亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

華師大版數學上冊命題定理與證明作業及答案

時間:2021-06-26 17:38:04 試題 我要投稿

華師大版數學上冊命題定理與證明作業及答案

  1、判斷下列語句是不是命題;

華師大版數學上冊命題定理與證明作業及答案

  (1)延長線段AB( )

  (2)兩條直線相交,只有一交點( )

  (3)畫線段AB的中點( )

  (4)若|x|=2,則x=2( )

  (5)角平分線是一條射線( )

  2、選擇題;

  (1)下列語句不是命題的是( )

  A、兩點之間,線段最短B、不平行的兩條直線有一個交點C、x與y的和等于0嗎?D、對頂角不相等。

  (2)下列命題中真命題是( )

  A、兩個銳角之和為鈍角B、兩個銳角之和為銳角C、鈍角大于它的補角D、銳角小于它的余角

  (3)命題:①對頂角相等;②垂直于同一條直線的兩直線平行;③相等的`角是對頂角;④同位角相等。

  其中假命題有( )A、1個B、2個C、3個D、4個

  3、分別指出下列各命題的題設和結論。

  (1)如果a∥b,b∥c,那么a∥c

  (2)同旁內角互補,兩直線平行。

  4、分別把下列命題寫成“如果……,那么……”的形式。

  (1)兩點確定一條直線;

  (2)等角的補角相等;

  (3)內錯角相等。

  5、已知:如圖AB⊥BC,BC⊥CD且∠1=∠2,求證:BE∥CF

  6、已知:如圖,AC⊥BC,垂足為C,∠BCD是∠B的余角。求證:∠ACD=∠B。

  7、已知,如圖,BCE、AFE是直線,AB∥CD,∠1=∠2,∠3=∠4。求證:AD∥BE。

  8、已知,如圖,AB∥CD,∠EAB+∠FDC=180°。求證:AE∥FD。

  9、已知:如圖,DC∥AB,∠1+∠A=90°。求證:AD⊥DB。

  10、如圖,已知AC∥DE,∠1=∠2。求證:AB∥CD。

  11、已知,如圖,AB∥CD,∠1=∠B,∠2=∠D。求證:BE⊥DE。

  12、求證:兩條平行直線被第三條直線所截,內錯角的平分線互相平行。

  【答案】

  1、(1)不是(2)是(3)不是(4)是(5)是

  2、(1)C(2)C(3)B

  3、(1)題設:a∥b,b∥c結論:a∥c(2)題設:兩條直線被第三條直線所截的同旁內角互補。結論:這兩條直線平行。

  4、(1)如果有兩個定點,那么過這兩點有且只有一條直線(2)如果兩個角分別是兩個等角的補角,那么這兩個角相等。(3)如果兩個角是內錯角,那么這兩個角相等。

  5、∠ABC=∠BCD,垂直定義,∠EBC=∠BCF,內錯角相等,兩直線平行。

  6、垂直定義;余角定義,同角的余角相等。

  7、∠BAE兩直線平行同位角相等

  ∠BAE(等量代換)等式性質

  ∠BAE,∠CAD,∠CAD(等量代換)

  內錯角相等,兩直線平行。

  8、證明:∵AB∥CD

  ∴∠AGD+∠FDC=180°(兩直線平行,同旁內角互補)

  ∵∠EAB+∠FDC=180°(已知)

  ∴∠AGD=∠EAB(同角的補角相等)

  ∴AE∥FD(內錯角相等,兩直線平行)

  9、證明:∵DC∥AB(已知)

  ∴∠A+∠ADC=180°(兩直線平行,同旁內角互補)

  即∠A+∠ADB+∠1=180°

  ∵∠1+∠A=90°(已知)∴∠ADB=90°(等式性質)

  ∴AD⊥DB(垂直定義)

  10、證明:∵AC∥DE(已知)

  ∴∠2=∠ACD(兩直線平行,內錯角相等)

  ∵∠1=∠2(已知)

  ∴∠1=∠ACD(等量代換)

  ∴AB∥CD(內錯角相等,兩直線平行)

  11、證明:

  作EF∥AB

  ∵AB∥CD

  ∴∠B=∠3(兩直線平行,內錯角相等)

  ∵∠1=∠B(已知)

  ∴∠1=∠3(等量代換)

  ∵AB∥EF,AB∥(已作,已知)

  ∴EF∥CD(平行于同一直線的兩直線平行)

  ∴∠4=∠D(兩直線平行,內錯角相等)

  ∵∠2=∠D(已知)

  ∴∠2=∠4(等量代換)

  ∵∠1+∠2+∠3+∠4=180°(平角定義)

  ∴∠3+∠4=90°(等量代換、等式性質)即∠BED=90°

  ∴BE⊥ED(垂直定義)

  12、已知:AB∥CD,EG、FR分別是∠BEF、∠EFC的平分線。求證:EG∥FR。

  證明:∵AB∥CD(已知)

  ∴∠BEF=∠EFC(兩直線平行,內錯角相等)

  ∵EG、FR分別是∠BEF、∠EFC的平分線(已知)

  ∴2∠1=∠BEF,2∠2=∠EFC(角平分線定義)

  ∴2∠1=2∠2(等量代換)

  ∴∠1=∠2(等式性質)

  ∴EG∥FR(內錯角相等,兩直線平行)

【華師大版數學上冊命題定理與證明作業及答案】相關文章:

華師大版八年級數學 勾股定理說課稿11-08

初二數學上冊證明的必要性作業(魯教版)12-21

滬教版數學暑期作業答案參考11-11

華師大版九年級數學上冊的教學計劃08-09

斜邊直角邊華師大版數學教學反思11-27

華師大版初二上冊科學《壓強》說課稿02-15

定理與證明(一)11-30

暑假數學作業答案11-10

華師大版七年級數學角家庭作業的總結11-22