亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

高三數(shù)學(xué)《向量》說(shuō)課稿

時(shí)間:2021-02-15 12:31:14 說(shuō)課稿 我要投稿

高三數(shù)學(xué)《向量》說(shuō)課稿

  一、教材結(jié)構(gòu)與內(nèi)容簡(jiǎn)析

高三數(shù)學(xué)《向量》說(shuō)課稿

  1 本節(jié)內(nèi)容在全書(shū)及章節(jié)的地位:

  《向量》出現(xiàn)在高中數(shù)學(xué)第一冊(cè)(下)第五章第1節(jié)。本節(jié)內(nèi)容是傳統(tǒng)意義上《平面解析幾何》的基礎(chǔ)部分,因此,在《數(shù)學(xué)》這門(mén)學(xué)科中,占據(jù)極其重要的地位。

  2 數(shù)學(xué)思想方法分析:

  (1) 從“向量可以用有向線(xiàn)段來(lái)表示”所反映出的“數(shù)”與“形”之間的轉(zhuǎn)化,就可以看到《數(shù)學(xué)》本身的“量化”與“物化”。

  (2)從建構(gòu)手段角度分析,在教材所提供的材料中,可以看到“數(shù)形結(jié)合”思想。

  二、 教學(xué)目標(biāo)

  根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征 ,制定如下教學(xué)目標(biāo):

  1 基礎(chǔ)知識(shí)目標(biāo):掌握“向量”的概念及其表示方法,能利用它們解決相關(guān)的問(wèn)題。

  2 能力訓(xùn)練目標(biāo):逐步培養(yǎng)學(xué)生觀(guān)察、分析、綜合和類(lèi)比能力,會(huì)準(zhǔn)確地闡述自己的思路和觀(guān)點(diǎn),著重培養(yǎng)學(xué)生的認(rèn)知和元認(rèn)知能力。

  3 創(chuàng)新素質(zhì)目標(biāo):引導(dǎo)學(xué)生從日常生活中挖掘數(shù)學(xué)內(nèi)容,培養(yǎng)學(xué)生的發(fā)現(xiàn)意識(shí)和整合能力;《向量》的教學(xué)旨在培養(yǎng)學(xué)生的“知識(shí)重組”意識(shí)和“數(shù)形結(jié)合”能力。

  4 個(gè)性品質(zhì)目標(biāo):培養(yǎng)學(xué)生勇于探索,善于發(fā)現(xiàn),獨(dú)立意識(shí)以及不斷超越自我的創(chuàng)新品質(zhì)。

  三、 教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵

  重點(diǎn):向量概念的引入。

  難點(diǎn):“數(shù)”與“形”完美結(jié)合。

  關(guān)鍵:本節(jié)課通過(guò)“數(shù)形結(jié)合”,著重培養(yǎng)和發(fā)展學(xué)生的認(rèn)知和變通能力。

  四、 教材處理

  建構(gòu)主義學(xué)習(xí)理論認(rèn)為,建構(gòu)就是認(rèn)知結(jié)構(gòu)的組建,其過(guò)程一般是先把知識(shí)點(diǎn)按照邏輯線(xiàn)索和內(nèi)在聯(lián)系,串成知識(shí)線(xiàn),再由若干條知識(shí)線(xiàn)形成知識(shí)面,最后由知識(shí)面按照其內(nèi)容、性質(zhì)、作用、因果等關(guān)系組成綜合的知識(shí)體。本課時(shí)為何提出“數(shù)形結(jié)合”呢,應(yīng)該說(shuō),這一處理方法正是基于此理論的體現(xiàn)。其次,本節(jié)課處理過(guò)程力求達(dá)到解決如下問(wèn)題:知識(shí)是如何產(chǎn)生的?如何發(fā)展?又如何從實(shí)際問(wèn)題抽象成為數(shù)學(xué)問(wèn)題,并賦予抽象的數(shù)學(xué)符號(hào)和表達(dá)式,如何反映生活中客觀(guān)事物之間簡(jiǎn)單的和諧關(guān)系。

  五、 教學(xué)模式

  教學(xué)過(guò)程是教師活動(dòng)和學(xué)生活動(dòng)的十分復(fù)雜的動(dòng)態(tài)性總體,是教師和全體學(xué)生積極參與下,進(jìn)行集體認(rèn)識(shí)的過(guò)程。教為主導(dǎo),學(xué)為主體,又互為客體。啟動(dòng)學(xué)生自主性學(xué)習(xí),啟發(fā)引導(dǎo)學(xué)生實(shí)踐數(shù)學(xué)思維的過(guò)程,自得知識(shí),自覓規(guī)律,自悟原理,主動(dòng)發(fā)展思維和能力。

  六、 學(xué)習(xí)方法

  1、讓學(xué)生在認(rèn)知過(guò)程中,著重掌握元認(rèn)知過(guò)程。

  2、使學(xué)生把獨(dú)立思考與多向交流相結(jié)合。

  七、 教學(xué)程序及設(shè)想

  (一)設(shè)置問(wèn)題,創(chuàng)設(shè)情景。

  1、提出問(wèn)題:在日常生活中,我們不僅會(huì)遇到大小不等的量,還經(jīng)常會(huì)接觸到一些帶有方向的量,這些量應(yīng)該如何表示呢?

