上學期課后同步數學試題
一. 仔細選一選 (本題有10個小題, 每小題3分, 共30分)
1.下列各組數可能是一個三角形的邊長的是
A. 1,2,4 B. 4,5,9 C. 4,6,8 D. 5,5,11
2.若x>y,則下列式子錯誤的是
A. x﹣1>y﹣1 B. ﹣3x>﹣3y C. x+1>y+1 D.
3.一副三角板如圖疊放在一起,則圖中∠α的度數為
A. 75° B. 60° C. 65° D. 55°
4.如圖,△ABC中,AB=AC,∠A=36°,BD是AC邊上的高,則∠DBC的度數是
A. 18° B. 24° C. 30° D. 36°
5.如圖,在邊長為1的正方形網格中,將△ABC先向右平移兩個單位長度,再關于x軸對稱得到△A′B′C′,則點B′的坐標是
A. (0,﹣1) B. (1,1) C. (2,﹣1) D. (1,﹣2)
6.如圖,△ABC中,D為AB中點,E在AC上,且BE⊥AC.若DE=5,AE=8,則BE的長度是
A. 5 B. 5.5 C. 6 D. 6.5
7.一次函數y=mx+|m﹣1|的圖象過點(0,2),且y隨x的增大而增大,則m=
A. ﹣1 B. 3 C. 1 D. ﹣1或3
8.如圖,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交點,則線段BH的長度為
A. B. 4 C. D. 5
9. 如圖,在平面直角坐標系中,以O為圓心,適當長為半徑畫弧,交x軸于點M,交y軸于點N,再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧在第二象限交于點P.若點P的坐標為(2x,y+1),則y關于x的函數關系為
A. y=x B. y=-2x﹣1 C. y=2x﹣1 D. y=1-2x
10.如圖,O是正△ABC內一點,OA=3,OB=4,OC=5,將線段BO以點B為旋轉中心逆時針旋轉60°得到線段BO′,下列結論:①△BO′A可以由△BOC繞點B逆時針旋轉60°得到;②點O與O′的距離為4;③∠AOB=150°;④S四邊形AOBO′=6+3;⑤S△AOC+S△AOB=6+.其中正確的結論是
A. ①②③⑤ B. ①③④ C. ②③④⑤ D. ①②⑤
二. 認真填一填 (本題有6個小題, 每小題4分, 共24分)
11.已知點A(m,3)與點B(2,n)關于y軸對稱,則m= ▲ ,n= ▲ .
12. “直角三角形只有兩個銳角”的逆命題是 ▲ ,該逆命題是一個 ▲ 命題(填“真”或“假”)
13.已知關于x的不等式(1﹣a)x>2的解集為x<,則a的`取值范圍是 ▲ .
14.直線l1:y=k1x+b與直線l2:y=k2x+c在同一平面直角坐標系中的圖象如圖所示,則關于x的不等式k1x+b
15.如圖,在Rt△ABC中,∠A=90°,∠ABC的平分線BD交AC于點D,AD=3,BC=10,則△BDC的面積是 ▲ .
16.如圖,直線y=﹣x+8與x軸,y軸分別交于點A和B,M是OB上的一點,若將△ABM沿AM折疊,點B恰好落在x軸上的點B′處,則直線AM的解析式為 ▲ .
三. 全面答一答(本題有7個小題,共66分)
17.(本小題滿分6分)
如圖,AB=AC,請你添加一個條件,使△ABE≌△ACD,
你添加的條件是 ;
根據上述添加的條件證明△ABE≌△ACD .
18.(本小題滿分8分)解下列不等式和不等式組
(1)2(x+1)>3x﹣4 (2)
19.(本小題滿分8分)
如圖,△ABC是邊長為2的等邊三角形,將△ABC沿直線BC向右平移,使點B與點C重合,得到△DCE,連接BD,交AC于點F.
(1)猜想AC與BD的位置關系,并證明你的結論;
(2)求線段BD的長.
20.(本小題滿分10分)如圖,有8×8的正方形網格,按要求操作并計算.
(1)在8×8的正方形網格中建立平面直角坐標系,使點A的坐標為(2,4),點B的坐標為(4,2);
(2)將點A向下平移5個單位,再關于y軸對稱得到點C,
求點C坐標;
(3)畫出三角形ABC,并求其面積.
21.(本小題滿分10分)
某文具店準備拿出1000元全部用來購進甲、乙兩種鋼筆,若甲種鋼筆每支10元,乙種鋼筆每支5元,考慮顧客需求,要求購進乙種鋼筆的數量不少于甲種鋼筆數量的6倍,且甲種鋼筆數量不少于20支.若設購進甲種鋼筆x支.
(1)該文具店共有幾種進貨方案?
(2)若文具店銷售每支甲種鋼筆可獲利潤3元,銷售每支乙種鋼筆可獲利潤2元,在第(1)問的各種進貨方案中,哪一種方案獲利最大?最大利潤是多少元?
