高中數學說課稿模板匯編6篇
在教學工作者實際的教學活動中,就有可能用到說課稿,說課稿有助于教學取得成功、提高教學質量。說課稿要怎么寫呢?以下是小編幫大家整理的高中數學說課稿6篇,歡迎大家借鑒與參考,希望對大家有所幫助。
高中數學說課稿 篇1
數學:人教A版必修3第二章第三節《變量之間的相關關系》說課稿各位老師:
大家好!我叫***,來自**。我說課的題目是《變量之間的相關關系》,內容選自于高中教材新課程人教A版必修3第二章第三節,課時安排為三個課時,本節課內容為第一課時。下面我將從教材分析、教學目標分析、教學方法與手段分析、教學過程分析四大方面來闡述我對這節課的分析和設計:
一、教材分析
1.教材所處的地位和作用
本章我們所要學習的主要內容就是統計,在前面的章節中我們已經對統計的相關知識作了大致的了解。本節課我們要繼續探討的是變量之間的相關關系,它為接下來要學習的兩個變量的線性相關打下基礎。這是一個與現實實際生活聯系很緊密的知識,在教師的引導下,可使學生認識到在現實世界中存在不能用函數模型描述的變量關系,從而體會研究變量之間的相關關系的重要性.
2.教學的重點和難點
重點:①通過收集現實問題中兩個有關聯變量的數據直觀認識變量間的相關關系;
②利用散點圖直觀認識兩個變量之間的線性關系;
難點:①變量之間相關關系的理解;②作散點圖和理解兩個變量的正相關和負相關
二、教學目標分析
1.知識與技能目標
通過收集現實問題中兩個有關聯變量的數據認識變量間的相關關系
2、過程與方法目標:
明確事物間的相互聯系.認識現實生活中變量間除了存在確定的關系外,仍存在大量的非確定性的相關關系,并利用散點圖直觀體會這種相關關系.
3、情感態度與價值觀目標:
通過對事物之間相關關系的了解,讓學生們認識到現實中任何事物都是相互聯系的辯證法思想。
三、教學方法與手段分析
1.教學方法:結合本節課的教學內容和學生的認知水平,在教法上,我采用“問答探究”式的教學方法,層層深入。充分發揮教師的主導作用,讓學生真正成為教學活動的主體。
2。教學手段:通過多媒體輔助教學,充分調動學生參與課堂教學的主動性與積極性。
四、教學過程分析
㈠問題引出:
請同學們如實填寫下表(在空格中打“√”)
然后回答如下問題:①“你的數學成績對你的物理成績有無影響?”②“如果你的數學成績好,那么你的物理成績也不會太差,如果你的數學成績差,那么你的物理成績也不會太好。”對你來說,是這樣嗎?同意這種說法的同學請舉手。
根據同學們回答的結果,讓學生討論:我們可以發現自己的數學成績和物理成績存在某種關系。(似乎就是數學好的,物理也好;數學差的,物理也差,但又不全對。)教師總結如下:
物理成績和數學成績是兩個變量,從經驗看,由于物理學習要用到比較多的數學知識和數學方法。數學成績的高低對物理成績的高低是有一定影響的。但決非唯一因素,還
有其它因素,如圖所示(幻燈片給出):
因此,不能通過一個人的數學成績是多少就準確地斷定他的物理成績能達到多少。但這兩個變量是有一定關系的,它們之間是一種不確定性的關系。如何通過數學成績的結果對物理成績進行合理估計有非常重要的現實意義。
「設計意圖」通過對身邊事例的分析,引出我們今天將要學習的主要內容,由此可以激起學
生們的學習興趣,為接下來的學習打下良好的基礎。
㈡探究新知
⒈概念形成
教師提問:“像剛才這種情況在現實生活中是否還有?”學生們思考之后,請幾位同學就提出的問題作出回答。老師就舉出的例子,引導學生作出分析,然后由老師總結得出相關關系的概念。[兩個變量之間的關系可能是確定的關系(如:函數關系),或非確定性關系。當自變量取值一定時,因變量也確定,則為確定關系;當自變量取值一定時,因變量帶有隨機性,這種變量之間的關系稱為相關關系。相關關系是一種非確定性關系。]
「設計意圖」從現實生活入手,抓住學生們的注意力,引導學生分析得出概念,讓學生真正參與到概念的形成過程中來。
⒉探究線性相關關系和其他相關關系
「課件展示」
例1在一次對人體脂肪和年齡關系的研究中,研究人員獲得了一組樣本數據:
問題:針對于上述數據所提供的信息,你認為人體的脂肪含量與年齡之間有怎樣的關系?