  2、(在學(xué)生討論基礎(chǔ)上,教師引導(dǎo))通過(guò)“力的圖示”的回憶,分析大小、方向、作用點(diǎn)三者之間的關(guān)系,著重考慮力的作用點(diǎn)對(duì)運(yùn)動(dòng)的相對(duì)性與絕對(duì)性的影響。

  設(shè)計(jì)意圖:

  1、把教材內(nèi)容轉(zhuǎn)化為具有潛在意義的問(wèn)題,讓學(xué)生產(chǎn)生強(qiáng)烈的問(wèn)題意識(shí),使學(xué)生的整個(gè)學(xué)習(xí)過(guò)程成為“猜想”、驚訝、困惑、感到棘手,緊張地沉思,期待尋找理由和論證的過(guò)程。

  2、我們知道,學(xué)習(xí)總是與一定知識(shí)背景即情境相聯(lián)系的。在實(shí)際情境下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識(shí)與經(jīng)驗(yàn),同化和索引出當(dāng)前學(xué)習(xí)的新知識(shí)。這樣獲取的知識(shí),不但便于保持,而且易于遷移到陌生的問(wèn)題情境中。

  (二)提供實(shí)際背景材料,形成假說(shuō)。

  1、小船以0.5m/s的速度航行,已知一條河長(zhǎng)2000m,寬150m,問(wèn)小船需經(jīng)過(guò)多長(zhǎng)時(shí)間,到達(dá)對(duì)岸?

  2、到達(dá)對(duì)岸?這句話(huà)的實(shí)質(zhì)意義是什么?(學(xué)生討論,期望回答:指代不明。)

  3、由此實(shí)際問(wèn)題如何抽象為數(shù)學(xué)問(wèn)題呢?(學(xué)生交流討論,期望回答:要確定某些量,有時(shí)除了知道其大小外,還需要了解其方向。)

  設(shè)計(jì)意圖:

  1、教師站在稍稍超前于學(xué)生智力發(fā)展的邊界上(即思維的最鄰近發(fā)展)通過(guò)問(wèn)題引領(lǐng),來(lái)促成學(xué)生“數(shù)形結(jié)合”思想的形成。

  2.通過(guò)學(xué)生交流討論,把實(shí)際問(wèn)題抽象成為數(shù)學(xué)問(wèn)題,并賦予抽象的數(shù)學(xué)符號(hào)和表達(dá)方式。

  (三)引導(dǎo)探索,尋找解決方案。

  1、如何補(bǔ)充上面的題目呢?從已學(xué)過(guò)知識(shí)可知,必須增加“方位”要求。

  2.方位的實(shí)質(zhì)是什么呢?即位移的本質(zhì)是什么?期望回答:大小與方向的統(tǒng)一。

  3、零向量、單位向量、平行向量、相等向量、共線(xiàn)向量等系列化概念之間的關(guān)系是什么?(明確要領(lǐng)。)

  設(shè)計(jì)意圖:

  學(xué)生在教師引導(dǎo)下,在積累了已有探索經(jīng)驗(yàn)的基礎(chǔ)上,進(jìn)行討論交流,相互評(píng)價(jià),共同完成了“數(shù)形結(jié)合”思想上的建構(gòu)。

  2、這一問(wèn)題設(shè)計(jì),試圖讓學(xué)生不“唯書(shū)”,敢于和善于質(zhì)疑批判和超越書(shū)本和教師,這是創(chuàng)新素質(zhì)的突出表現(xiàn),讓學(xué)生不滿(mǎn)足于現(xiàn)狀,執(zhí)著地追求。

  3、盡可能地揭示出認(rèn)知思想方法的全貌,使學(xué)生從整體上把握解決問(wèn)題的方法。

  (四)總結(jié)結(jié)論,強(qiáng)化認(rèn)識(shí)。

  經(jīng)過(guò)引導(dǎo),學(xué)生歸納出“數(shù)形結(jié)合”的思想——“數(shù)”與“形”是一個(gè)問(wèn)題的兩個(gè)方面,“形”的外表里,蘊(yùn)含著“數(shù)”的本質(zhì)。

  設(shè)計(jì)意圖:促進(jìn)學(xué)生數(shù)學(xué)思想方法的形成,引導(dǎo)學(xué)生確實(shí)掌握“數(shù)形結(jié)合”的思想方法。

