亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

高一數學《等差數列》說課稿

時間:2023-07-09 21:18:46 說課稿 我要投稿
  • 相關推薦

高一數學《等差數列》說課稿

  一、教材分析。

高一數學《等差數列》說課稿

  1、教學目標:

  (1)理解并掌握等差數列的概念;了解等差數列的通項公式的推導過程及思想;

  (2)培養學生觀察、分析、歸納、推理的能力;在領會函數與數列關系的前提下,把研究函數的方法遷移來研究數列,培養學生的知識、方法遷移能力;通過階梯性練習,提高學生分析問題和解決問題的能力。

  (3)通過對等差數列的研究,培養學生主動探索、勇于發現的求知精神;養成細心觀察、認真分析、善于總結的良好思維習慣。

  2、教學重點和難點:

  (1)等差數列的概念。

  (2)等差數列的通項公式的推導過程及應用。用不完全歸納法推導等差數列的通項公式。

  二、教法分析。

  采用啟發式、討論式以及講練結合的教學方法,通過問題激發學生求知欲,使學生主動參與數學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發現、分析和解決問題。

  三、教學程序。

  本節課的教學過程由:(一)復習引入;(二)新課探究;(三)應用例解;(四)反饋練習;(五)歸納小結;(六)布置作業,六個教學環節構成。

  (一)復習引入:

  1、全國統一鞋號中成年女鞋的各種尺碼(表示鞋底長,單位是cm)分別是21,22,23,24,25。

  2、某劇場前10排的座位數分別是:38,40,42,44,46,48,50,52,54,56。

  3、某長跑運動員7天里每天的訓練量(單位:m)是:7500,8000,8500,9000,9500,10000,10500。

  共同特點:從第2項起,每一項與前一項的差都等于同一個常數。

  (二) 新課探究。

  1、給出等差數列的概念:

  如果一個數列,從第二項開始它的每一項與前一項之差都等于同一常數,這個數列就叫等差數列, 這個常數叫做等差數列的公差,通常用字母d來表示。強調:

  (1)“從第二項起”滿足條件;

  (2)公差d一定是由后項減前項所得;

  (3)公差可以是正數、負數,也可以是0。

  2、推導等差數列的通項公式:若等差數列{an }的首項是 ,公差是d, 則據其定義可得:— =d 即: = +d;– =d 即: = +d = +2d;– =d 即: = +d = +3d……進而歸納出等差數列的通項公式:= +(n—1)d

  此時指出: 這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養學生嚴謹的學習態度,在這里向學生介紹另外一種求數列通項公式的辦法——————迭加法:– =d;– =d;– =d……– =d。

  將這(n—1)個等式左右兩邊分別相加,就可以得到 – = (n—1) d即 = +(n—1) d

  當n=1時,上面等式兩邊均為 ,即等式也是成立的,這表明當n∈ 時上面公式都成立,因此它就是等差數列{an }的通項公式。

  接著舉例說明:若一個等差數列{ }的首項是1,公差是2,得出這個數列的通項公式是: =1+(n—1)×2 , 即 =2n—1 以此來鞏固等差數列通項公式運用

  (三)應用舉例。

  這一環節是使學生通過例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向學生表明:要用運動變化的觀點看等差數列通項公式中的 、d、n、 這4個量之間的關系。當其中的部分量已知時,可根據該公式求出另一部分量。

  例1 :

  (1)求等差數列8,5,2,…的第20項;

  (2)—401是不是等差數列—5,—9,—13,…的項?如果是,是第幾項?

  第二問實際上是求正整數解的問題,而關鍵是求出數列的通項公式。

  例2:

  在等差數列{an}中,已知 =10, =31,求首項 與公差d。

  在前面例1的基礎上將例2當作練習作為對通項公式的鞏固。

  例3:

  梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數列。計算中間各級的寬度。

  (四)反饋練習。

  1、小節后的練習中的第1題和第2題(要求學生在規定時間內完成)。目的:使學生熟悉通項公式,對學生進行基本技能訓練。

  2、若數列{ } 是等差數列,若 = k ,(k為常數)試證明:數列{ }是等差數列。

  此題是對學生進行數列問題提高訓練,學習如何用定義證明數列問題同時強化了等差數列的概念。

  (五)歸納小結 。(由學生總結這節課的收獲)

  1、等差數列的概念及數學表達式。

  強調關鍵字:從第二項開始它的每一項與前一項之差都等于同一常數

  2、等差數列的通項公式 = +(n—1) d會知三求一

  (六) 布置作業。

  1、必做題:課本P114 習題3。2第2,6 題。

  2、選做題:已知等差數列{ }的首項 = —24,從第10項開始為正數,求公差d的取值范圍。(目的:通過分層作業,提高同學們的求知欲和滿足不同層次的學生需求)

  四、板書設計。

  在板書中突出本節重點,將強調的地方如定義中,“從第二項起”及“同一常數”等幾個字用紅色粉筆標注,同時給學生留有作題的地方,整個板書充分體現了精講多練的教學方法。

【高一數學《等差數列》說課稿】相關文章:

高一數學:等差數列說課稿12-06

高一數學《等差數列》說課稿12-08

高一數學《等差數列》說課稿(精選10篇)06-28

高一等差數列說課稿12-13

高一等差數列說課稿12-13

高一數學:等差數列說課稿(通用10篇)12-18

等差數列的說課稿12-05

《等差數列》說課稿01-13

《等差數列》說課稿11-03

《等差數列》說課稿14篇12-06