神經網絡論文
神經網絡是近年來迅猛發展的前沿課題,它對突破現有科學技術的瓶頸起到重大的作用。下面要為大家分享的就是神經網絡論文,希望你會喜歡!
摘 要
人工神經網絡是近年來迅猛發展的前沿課題,它對突破現有科學技術的瓶頸起到重大的作用。本文剖析了人工神經網絡的特征、模型結構以及未來的發展趨勢。
【關鍵詞】人工神經網絡神經元 矩陣
1 人工神經網絡概述
人工神經網絡(ANN)是一種用計算機網絡系統模擬生物神經網絡的智能神經系統,它是在現代神經生物學研究成果的基礎上發展起來的,模擬人腦信息處理機制的一種網絡系統,它不但具有處理數值數據的計算能力,而且還具有處理知識的學習、聯想和記憶能力。
人工神經網絡模擬了大腦神經元的組織方式,反映了人腦的一些基本功能,為研究人工智能開辟了新的途徑。它具有以下基本特征:
1.1 并行分布性
因為人工神經網絡中的神經元排列并不是雜亂無章的,往往是以一種有規律的序列排列,這種結構非常適合并行計算。同時如果將每一個神經元看作是一個基本的處理單元,則整個系統可以是一個分布式處理系統,使得計算快速。
1.2 可學習性和自適應性
一個相對很小的人工神經網絡可存儲大量的專家知識,并能根據學習算法,或利用指導系統模擬現實環境(稱為有教師學習),或對輸入進行自適應學習(稱為無教師學習),可以處理不確定或不知道的事情,不斷主動學習,不斷完善知識的存儲。
(3)魯棒性和容錯性
由于采用大量的神經元及其相互連接,具有聯想映射與聯想記憶能力,容錯性保證網絡將不完整的、畸變的輸入樣本恢復成完整的原型,魯棒性使得網絡中的神經元或突觸遭到破壞時網絡仍然具有學習和記憶能力,不會對整體系統帶來嚴重的影響。
1.3 泛化能力
人工神經網絡是大規模的非線性系統,提供了系統協同和自組織的潛力,它能充分逼近任意復雜的非線性關系。如果輸入發生較小變化,則輸出能夠保持相當小的差距。
1.4 信息綜合能力
任何知識規則都可以通過對范例的學習存儲于同一個神經網絡的各連接權值中,能同時處理定量和定性的信息,適用于處理復雜非線性和不確定對象。
2 人工神經網絡模型
神經網絡是在對人腦思維方式研究的基礎上,將其抽象模擬反映人腦基本功能的一種并行處理連接網絡。神經元是神經網絡的基本處理單元。
在神經網絡的發展過程中,從不同角度對神經網絡進行了不同層次的描述和模擬,提出了各種各樣的神經網絡模型,其中最具有代表性的神經網絡模型有:感知器、線性神經網絡、BP網絡、自組織網絡、徑向基函數網絡、反饋神經網絡等等。
3 神經元矩陣
神經元矩陣是神經網絡模型的一種新構想,是專門為神經網絡打造的一個矩陣,它符合神經元的'一切特征。
神經元矩陣采用矩陣形式,它可為n維向量組成。引入向量觸頭和信使粒的概念,向量觸頭可生長,即長度可變,方向可變,信使粒可“游蕩”在矩陣中,建立各種聯系。如圖1即是神經元矩陣模型
(1)容器可產生一種無形的約束力,使系統得以形成,容器不是全封閉的,從而保證系統與外界的溝通和交互;各向量間可用相互作用的力來聯系,而各個信使粒則受控于容器、中空向量以及其它的信使粒。各神經元之間自主交互,神經元矩陣是一種多層次的管理,即一層管理一層。系統具有明顯的層級制和分塊制,每層每塊均獨立且協同工作,即每層每塊均含組織和自組織因素。
(2)向量觸頭是中空的,信使粒可以通過向量或存儲于向量中,所以又稱為中空向量。向量存儲了信使粒后,可以吸引更多的信使粒在附近,或使鄰近向量轉向、伸長,進而形成相對穩定的信息通路。
(3)當兩條或更多的信息通路匯集時,可能伴隨著通路的增強、合并,以及信使粒的聚集、交換,這是神經元矩陣運算的一種主要形式。通路的形成過程,也就是是神經元矩陣分塊、分層、形成聯接的過程,也為矩陣系統宏觀管理、層級控制的實現奠定了基礎。
神經元矩陣亦是一種具有生物網絡特征的數學模型,綜合了數學上矩陣和向量等重要概念,是一種立體的矩陣結構。尤其是將矩陣的分塊特性和向量的指向特征結合起來,更好的體現了神經網絡的整體性和單元獨立性,系統的組織和自組織特征也更為凸顯。信使粒以“點”的數學概念,增強了系統的信息特征,尤其是增強了矩陣的存儲和運算功能。
4 人工神經網絡的發展趨勢
人工神經網絡是邊緣性交叉科學,它涉及計算機、人工智能、自動化、生理學等多個學科領域,研究它的發展具有非常重要意義。針對神經網絡的社會需求以及存在的問題,今后神經網絡的研究趨勢主要側重以下幾個方面。
4.1 增強對智能和機器關系問題的認識
人腦是一個結構異常復雜的信息系統,我們所知道的唯一智能系統,隨著信息論、控制論、計算機科學、生命科學的發展,人們越來越驚異于大腦的奇妙。對人腦智能化實現的研究,是神經網絡研究今后的需要增強的地發展方向。
4.2 發展神經計算和進化計算的理論及應用
利用神經科學理論的研究成果,用數理方法探索智能水平更高的人工神經網絡模型,深入研究網絡的算法和性能,使離散符號計算、神經計算和進化計算相互促進,開發新的網絡數理理論。
4.3 擴大神經元芯片和神經網絡結構的作用
神經網絡結構體現了結構和算法的統一,是硬件和軟件的混合體,神經元矩陣即是如此。人工神經網絡既可以用傳統計算機來模擬,也可以用集成電路芯片組成神經計算機,甚至還可以生物芯片方式實現,因此研制電子神經網絡計算機潛力巨大。如何讓傳統的計算機、人工智能技術和神經網絡計算機相融合也是前沿課題,具有十分誘人的前景。
4.4 促進信息科學和生命科學的相互融合
信息科學與生命科學的相互交叉、相互促進、相互滲透是現代科學的一個顯著特點。神經網絡與各種智能處理方法有機結合具有很大的發展前景,如與專家系統、模糊邏輯、遺傳算法、小波分析等相結合,取長補短,可以獲得更好的應用效果。
【神經網絡論文】相關文章:
神經網絡經典論文02-25
人工神經網絡論文06-10
人工神經網絡定義論文06-10
環境科學人工神經網絡運用論文01-30
試析基于補償模糊神經網絡的高職院校教師教學評價模型的教育論文07-03
環保論文LED論文06-01
環保論文:LED論文06-01
教學論文(人教版教學論文)12-06