[教師特別向學生強調在研究兩個變量之間是否存在某種關系時,必須從散點圖入手(向學生介紹什么是散點圖)。并且引導學生從散點圖上可以得出如下規律:(幻燈片給出)
①如果所有的樣本點都落在某一函數曲線上,那么變量之間具有函數關系(確定性關系);②如果所有的樣本點都落在某一函數曲線的附近,那么變量之間具有相關關系(不確定性關系);③如果所有的樣本點都落在某一直線附近,那么變量之間具有線性相關關系(不確定性關系)。
「設計意圖」通過對這個典型事例的分析,向學生們介紹什么是散點圖,并總結出如何從散點圖上判斷變量之間關系的規律。
下面我們用TI圖形計算器作出這兩個變量的散點圖。
學生實驗:先把數據中成對出現的兩個數分別作為橫坐標、縱坐標,把數據輸入到表格當中(第一列橫坐標、第二列縱坐標);然后,用TI圖形計算器作散點圖:
[引導學生觀察作出的散點圖,體會現實生活中兩個變量之間的關系存在著不確定性。散點圖中的散點并不在一條直線上,只是分布在一條直線的周圍,即為線性相關關系。]
「設計意圖」通過實驗讓學生們感受散點圖的主要形成過程,并由此引出線性相關關系。為后面回歸直線和回歸直線方程的學習做好鋪墊。
「課件展示」四組數據,請學生作出散點圖,并觀察每組數據的特點。
根據四組數據,學生作出四個散點圖。
通過學生討論、交流、用TI圖形計算器展示、對比自己作出的散點圖,我們引出線性相關關系,正負相關關系的概念。
「設計意圖」及時鞏固知識,學生通過親自動手作散點圖,并交流討論,進一步加深對散點圖的理解,并由此引出正負相關關系的概念,突破難點。
㈢例題講解,深化認識
「課件展示」
例2一般說來,一個人的身高越高,他的人就越大,相應地,他的右手一拃長就越長,因此,人的身高與右手一拃長之間存在著一定的關系。為了對這個問題進行調查,我們收集了北京市某中學20xx年高三年級96名學生的身高與右手一拃長的數據如下表。
(1)根據上表中的數據,制成散點圖。你能從散點圖中發現身高與右手一拃長之間的近似關系嗎?
(2)如果近似成線性關系,請畫出一條直線來近似地表示這種線性關系。
(3)如果一個學生的身高是188cm,你能估計他的一拃大概有多長嗎?
