué)生參與知識的發(fā)現(xiàn)過程,體現(xiàn)以學(xué)生為主體,以促進(jìn)學(xué)生發(fā)展為本的教學(xué)理念,變知識的傳授者為學(xué)生自主探求知識的引導(dǎo)者、指導(dǎo)者、合作者。并利用多媒體,直觀教具演示,營造一個聲像同步,能動能靜的教學(xué)情境,給學(xué)生提供一個探索的空間,促使學(xué)生主動參與,親身體驗勾股定理的探索證明過程,從而鍛煉思維、激發(fā)創(chuàng)造,優(yōu)化課堂教學(xué)。努力做到有傳統(tǒng)的教學(xué)課堂像實驗課堂轉(zhuǎn)變,使學(xué)生真正成為學(xué)習(xí)的主人,培養(yǎng)了學(xué)生的素質(zhì)能力,達(dá)到了良好的教學(xué)效果。
(一)創(chuàng)設(shè)情境,引入新課
課前首先讓學(xué)生閱讀趙爽的弦圖相關(guān)知識讓他們體會中國古代科學(xué)的發(fā)達(dá)。在課堂上緊密結(jié)合前面已學(xué)的知識進(jìn)行導(dǎo)入。如提出問題:你見過這個圖案嗎?你聽說過勾股定理嗎?你還記得三角形的三邊遵循什么規(guī)律嗎?等等一系列的問題激起學(xué)生學(xué)生的熱情和求知欲,然后順利進(jìn)入探究。本節(jié)我們就來學(xué)習(xí)一下直角三角形的三條邊除具備前面的性質(zhì)外還有什么新的特征。
(二)引導(dǎo)學(xué)生,探究新知
①初步感知定理:這一環(huán)節(jié)我選擇了教材的圖片,講述畢達(dá)哥拉斯到朋友家做客時發(fā)現(xiàn)用磚鋪成的地面,其中含有直角三角形三邊的數(shù)量關(guān)系,創(chuàng)設(shè)感知情境,提出問題,現(xiàn)在請同學(xué)觀察,看看有什么發(fā)現(xiàn)?(學(xué)案出示)使問題更形象、具體。
②提出猜想:在活動1的基礎(chǔ)上,學(xué)生已發(fā)現(xiàn)一些規(guī)律,進(jìn)一步通過活動2進(jìn)行看一看、填一填、想一想、議一議、做一做,讓學(xué)生感受不只是等腰直角三角形才具有這樣的性質(zhì),學(xué)生再由淺到深,由特殊到一般的提出問題,啟發(fā)學(xué)生得出猜想,直角三角形的兩直角邊的平分和等于斜邊的平方。
③證明猜想:是不是所有的直角三角形都有這樣的特點呢?這就需要我們對一個一般的直角三角形進(jìn)行證明:通過活動3我充分引導(dǎo)學(xué)生利用直觀教具,進(jìn)行拼圖實驗,在動手操中放手讓學(xué)生思考、討論、合作、交流、探究問題的多種方法。,并對學(xué)生的做法給予表揚,使學(xué)生在學(xué)習(xí)過程中,感受到自我創(chuàng)造的快樂,從而分散了教學(xué)難點,發(fā)現(xiàn)了利用面積相等去證明勾股定理的方法。
④總結(jié)定理:讓學(xué)生自己總結(jié),不完善之處由教師補充,在前面探究活動的基礎(chǔ)上,學(xué)生容易得出直角三角形的三邊數(shù)量關(guān)系即勾股定理。
(三)反饋訓(xùn)練,鞏固新知
學(xué)生對所學(xué)的知識是否掌握了,達(dá)到了什么程度?為了檢測學(xué)生對本課的達(dá)成情況和加強對學(xué)生能力的培養(yǎng),我設(shè)計了一組坡有難度的練習(xí)題。
(四)歸納總結(jié),深化新知
本節(jié)課你有哪些收獲?你最感興趣的地方是什么?你想進(jìn)一步研究的問題是什么?……
通過小結(jié),使學(xué)生進(jìn)一步明確掌握教學(xué)目標(biāo),使知識成為體系。
(五)布置作業(yè)。拓展新知
讓學(xué)生收集有關(guān)勾股定理的證明方法,下節(jié)課展示、交流。使本節(jié)知識得到拓展、延伸,培養(yǎng)了學(xué)生能力和思維的深刻性,讓學(xué)生感受數(shù)學(xué)深厚的文化底蘊。
《勾股定理》的說課稿范文4
一、教學(xué)背景分析
1、教材分析
