《一次函數與一元一次不等式》說課稿
一 、說教材
1、 地位和作用
本節課是建立在學生已經具備了一元一次方程、一元一次不等式及二元一次方程組知識的基礎上,用函數的觀點對它們重新進行分析。這不是簡單的復習回顧,而是站在更高的角度進行動態的分析,引導學生從整體中把握部分。其中滲透了數形結合的思想,為后繼學習奠定了基礎。
2、教學目標
知識與技能目標:
(1)通過函數圖象,逐步體會一次函數與一元一次不等式的內在聯系,培養學生數形結合的思想。
(2)感知不等式、函數、方程的不同作用與內在聯系。
過程與方法目標:
讓學生自己根據題意列函數關系式,作出函數圖象,并能把函數關系式或函數圖象與一元一次不等式聯系起來, 通過自主交流合作解決問題,充分發揮學生的主體作用。
情感與態度目標:
讓學生唱主角,老師任導演,增強學生學數學、用數學、探索數學奧秘的愿望,體驗成功的喜悅。
3、 教學重點、難點
教學重點:理解一次函數與一元一次不等式的關系;
教學難點:利用函數圖象確定一元一次不等式的解集。
二、 說教法
1、 學情分析
我現在所帶班級學生整體學習能力處于中等水平,學習新的知識需要較長的理解過程,加上這一學段的學生思維處于由具體形象向抽象概括過渡的時期,對事物的認知停留在單一知識點上。他們可能會畫一次函數的圖像、會解一元一次不等式,但是很難將數與形結合起來,通過抽象歸納得出二者的內在聯系。
2、教學方法
鑒于以上對教材和學情的分析,本節我將采用以啟發探究式為主線、講練結合的教學方法。在教學過程中,配合使用多媒體輔助教學,直觀呈現教學素材,從而更好地激發學生的學習興趣,提高教學效率。
三、說學法
1.學生自主探索交流,思考問題,獲取知識,真正成為學習的主體。
2.學生在小組學習中形成合作交流的良好氛圍,體驗學習的快樂,更好地掌握知識,發展技能 。
四、說教學程序
(一)創設問題情境,探究新知
興趣是最好的老師。為了引起學生的興趣,本節課我通過游戲引入。
游戲規則:準備好寫有各種有理數的卡片若干張,每人每次從中抽取一張,用卡片上的數字乘以2再減去4,最后結果大于零的得1分,等于零的不得分,小于零的扣1分。10次以后,計算每人的得分總和,得分最高者獲勝。
教師提問:
你希望抽到寫有哪些數字的卡片?你希望哪些卡片被對方抽走?
在以上游戲中,若用x表示卡片上的數字,y表示計算的結果,你能寫出y關于x的函數關系式嗎?
設計游戲的目的有以下幾點:
(1)游戲的內容便于學生列出函數關系式y=2x-4;
(2)通過游戲中得分、不得分、扣分規則的確定來建立函數與方程、函數與不等式的關系,既有對上節課內容的復習鞏固,又為本節課的引入創設條件。
(二)探討歸納,講解新知
(1) 解不等式 2x-4>0
(2) 觀察函數y=2x-4圖象,當自變量x為何值時,函數值大于0?
這一環節中,師生共同完成3個任務:教會學生看圖、建立數形關系、歸納總結圖像法解不等式的步驟。
所以,首先讓學生畫出引例中函數y=2x-4的圖像。從y=0入手,然后分組討論圖像上y>0和y<0的部分。為了幫助學生理解,我把圖像上y>0的部分染色。通過觀察讓學生發現圖像上y>0的部分也就是x軸上方的部分。相應地,y<0的`部分也就是x軸下方的部分。最后讓學生找出y>0時相應的x的值。
通過對以上兩個問題的解決,使學生認識到解不等式2x-4>0也就是求函數y=2x-4圖像上,當y>0時相應的x的取值范圍,從而建立數形關系。
最后引導學生歸納總結利用函數圖像求不等式解集的步驟,這也是本節課的難點。
(1) 把一元一次不等式轉化為ax+b>0或ax+b<0的形式;
(2) 畫出一次函數圖象;
(3) 一次函數值大于(或小于)0時相應的自變量的取值范圍,實質上是一次函數圖像上x軸上方的點(或下方的點)對應的自變量的取值范圍。
(三)應用新知
例2的設計是讓學生進一步熟悉圖像法解不等式的一般步驟,這也就是教材上的方法1,要求學生重點掌握。方法2有一定難度,本節課不再重點討論。
例2:用畫函數圖像的方法解不等式5x+4<2x+10。
方法1:原不等式化為3x-6﹤0, 畫出直線y=3x-6。可以看出,當x<2時這條直線上的點在x軸的下方,即這時y=3x-6<0,所以不等式的解集為x<2
方法2:將原不等式的兩邊分別看作兩個一次函數,畫出直線y=5x+4與直線y=2x+10。可以看出,它們的交點的橫坐標為2。當x<2時,對于同一個x,直線y=5x+4在直線y=2x+10上相應點的下方。這時5x+4<2x+10,所以不等式的解集為x<2。
總結:以上兩種方法其實都是把解不等式轉化為比較直線上的點的位置的高低。
從上面的兩種解法可以看出,雖然用一次函數圖象來解不等式未必簡單,但從函數角度看問題,能發現一次函數與一元一次不等式之間的聯系, 直觀的看出怎樣用圖形來表示不等式的解。這種用函數觀點認識問題的方法不是單純解題,而是加強知識間的融會貫通,用變化和對應的眼光分析問題,對于繼續學習數學有著重要作用。
(四)隨堂練習
1自變量x的取值滿足什么條件時,函數y=3x+8的值滿足下列條件?
(1)y=0; (2)y=-7;
(3)y>0; (4)y<2.
設計意圖:本題學生很容易想到代值求解,為了突出數與形的結合,要求學生利用圖像解決問題。
2 利用函數圖象解出x:
(1)6x-4=3x-2; (2)6x-4<3x-2.
設計意圖:(1)與(2)形式上雖然只是等式與不等式的區別,但反應在圖像上相應的x的取值范圍卻不同。
(五)小結與作業
1. 歸納反思
2. 利用一次函數圖像求一元一次不等式解集的步驟
作業布置
必做題:習題14.3第3、4題
選做題:已知y1=-x+3, y2=3x-4,求x取得何值時y1>y2?
自我反思
應用新知中的方法2是初三數學中的重要方法,但考慮到學生的情況本節課沒有詳細講。實際教學中可以根據學生的接受情況對本節內容進行適當的拓廣延伸,嘗試與中招考試銜接。這節課涉及到利用函數圖像求解集的問題,采用幾何畫板動態演示的課堂效果會更好。
【《一次函數與一元一次不等式》說課稿】相關文章:
《一元一次不等式、一元一次方程、一次函數》的說課稿06-24
一元一次不等式與一次函數教學設計01-03
一元一次不等式說課稿11-20
《一元一次不等式》說課稿01-20
《一元一次不等式》說課稿12-22
《一元一次不等式》說課稿范文04-08
一元一次不等式的應用說課稿06-24
實際問題與一元一次不等式說課稿11-18