「設計意圖」這個例子很容易激起學生們的學習興趣,由此可達到更好的教學效果。通過對這道題的解答,使對前面知識的認識更加牢固。
㈣反思小結、培養能力
⑴變量間相關關系、線性關系和正負相關關系
⑵如何做散點圖
「設計意圖」小節是一堂課的概括和總結,有利于優化學生的認知結構,把課堂教學傳授的知識較快轉化為學生的素質,也更進一步培養學生的歸納概括能力
㈤課后作業,自主學習
習題2.31、2
[設計意圖]課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度,并促使學生進一步鞏固和掌握所學內容。
高中數學說課稿 篇2
各位老師你們好!今天我要為大家講的課題是
首先,我對本節教材進行一些分析:
一、教材分析(說教材):
1. 教材所處的地位和作用:
本節內容在全書和章節中的作用是:《 》是 中數學教材第 冊第 章第 節內容。在此之前學生已學習了 基礎,這為過渡到本節的學習起著鋪墊作用。本節內容是在 中,占據 的地位。以及為其他學科和今后的學習打下基礎。
2. 教育教學目標:
根據上述教材分析,考慮到學生已有的認知結構心理特征,制定如下教學目標:
(1)知識目標: (2)能力目標:通過教學初步培養學生分析問題,解決實際問題,讀圖分析,收集處理信息,團結協作,語言表達能力以及通過師生雙邊活動,初步培養學生運用知識的能力,培養學生加強理論聯系實際的能力,(3)情感目標:通過 的教學引導學生從現實的生活經歷與體驗出發,激發學生學習興趣。
3. 重點,難點以及確定依據:
本著課程標準,在吃透教材基礎上,我確立了如下的教學重點、難點
重點: 通過 突出重點
難點: 通過 突破難點
關鍵:
下面,為了講清重難上點,使學生能達到本節課設定的目標,再從教法和學法上談談:
二、教學策略(說教法)
1. 教學手段:
如何突出重點,突破難點,從而實現教學目標。在教學過程中擬計劃進行如下操作:教學方法。基于本節課的特點: 應著重采用 的教學方法。
2. 教學方法及其理論依據:堅持“以學生為主體,以教師為主導”的原則,根據學生的心理發展規律,采用學生參與程度高的學導式討論教學法。在學生看書,討論的基礎上,在老師啟發引導下,運用問題解決式教法,師生交談法,圖像信號法,問答式,課堂討論法。在采用問答法時,特別注重不同難度的問題,提問不同層次的學生,面向全體,使基礎差的學生也能有表現機會,培養其自信心,激發其學習熱情。有效的開發各層次學生的潛在智能,力求使學生能在原有的基礎上得到發展。同時通過課堂練習和課后作業,啟發學生從書本知識回到社會實踐。提供給學生與其生活和周圍世界密切相關的數學知識,學習基礎性的知識和技能,在教學中積極培養學生學習興趣和動機,明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發來自學生主體的最有力的動力。
3. 學情分析:(說學法)
我們常說:“現代的文盲不是不識字的人,而是沒有掌握學習方法的人”,因而在教學中要特別重視學法的指導。
(1) 學生特點分析:中學生心理學研究指出,高中階段是(查同中學生心發展情況)抓住學
生特點,積極采用形象生動,形式多樣的教學方法和學生廣泛的積極主動參與的學習方式,定能激發學生興趣,有效地培養學生能力,促進學生個性發展。生理上表少年好動,注意力易分散
(2) 知識障礙上:知識掌握上,學生原有的知識 ,許多學生出現知識遺忘,所以應全面系統的去講述;學生學習本節課的知識障礙, 知識 學生不易理解,所以教學中老師應予以簡單明白,深入淺出的分析。
(3) 動機和興趣上:明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發來自學生主體的最有力的動力
最后我來具體談談這一堂課的教學過程:
4. 教學程序及設想:
(1)由 引入:把教學內容轉化為具有潛在意義的問題,讓學生產生強烈的問題意識,使學生的整個學習過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實際情況下學習可以使學生利用已有的知識與經驗,同化和索引出當肖學習的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問題情境中。
(2)由實例得出本課新的知識點
(3)講解例題。在講例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規律進行概括,有利于學生的思維能力。