22.(本小題滿分12分)
如圖,△ABC是邊長為4cm的等邊三角形,點P,Q分別從頂點A,B同時出發,沿線段AB,BC運動,且它們的速度都為1cm/s.當點P到達點B時,P、Q兩點停止運動.設點P的運動時間為t(s),
(1)當t為何值時,△PBQ是直角三角形?
(2)連接AQ、CP,相交于點M,則點P,Q在運動的過程中,∠CMQ會變化嗎?若變化,則說明理由;若不變,請求出它的度數.
23.(本小題滿分12分)
如圖,直線y=kx﹣3與x軸、y軸分別交于B、C兩點,且.
(1)求點B坐標和k值;
(2)若點A(x,y)是直線y=kx﹣3上在第一象限內的一個動點,當點A在運動過程中,試寫出△AOB的面積S與x的函數關系式(不要求寫自變量范圍);并進一步求出點A的坐標為多少時,△AOB的面積為;
(3)在上述條件下,x軸上是否存在點P,使△ABP為等腰三角形?若存在,請寫出滿足條件的所有P點坐標;若不存在,請說明理由.
2013學年第一學期期末試卷
八年級數學 參考解答和評分標準
選擇題 (每題3分,共30分)
題號 1 2 3 4 5 6 7 8 9 10
答案 C B A A D C B B B A
二、填空題(每題4分,共24分)
11. -2 3 ; 12. 只有兩個銳角的三角形是直角三角形 假 ;
13. a>1; 14. x< 1 ; 15. 15 16. y=﹣x+3
三.解答題(共66分)
17.(本小題滿分6分)
解: (1) 添加的條件是∠B=∠C或AE=AD
(2)添加∠B=∠C或AE=AD后可分別根據ASA、SAS判定△ABE≌△ACD.
18.(本小題滿分8分)
解 :(1) x< 6 (2)-0.5 < x< 2
19.(本小題滿分8分)
解:(1)AC與BD的位置關系是:AC⊥BD.
∵△DCE由△ABC平移而成,
∴BE=2BC=4,DE=AC=2,∠E=∠ACB=60°,
∴DE=BE,
∴BD⊥DE,
又∵∠E=∠ACB=60°,
∴AC∥DE,
∴BD⊥AC,
∵△ABC是等邊三角形,
∴BF是邊AC的中線,
∴BD⊥AC,BD與AC互相垂直平分;
(2)∵由(1)知,AC∥DE,BD⊥AC,
∴△BED是直角三角形,
∵BE=4,DE=2,
∴BD==2.
20. (本小題滿分10分)
解:(1)略
(2)點C(-2,-1)
(3)S=5×6—6×3÷2—4×5÷2—2×2÷2=9
21.(本小題滿分10分)
解:(1)設購進甲鋼筆x支,乙鋼筆y支,根據題意可得:
10x+5y=1000
6x≤y
20≤x
解得:20≤x≤25,
∵x為整數,
∴x=20,21,22,23,24,25共六種方案,
∴該文具店共有6種進貨方案;
(2)設利潤為W元,則W=3x+2y,
∵10x+5y=1000,
∴y=200﹣2x,
∴代入上式得:W=400﹣x,
∵W隨著x的增大而減小,
∴當x=20時,W有最大值,最大值為W=400﹣20=380(元).
22.(本小題滿分12分)
解:(1)設時間為t,則AP=BQ=t,PB=4﹣t
①當∠PQB=90°時,
∵∠B=60°,
∴PB=2BQ,得4﹣t=2t,t=;
②當∠BPQ=90°時,
∵∠B=60°,
∴BQ=2BP,得t=2(4﹣t),t=;
∴當第秒或第秒時,△PBQ為直角三角形.
(2)∠CMQ=60°不變.
∵等邊三角形中,AB=AC,∠B=∠CAP=60°
又由條件得AP=BQ,
∴△ABQ≌△CAP(SAS),
∴∠BAQ=∠ACP,
∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°.
23.(本小題滿分12分)
解:解:(1)在y=kx﹣3中,令x=0,則y=﹣3,故C的坐標是(0,﹣3),OC=3,
∵=,
∴OB=,則B的坐標是:(,0),
把B的坐標代入y=kx﹣3,得:k﹣3=0,解得:k=2;
(2)OB=,
則S=×(2x﹣3)=x﹣;
根據題意得:x﹣=,解得:x=3,則A的坐標是(3,3);
(3)
當O是△AOP的頂角頂點時,P的坐標是(﹣3,0)或(3,0);
當A是△AOP的頂角頂點時, P的坐標是(6,0);
當P是△AOP的頂角頂點時, P的坐標是(,0).
故P的坐標是:(﹣3,0)或(3,0)或(6,0)或(,0).
上文即是上學期課后同步數學試題
【上學期課后同步數學試題】相關文章:
課后同步練習題06-22
《泉城》課后同步訓練題06-13
《化石吟》課后同步練習11-12
白楊課后同步練習題02-03
《窮人》課后同步練習題01-27
《蜜蜂》課后同步練習題06-24
《影子》課后同步練習題01-29
《太陽》課后同步練習題01-29
楊桃課后同步練習題06-14