  (五)變式延伸,進(jìn)行重構(gòu)。

  教師引導(dǎo):在此我們已經(jīng)知道,欲解決一些抽象的數(shù)學(xué)問(wèn)題,可以借助于圖形來(lái)解決,這就是向量的理論基礎(chǔ)。

  下面繼續(xù)研究,與向量有關(guān)的一些概念,引導(dǎo)學(xué)生利用模型演示進(jìn)行觀(guān)察。

  概念1:長(zhǎng)度為0的.向量叫做零向量。

  概念2:長(zhǎng)度等于一個(gè)單位長(zhǎng)度的向量,叫做單位向量。

  概念3:方向相同或相反的非零向量叫做平行(或共線(xiàn))向量。(規(guī)定:零向量與任一向量平行。)

  概念4:長(zhǎng)度相等且方向相同的向量叫做相等向量。

  設(shè)計(jì)意圖:

  1.學(xué)生在教師引導(dǎo)下,在積累了已有探索經(jīng)驗(yàn)的基礎(chǔ)上進(jìn)行討論交流,相互評(píng)價(jià),共同完成了有向線(xiàn)段與向量?jī)烧哧P(guān)系的建構(gòu)。

  2.這些概念的比較可以讓學(xué)生加強(qiáng)對(duì)“向量”概念的理解,以便更好地“數(shù)形結(jié)合”。

  3.讓學(xué)生對(duì)教學(xué)思想方法,及其應(yīng)情境達(dá)到較為純熟的認(rèn)識(shí),并將這種認(rèn)識(shí)思維地貯存在大腦中,隨時(shí)提取和應(yīng)用。

  (六)總結(jié)回授調(diào)整。

  1.知識(shí)性?xún)?nèi)容:

  例 設(shè)O是正六邊形A B C D E F的中心,分別寫(xiě)出圖中與向量O A、O B、O C相等的向量。

  2.對(duì)運(yùn)用數(shù)學(xué)思想方法創(chuàng)新素質(zhì)培養(yǎng)的小結(jié):

  a.要善于在實(shí)際生活中,發(fā)現(xiàn)問(wèn)題,從而提煉出相應(yīng)的數(shù)學(xué)問(wèn)題。發(fā)現(xiàn)作為一種意識(shí),可以解釋為“探察問(wèn)題的意識(shí)”;發(fā)現(xiàn)作為一種能力,可以解釋為“找到新東西”的能力,這是培養(yǎng)創(chuàng)造力的基本途徑。

  b.問(wèn)題的解決,采用了“數(shù)形結(jié)合”的數(shù)學(xué)思想,體現(xiàn)了數(shù)

  學(xué)思想方法是解決問(wèn)題的根本途徑。

  c.問(wèn)題的變式探究的過(guò)程,是一個(gè)創(chuàng)新思維活動(dòng)過(guò)程中一種多維整合過(guò)程。重組知識(shí)的過(guò)程,是一種多維整合的過(guò)程,是一個(gè)高層次的知識(shí)綜合過(guò)程,是對(duì)教材知識(shí)在更高水平上的概括和總結(jié),有利于形成一個(gè)自我再生力強(qiáng)的開(kāi)放的動(dòng)態(tài)的知識(shí)系統(tǒng),從而使得思維具有整體功能和創(chuàng)新能力。

  2.設(shè)計(jì)意圖:

  1、知識(shí)性?xún)?nèi)容的總結(jié),可以把課堂教學(xué)傳授的知識(shí),盡快轉(zhuǎn)化為學(xué)生的素質(zhì)。

  2、運(yùn)用數(shù)學(xué)方法創(chuàng)新素質(zhì)的小結(jié),能讓學(xué)生更系統(tǒng),更深刻地理解數(shù)學(xué)思想方法在解題中的地位和作用,并且逐漸培養(yǎng)學(xué)生的良好個(gè)性品質(zhì)。這是每堂課必不可少的一個(gè)重要環(huán)節(jié)。

  (七)布置作業(yè)。

  反饋“數(shù)形結(jié)合”的探究過(guò)程,整理知識(shí)體系,并完成習(xí)題5.1的內(nèi)容。

【高三數(shù)學(xué)《向量》說(shuō)課稿】相關(guān)文章:

高中數(shù)學(xué)向量說(shuō)課稿02-18

《向量的加法》說(shuō)課稿12-28

向量的加法說(shuō)課稿11-04

《向量直角坐標(biāo)》初中數(shù)學(xué)說(shuō)課稿09-03

關(guān)于高二數(shù)學(xué)《向量》說(shuō)課稿范分享07-14

《向量的加法》說(shuō)課稿范文03-30

教師的《向量的加法》說(shuō)課稿04-20

實(shí)數(shù)與向量的積的說(shuō)課稿02-19

實(shí)數(shù)與向量的積說(shuō)課稿11-02