(4)能力訓練。課后練習使學生能鞏固羨慕自覺運用所學知識與解題思想方法。
(5)總結結論,強化認識。知識性的內容小結,可把課堂教學傳授的知識盡快化為學生的素質,數學思想方法的小結,可使學生更深刻地理解數學思想方法在解題中的地位和應用,并且逐步培養學生良好的個性品質目標。
(6)變式延伸,進行重構,重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯,累積,加工,從而達到舉一反三的效果。
(7)板書
(8)布置作業。 針對學生素質的差異進行分層訓練,既使學生掌握基礎知識,又使學有余力的學生有所提高,
教學程序:
課堂結構:復習提問,導入講授課,課堂練習,鞏固新課,布置作業等五部分
高中數學說課稿 篇3
【一】教學背景分析
1。教材結構分析
《圓的方程》安排在高中數學第二冊(上)第七章第六節。圓作為常見的簡單幾何圖形,在實際生活和生產實踐中有著廣泛的應用。圓的方程屬于解析幾何學的基礎知識,是研究二次曲線的開始,對后續直線與圓的位置關系、圓錐曲線等內容的學習,無論在知識上還是方法上都有著積極的意義,所以本節內容在整個解析幾何中起著承前啟后的作用。
2。學情分析
圓的方程是學生在初中學習了圓的概念和基本性質后,又掌握了求曲線方程的一般方法的基礎上進行研究的。但由于學生學習解析幾何的時間還不長、學習程度較淺,且對坐標法的運用還不夠熟練,在學習過程中難免會出現困難。另外學生在探究問題的能力,合作交流的意識等方面有待加強。
根據上述教材結構與內容分析,考慮到學生已有的認知結構和心理特征,我制定如下教學目標:
3。教學目標
(1) 知識目標:①掌握圓的標準方程;
②會由圓的標準方程寫出圓的半徑和圓心坐標,能根據條件寫出圓的標準方程;
③利用圓的標準方程解決簡單的實際問題。
(2) 能力目標:①進一步培養學生用代數方法研究幾何問題的能力;
②加深對數形結合思想的理解和加強對待定系數法的運用;
③增強學生用數學的意識。
(3) 情感目標:①培養學生主動探究知識、合作交流的意識;
②在體驗數學美的過程中激發學生的學習興趣。
根據以上對教材、教學目標及學情的分析,我確定如下的教學重點和難點:
4。 教學重點與難點
(1)重點:圓的標準方程的求法及其應用。
(2)難點: ①會根據不同的已知條件求圓的標準方程;
②選擇恰當的坐標系解決與圓有關的實際問題。
為使學生能達到本節設定的教學目標,我再從教法和學法上進行分析:
好學教育:
【二】教法學法分析
1。教法分析 為了充分調動學生學習的積極性,本節課采用“啟發式”問題教學法,用環環相扣的問題將探究活動層層深入,使教師總是站在學生思維的最近發展區上。另外我恰當的利用多媒體課件進行輔助教學,借助信息技術創設實際問題的情境既能激發學生的學習興趣,又直觀的引導了學生建模的過程。
2。學法分析 通過推導圓的標準方程,加深對用坐標法求軌跡方程的理解。通過求圓的標準方程,理解必須具備三個獨立的條件才可以確定一個圓。通過應用圓的標準方程,熟悉用待定系數法求的過程。 下面我就對具體的教學過程和設計加以說明:
【三】教學過程與設計
整個教學過程是由七個問題組成的問題鏈驅動的,共分為五個環節:
創設情境 啟迪思維 深入探究 獲得新知 應用舉例 鞏固提高
反饋訓練 形成方法 小結反思 拓展引申
下面我從縱橫兩方面敘述我的教學程序與設計意圖。
首先:縱向敘述教學過程
(一)創設情境——啟迪思維
問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2。7m,高為3m的貨車能不能駛入這個隧道?
通過對這個實際問題的探究,把學生的思維由用勾股定理求線段CD的長度轉移為用曲線的方程來解決。一方面幫助學生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結論的同時學生自己推導出了圓心在原點,半徑為4的圓的標準方程,從而很自然的進入了本課的主題。用實際問題創設問題情境,讓學生感受到問題來源于實際,應用于實際,激發了學生的學習興趣和學習欲望。這樣獲取的知識,不但易于保持,而且易于遷移。
通過對問題一的探究,抓住了學生的注意力,把學生的思維引到用坐標法研究圓的方程上來,此時再把問題深入,進入第二環節。
(二)深入探究——獲得新知
問題二 1。根據問題一的探究能不能得到圓心在原點,半徑為的圓的方程?
2。如果圓心在,半徑為時又如何呢?