本節(jié)課是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,通過20xx年國際數(shù)學(xué)家大會的會徽圖案,引入勾股定理,進(jìn)而探索直角三角形三邊的數(shù)量關(guān)系,并應(yīng)用它解決問題。學(xué)好本節(jié)不僅為下節(jié)勾股定理的逆定理打下良好基礎(chǔ),而且為今后學(xué)習(xí)解直角三角形奠定基礎(chǔ),在實際生活中用途很大。勾股定理是直角三角形的一條非常重要的性質(zhì),是幾何中一個非常重要的定理,它揭示了直角三角形三邊之間的數(shù)量關(guān)系,將數(shù)與形密切地聯(lián)系起來,它有著豐富的歷史背景,在理論上占有重要的地位。
2、學(xué)情分析
通過前面的學(xué)習(xí),學(xué)生已具備一些平面幾何的知識,能夠進(jìn)行一般的推理和論證,但如何通過拼圖來證明勾股定理,學(xué)生對這種解決問題的途徑還比較陌生,存在一定的難度,因此,我采用直觀教具、多媒體等手段,讓學(xué)生動手、動口、動腦,化難為易,深入淺出,讓學(xué)生感受學(xué)習(xí)知識的樂趣。
3、教學(xué)目標(biāo):
根據(jù)八年級學(xué)生的認(rèn)知水平,依據(jù)新課程標(biāo)準(zhǔn)和教學(xué)大綱的要求,我制定了如下的教學(xué)目標(biāo):
知識與能力目標(biāo):了解勾股定理的發(fā)現(xiàn)過程,掌握勾股定理的內(nèi)容,會用面積法證明勾股定理;培養(yǎng)在實際生活中發(fā)現(xiàn)問題總結(jié)規(guī)律的意識和能力.
過程與方法目標(biāo):通過創(chuàng)設(shè)情境,導(dǎo)入新課,引導(dǎo)學(xué)生探索勾股定理,并應(yīng)用它解決問題,運用了觀察、演示、實驗、操作等方法學(xué)習(xí)新知。
情感態(tài)度價值觀目標(biāo):感受數(shù)學(xué)文化,激發(fā)學(xué)生學(xué)習(xí)的熱情,體驗合作學(xué)習(xí)成功的喜悅,滲透數(shù)形結(jié)合的思想。
4、教學(xué)重點、難點
通過分析可見,勾股定理是平面幾何的重要定理,有著承上啟下的作用,在今后的生活實踐中有著廣泛應(yīng)用。因此我確定本課的教學(xué)
重難點為探索和證明勾股定理.
二、教材處理
根據(jù)學(xué)生情況,為有效培養(yǎng)學(xué)生能力,在教學(xué)過程中,以創(chuàng)設(shè)問題情境為先導(dǎo),運用直觀教具、多媒體等手段,激發(fā)學(xué)生學(xué)習(xí)興趣,調(diào)動學(xué)生學(xué)習(xí)積極性,并開展以探究活動為主的教學(xué)模式,邊設(shè)疑,邊講解,邊操作,邊討論,啟發(fā)學(xué)生提出問題,分析問題,進(jìn)而解決問題,以達(dá)到突出重點,攻破難點的目的。
三、教學(xué)策略
1、教法
“教必有法,而教無定法”,只有方法恰當(dāng),才會有效。根據(jù)本課內(nèi)容特點和八年級學(xué)生思維活動特點,我采用了引導(dǎo)發(fā)現(xiàn)教學(xué)法,合作探究教學(xué)法,逐步滲透教學(xué)法和師生共研相結(jié)合的方法。
2、學(xué)法
“授人以魚,不如授人以漁”,通過設(shè)計問題序列,引導(dǎo)學(xué)生主動探究新知,合作交流,體現(xiàn)學(xué)習(xí)的自主性,從不同層次發(fā)掘不同學(xué)生的不同能力,從而達(dá)到發(fā)展學(xué)生思維能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。
3、教學(xué)模式
根據(jù)新課標(biāo)要求,要積極倡導(dǎo)自主、合作、探究的學(xué)習(xí)方式,我采用了創(chuàng)設(shè)情境——探究新知——反饋訓(xùn)練的教學(xué)模式,使學(xué)生獲取知識,提高素質(zhì)能力。
四、教學(xué)過程
(一)創(chuàng)設(shè)情境,引入新課
利用多媒體課件,給學(xué)生出示20xx年國際數(shù)學(xué)家大會的場面,通過觀察會徽圖案,提出問題:你見過這個圖案嗎?你聽說過勾股定理嗎?從現(xiàn)實生活中提出趙爽弦圖,激發(fā)學(xué)生學(xué)習(xí)的熱情和求知欲,同時為探索勾股定理提供背景材料,進(jìn)而引出課題。