好學教育:
這一環節我首先讓學生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標準方程后,引導學生歸納出圓心在原點,半徑為r的圓的標準方程。然后再讓學生對圓心不在原點的情況進行探究。我預設了三種方法等待著學生的探究結果,分別是:坐標法、圖形變換法、向量平移法。
得到圓的標準方程后,我設計了由淺入深的三個應用平臺,進入第三環節。
(三)應用舉例——鞏固提高
I。直接應用 內化新知
問題三 1。寫出下列各圓的標準方程:
(1)圓心在原點,半徑為3;
(2)經過點,圓心在點。
2。寫出圓的圓心坐標和半徑。
我設計了兩個小問題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡單,可以安排學生口答完成,目的是先讓學生熟練掌握圓心坐標、半徑與圓的標準方程之間的關系,為后面探究圓的切線問題作準備。
II。靈活應用 提升能力
問題四 1。求以點為圓心,并且和直線相切的圓的方程。
2。求過點,圓心在直線上且與軸相切的圓的方程。
3。已知圓的方程為,求過圓上一點的切線方程。
你能歸納出具有一般性的結論嗎?
已知圓的方程是,經過圓上一點的切線的方程是什么?
我設計了三個小問題,第一個小題有了剛剛解決問題三的基礎,學生會很快求出半徑,根據圓心坐標寫出圓的標準方程。第二個小題有些困難,需要引導學生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓。第三個小題解決方法較多,我預設了四種方法再一次為學生的發散思維創設了空間。最后我讓學生由第三小題的結論進行歸納、猜想,在論證經過圓上一點圓的切線方程的過程中,又一次模擬了真理發現的過程,使探究氣氛達到高潮。
III。實際應用 回歸自然
問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0。01m)。
好學教育:
我選用了教材的例3,它是待定系數法求出圓的三個參數的又一次應用,同時也與引例相呼應,使學生形成解決實際問題的一般方法,培養了學生建模的習慣和用數學的意識。
(四)反饋訓練——形成方法
問題六 1。求過原點和點,且圓心在直線上的圓的標準方程。
2。求圓過點的切線方程。
3。求圓過點的切線方程。
接下來是第四環節——反饋訓練。這一環節中,我設計三個小題作為鞏固性訓練,給學生一塊“用武”之地,讓每一位同學體驗學習數學的樂趣,成功的喜悅,找到自信,增強學習數學的愿望與信心。另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學生剛剛歸納了過圓上一點圓的切線方程,因此很容易產生思維的負遷移,另外這道題目有兩解,學生容易漏掉斜率不存在的情況,這時引導學生用數形結合的思想,結合初中已有的圓的知識進行判斷,這樣的設計對培養學生思維的嚴謹性具有良好的效果。
(五)小結反思——拓展引申
1。課堂小結
把圓的標準方程與過圓上一點圓的切線方程加以小結,提煉數形結合的思想和待定系數的方法 ①圓心為,半徑為r 的圓的標準方程為:
圓心在原點時,半徑為r 的圓的標準方程為:。
②已知圓的方程是,經過圓上一點的切線的方程是:。
2。分層作業
(A)鞏固型作業:教材P81—82:(習題7。6)1,2,4。(B)思維拓展型作業:試推導過圓上一點的切線方程。
3。激發新疑
問題七 1。把圓的標準方程展開后是什么形式?
2。方程表示什么圖形?
在本課的結尾設計這兩個問題,作為對這節課內容的鞏固與延伸,讓學生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產生了。在知識的拓展中再次掀起學生探究的熱情。另外它為下節課研究圓的一般方程作了重要的準備。
以上是我縱向的教學過程及簡單的設計意圖,接下來,我從三個方面橫向的進一步闡述我的教學設計: 橫向闡述教學設計
(一)突出重點 抓住關鍵 突破難點
好學教育:
求圓的標準方程既是本節課的教學重點也是難點,為此我布設了由淺入深的學習環境,先讓學生熟悉圓心、半徑與圓的標準方程之間的關系,逐步理解三個參數的重要性,自然形成待定系數法的解題思路,在突出重點的同時突破了難點。
第二個教學難點就是解決實際應用問題,這是學生固有的難題,主要是因為應用問題的題目冗長,學生很難根據問題情境構建數學模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進行引入,激發學生的求知欲,同時我借助多媒體課件的演示,引導學生真正走入問題的情境之中,并從中抽象出數學模型,從而消除畏難情緒,增強了信心。最后再形成應用圓的標準方程解決實際問題的一般模式,并嘗試應用該模式分析和解決第二個應用問題——問題五。這樣的設計,使學生在解決問題的同時,形成了方法,難點自然突破。
(二)學生主體 教師主導 探究主線
本節課的設計用問題做鏈,環環相扣,使學生的探究活動貫穿始終。從圓的標準方程的推導到應用都是在問題的指引、我的指導下,由學生探究完成的。另外,我重點設計了兩次思維發散點,分別是問題二和問題四的第三問,要求學生分組討論,合作交流,為學生設立充分的探究空間,學生在交流成果的過程中,既體驗了科學研究和真理發現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅動下,高效的完成本節的學習任務。
(三)培養思維 提升能力 激勵創新
為了培養學生的理性思維,我分別在問題一和問題四中,設計了兩次由特殊到一般的學習思路,培養學生的歸納概括能力。在問題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯系,培養了學生的創新精神,并且使學生的有效思維量加大,隨時對所學知識和方法產生有意注意,使能力與知識的形成相伴而行。
以上是我對這節課的教學預設,具體的教學過程還要根據學生在課堂中的具體情況適當調整,向生成性課堂進行轉變。最后我以赫爾巴特的一句名言結束我的說課,發揮我們的創造性,力爭“使教育過程成為一種藝術的事業”。
高中數學說課稿 篇4
一、說教材
1.內容分析:本節課是“反比例函數”的第一節課,是繼正比例函數、一次函數之后,二次函數之前的又一類型函數,本節課主要通過豐富的生活事例,讓學生歸納出反比例函數的概念,并進一步體會函數是刻畫變量之間關系的數學模型,從中體會函數的模型思想。因此本節課重點是理解和領悟反比例函數的概念,所滲透的數學思想方法有:類比,轉化,建模。
2.學情分析:對八年級學生來說,雖然他們已經對函數,正比例函數,一次函數的概念、圖象、性質以及應用有所掌握,但他們面對新的一次函數時,還可能存在一些思維障礙,如學生不能準確地找出變量之間的自變量和因變量,以及如何從事例中領悟和總結出反比例函數的概念,因此,本節課的難點是理解和領悟反比例函數的.概念。
二、說教學目標
根據本人對《數學課程標準》的理解與分析,考慮學生已有的認知結構、心理特征,我把本課的目標定為:
1.從現實的情境和已有的知識經驗出發,討論兩個變量之間的相依關系,加深對函數概念的理解。
2.經歷抽象反比例函數概念的過程,領會反比例函數的意義,理解反比例函數的概念。
三、說教法
本節課從知識結構呈現的角度看,為了實現教學目標,我建立了“創設情境→建立模型→解釋知識→應用知識”的學習模式,這種模式清晰地再現了知識的生成與發展的過程,也符合學生的認知規律。于是,從教學內容的性質出發,我設計了如下的課堂結構:創設出電流、行程等情境問題讓學生發現新知,把上述問題進行類比,導出概念,獲得新知,最后總結評價、內化新知。
四、說學法
我認為學生將實際問題轉化成函數的能力是有限的,所以我借助多媒體輔助教學,指導學生通過類比、轉化、直觀形象的觀察與演示,親身經歷函數模型的轉化過程,為學生攻克難點創造條件,同時考慮到本課的重點是反比例函數概念的教學,也考慮到概念教學要從大量實際出發,通過事例幫助完成定義。
好學教育:
因此,我采用了“問題式探究法”的教法,利用多媒體設置豐富的問題情境,讓學生的思維由問題開始,到問題深化,讓學生的思維始終處于積極主動的狀態,并隨著問題的深入而跳躍。
高中數學說課稿 篇5
一、教材分析
1、教材內容
本節課是蘇教版第二章《函數概念和基本初等函數Ⅰ》§2。1。3函數簡單性質的第一課時,該課時主要學習增函數、減函數的定義,以及應用定義解決一些簡單問題。
2、教材所處地位、作用
函數的性質是研究函數的基石,函數的單調性是首先研究的一個性質。通過對本節課的學習,讓學生領會函數單調性的概念、掌握證明函數單調性的步驟,并能運用單調性知識解決一些簡單的實際問題。通過上述活動,加深對函數本質的認識。函數的單調性既是學生學過的函數概念的延續和拓展,又是后續研究指數函數、對數函數、三角函數的單調性的基礎。此外在比較數的大小、函數的定性分析以及相關的數學綜合問題中也有廣泛的應用,它是整個高中數學中起著承上啟下作用的核心知識之一。從方法論的角度分析,本節教學過程中還滲透了探索發現、數形結合、歸納轉化等數學思想方法。
3、教學目標
(1)知識與技能:使學生理解函數單調性的概念,掌握判別函數單調性
的方法;
(2)過程與方法:從實際生活問題出發,引導學生自主探索函數單調性的概念,應用圖象和單調性的定義解決函數單調性問題,讓學生領會數形結合的數學思想方法,培養學生發現問題、分析問題、解決問題的能力。
(3)情感態度價值觀:讓學生體驗數學的科學功能、符號功能和工具功能,培養學生直覺觀察、探索發現、科學論證的良好的數學思維品質。
4、重點與難點
教學重點(1)函數單調性的概念;
(2)運用函數單調性的定義判斷一些函數的單調性。
教學難點(1)函數單調性的知識形成;
(2)利用函數圖象、單調性的定義判斷和證明函數的單調性。
二、教法分析與學法指導
本節課是一節較為抽象的數學概念課,因此,教法上要注意:
1、通過學生熟悉的實際生活問題引入課題,為概念學習創設情境,拉近數學與現實的距離,激發了學生求知欲,調動了學生主體參與的積極性。
2、在運用定義解題的過程中,緊扣定義中的關鍵語句,通過學生的主體參與,逐個完成對各個難點的突破,以獲得各類問題的解決。
3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用。具體體現在設問、講評和規范書寫等方面,要教會學生清晰的思維、嚴謹的推理,并成功地完成書面表達。
4、采用投影儀、多媒體等現代教學手段,增大教學容量和直觀性。
在學法上:
1、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養學生發現問題、研究問題和解決問題的能力。
2、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的一個飛躍。
三、 教學過程
教學
環節
教 學 過 程
設 計 意 圖
問題
情境
(播放中央電視臺天氣預報的音樂)
滿足在定義域上的單調性的討論。
2、重視學生發現的過程。如:充分暴露學生將函數圖象(形)的特征轉化為函數值(數)的特征的思維過程;充分暴露在正、反兩個方面探討活動中,學生認知結構升華、發現的過程。
3、重視學生的動手實踐過程。通過對定義的解讀、鞏固,讓學生動手去實踐運用定義。
4、重視課堂問題的設計。通過對問題的設計,引導學生解決問題。
高中數學說課稿 篇6
各位評委:下午好!
我叫 ,來自 。今天我說課的課題《 》(第 課時)。下面我將圍繞本節課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學目標分析、教學重難點分析、教法與學法、課堂設計五方面逐一加以分析和說明。
一、教材分析
(一)教材的地位和作用
《 》是人教版出版社 第 冊、第 單元的內容。《》既是 在知識上的延伸和發展,又是本章 的運用與鞏固,也為下一章 教學作鋪墊,起著鏈條的作用。同時,這部分內容較好地反映了 的內在聯系和相互轉化,蘊含著歸納、轉化、數形結合等豐富的數學思想方法,能較好地培養學生的觀察能力、概括能力、探究能力及創新意識。
概括地講,本節課內容的地位體現在它的基礎性,作用體現在它的工具性。
(二)、學情分析
通過前一階段的教學,學生對 的認識已有了一定的認知結構,主要體現在三個層面:
知識層面:學生在已初步掌握了 。
能力層面:學生在初步已經掌握了用
初步具備了 思想。 情感層面:學生對數學新內容的學習有相當的興趣和積極性。但探究問題的能力以及合作交流等方面發展不夠均衡.