(二)引導(dǎo)學(xué)生,探究新知
1、初步感知定理:這一環(huán)節(jié)選擇教材的圖片,講述畢達(dá)哥拉斯到朋友家做客時發(fā)現(xiàn)用磚鋪成的地面,其中含有直角三角形三邊的數(shù)量關(guān)系,創(chuàng)設(shè)感知情境,提出問題:現(xiàn)在也請你觀察,看看有什么發(fā)現(xiàn)?教師配合演示,使問題更形象、具體。適當(dāng)補充等腰直角三角形邊長為1、2時,所形成的規(guī)律,使學(xué)生再次感知發(fā)現(xiàn)的規(guī)律。
2、提出猜想:在活動1的基礎(chǔ)上,學(xué)生已發(fā)現(xiàn)一些規(guī)律,進(jìn)一步通過活動2進(jìn)行看一看,想一想,做一做,讓學(xué)生感受不只是等腰直角三角形才具有這樣的性質(zhì),使學(xué)生由淺到深,由特殊到一般的提出問題,啟發(fā)學(xué)生得出猜想,直角三角形的兩直角邊的平方和等于斜邊的平方。
3、證明猜想:是不是所有的直角三角形都有這樣的特點呢?這就需要我們對一個一般的直角三角形進(jìn)行證明.通過活動3,充分引導(dǎo)學(xué)生利用直觀教具,進(jìn)行拼圖實驗,在動手操作中放手讓學(xué)生思考、討論、合作、交流,探究解決問題的多種方法,鼓勵創(chuàng)新,小組競賽,引入競爭,教師參與討論,與學(xué)生交流,獲取信息,從而有針對性地引導(dǎo)學(xué)生進(jìn)行證法的探究,使學(xué)生創(chuàng)造性地得出拼圖的多種方法,并使學(xué)生在學(xué)習(xí)的過程中,感受到自我創(chuàng)造的快樂,從而分散了教學(xué)難點,發(fā)現(xiàn)了利用面積相等去證明勾股定理的方法。培養(yǎng)了學(xué)生的發(fā)散思維、一題多解和探究數(shù)學(xué)問題的能力。
4、總結(jié)定理:讓學(xué)生自己總結(jié)定理,不完善之處由教師補充。在前面探究活動的基礎(chǔ)上,學(xué)生很容易得出直角三角形的三邊數(shù)量關(guān)系即勾股定理,培養(yǎng)了學(xué)生的語言表達(dá)能力和歸納概括能力。
(三)反饋訓(xùn)練,鞏固新知
學(xué)生對所學(xué)的知識是否掌握了,達(dá)到了什么程度?為了檢測學(xué)生對本課目標(biāo)的達(dá)成情況和加強對學(xué)生能力的培養(yǎng),設(shè)計一組有坡度的練習(xí)題:A組動腦筋,想一想,是本節(jié)基礎(chǔ)知識的理解和直接應(yīng)用;B組求陰影部分的面積,建立了新舊知識的聯(lián)系,培養(yǎng)學(xué)生綜合運用知識的能力。C組議一議,是一道實際應(yīng)用題型,給學(xué)生施展才智的機會,讓學(xué)生獨立思考后,討論交流得出解決問題的方法,增強了數(shù)學(xué)來源于實踐,反過來又作用于實踐的應(yīng)用意識,達(dá)到了學(xué)以致用的目的。
(四)歸納小結(jié),深化新知
本節(jié)課你有哪些收獲?你最感興趣的地方是什么?你想進(jìn)一步研究的的問題是什么?通過小結(jié),使學(xué)生進(jìn)一步明確掌握教學(xué)目標(biāo),使知識成為體系。
(五)布置作業(yè),拓展新知
讓學(xué)生收集有關(guān)勾股定理的證明方法,下節(jié)課展示、交流.使本節(jié)知識得到拓展、延伸,培養(yǎng)了學(xué)生能力和思維的深刻性,讓學(xué)生感受數(shù)學(xué)深厚的文化底蘊。
(六)板書設(shè)計,明確新知
本節(jié)課的板書設(shè)計分為三塊:一塊是拼圖方法,一塊是勾股定理;一塊是例題解析。它突出了重點,層次清楚,便于學(xué)生掌握,為獲得知識服務(wù)。
【《勾股定理》的說課稿范文】相關(guān)文章:
勾股定理說課稿范文7篇02-04
《探索勾股定理》的說課稿11-30
勾股定理的逆定理說課稿12-04
勾股定理說課稿15篇02-04
勾股定理的逆定理說課稿4篇12-04
華師大版八年級數(shù)學(xué) 勾股定理說課稿11-08
《勾股定理逆定理》的優(yōu)秀教學(xué)反思(精選5篇)12-28
《范仲淹的故事》說課稿范文12-08
《冰花》說課稿范文01-15
《離騷》說課稿范文12-09