(三)教學課時
本節內容分 課時學習。(本課時,品味數學中的和諧美,體驗成功的樂趣。)
二、教學目標分析
根據教學大綱的要求、本節教材的特點和高中生的認知規律,本節課的教學目標確定為:
知識與技能:
過程與方法:
情感態度:
(例如:創設問題情景,激發學生觀察、分析、探求的學習激情、強化學生參與意識及主體作用。在自主探究與討論交流過程中,培養學生的合作意識和創新精神. 通過 對立統一關系的認識,對學生進行辨證唯物主義教育)
在探索過程中,培養獨立獲取數學知識的能力。在解決問題的過程中,讓學生感受到成功的喜悅,樹立學好數學的信心。在解答數學問題時,讓學生養成理性思維的品質。
三、重難點分析
重點確定為:
要把握這個重點。關鍵在于理解
其本質就是
本節課的難點確定為:
要突破這個難點,讓學生歸納
作鋪墊。
四、教法與學法分析
(一)學法指導
教學矛盾的主要方面是學生的學。學是中心,會學是目的。因此在教學中要不斷指導學生學會學習。本節課主要是教給學生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學習方法,這樣做增加了學生自主參與,合作交流的機會,教給了學生獲取知識的途徑、思考問題的方法,使學生真正成了教學的主體;只有這樣做,才能使學生“學”有新“思”,“思”有新“得”,“練”有新“獲”,學生也才會逐步感受到數學的美,會產生一種成功感,從而提高學生學習數學的興趣;也只有這樣做,課堂教學才富有時代特色,才能適應素質教育下培養“創新型”人才的需要。
(二)教法分析
本節課設計的指導思想是:現代認知心理學--建構主義學習理論。
建構主義學習理論認為:應把學習看成是學生主動的建構活動,學生應與一定的知識背景即情景相聯系,在實際情景下進行學習,可以使學生利用已有知識與經驗同化和索引出當前要學習的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。
本節課采用“誘思探究教學法”( 陜西師范大學教育研究所張熊飛教授)。在課堂教學中凸顯學生主體地位的重要性,不再是以教師為中心去設計教學過程,而是以學生為主體去組織教學進程。把課堂真正地交給了學生,學生主體地位得以實現。
五、說教學過程
本節課的教學設計充分體現以學生發展為本,培養學生的觀察、概括和探究能力,遵循學生的認知規律,體現理論聯系實際、循序漸進和因材施教的教學原則,通過問題情境的創設,激發興趣,使學生在問題解決的探索過程中,由學會走向會學,由被動答題走向主動探究。
(一)創設情景………………….
(二)比舊悟新………………….
(三)歸納提煉…………………
(四)應用新知,熟練掌握 …………………
(五)總結…………………
(六)作業布置…………………
(七)板書設計…………………
以上是我對本節課的一些粗淺的認識和構想,如有不妥之處,懇請各位專家批評指正。謝謝
著名美國數學家和數學教育家波利亞 包括“弄清問題”、“擬定計劃”、“實現計劃”和“回顧反思”四大步驟的解題全過程,它們就好比是尋找和發現解法的思維過程進行分解,使我們對解題的思維過程看得見,摸得著,易于操作。精髓是啟發你去聯想。聯想什么?怎樣聯想?
【高中數學說課稿模板匯編6篇】相關文章:
高中數學說課稿02-17
高中數學說課稿(精選10篇)11-02
高中數學說課稿范文2篇02-14
初中地理說課稿模板《北京》說課稿12-29
《離騷》說課稿模板12-05
蘭亭集序說課稿模板匯編九篇04-05
高中數學必修1優秀教案模板02-17
小學音樂說課稿模板12-27
《過秦論》優秀說課稿模板12-28