《分數的基本性質》教學設計
作為一名為他人授業解惑的教育工作者,就難以避免地要準備教學設計,教學設計是一個系統設計并實現學習目標的過程,它遵循學習效果最優的原則嗎,是課件開發質量高低的關鍵所在。一份好的教學設計是什么樣子的呢?以下是小編為大家收集的《分數的基本性質》教學設計,僅供參考,歡迎大家閱讀。
《分數的基本性質》教學設計1
教學內容:人教版小學數學第十冊第75頁至78頁。
教學目標:
1、分數是數學中常見的表示形式,它由分子和分母組成,可以表示部分和整體之間的關系。學生在學習分數時,需要掌握分數的基本性質,比如分子和分母可以同時乘以一個非零數,來得到一個等價的分數。這樣做不會改變分數的大小,只是改變了分數的形式。這個性質在簡化分數、比較分數大小等問題中非常有用。
2、培養學生的觀察能力、動手操作能力和分析概括能力等。
3、讓學生在學習過程中養成互相幫助、團結協作的良好品德。
教學準備:
課件、長方形紙片、彩筆。
教學過程:
一、創設情境,憶舊引新
悟空師徒四人來到一個小國家——算術王國,豬八戒饑腸轆轆,悟空便對他說:“我給你10塊饅頭,平均分2天吃完,怎么樣?”八戒聞言大怒:“太少了,你這猴子欺負我!”悟空瞇起眼睛說:“那我就給你100塊饅頭,平均分20天吃完,可以了吧。”八戒聽后大喜:“太好了!太好了!這下每天我可以多吃點了!”
同學們,你們認為八戒說得有道理嗎?(沒道理)
很久很久以前,在一個神秘的森林里,一只小松鼠和一只小松鼠精靈相遇了。小松鼠問道:“你是誰?為什么看起來和我這么像?”小松鼠精靈神秘地笑著說:“或許我們有著某種特殊的聯系,但這個謎團需要我們一起去解開……”
為什么?用你們的數學知識幫他解決一下吧。(學生立式計算)
先算出商,再觀察,你發現了什么?
被除數和除數同時擴大(或縮小)相同的倍數,商不變。
同學們,再想一想除法與分數有什么關系,并完成這些練習吧。
8÷15=? 3÷20=?? 14÷27=
二、動手操作 、導入新課
同學們對知識掌握的真不錯,為了表揚你們,我決定找三個同學來與我一同分享一個兌現。(拿出準備好的長方形紙片。)
我們把三張紙片比喻成三塊餅,大家一起比較,每人的三塊餅大小是相同的嗎?請拿出第一塊餅,我想與你每人一塊,確保它們大小一樣,你能做到嗎?你給我的那塊餅為什么是這塊餅的一半呢?用分數怎么表示呢?
我想與你每人兩塊,而且大小要一樣大,你又能做到嗎?用分數怎樣表示呢?
當我們想要平均分配四塊給你和我時,你覺得這種分配方式可行嗎?用分數來表示這種分配又是怎樣的呢?這三個分數的大小是否相等呢?為什么呢?在本節課中,我們將一起探討這個數學問題。
這里是一個小故事:小明手里拿著三根不同長度的繩子,他想知道這三根繩子的長度是否相等。于是,他將三根繩子分別放在桌子上比較。經過比較后,小明發現這三根繩子看起來似乎長度相等。這讓小明感到很驚訝,他開始思考為什么這三根繩子的長度看起來一樣。這個問題困擾著小明,他決定繼續探究原因。
三、探索分數的基本性質
你們三次給我的餅大小相等嗎?那么這三個分數大小怎樣?可以用怎樣的式子表示?
1、觀察一下這個式子,3個分數有什么不同?有什么地方相同?分數的大小為什么會不變呢?要弄清楚這個問題,我們必須先觀察分數的分子、分母是怎樣變化的。你們能從商不變的`規律,分數與除法的關系中找出它們的變化規律嗎?
2、學生交流、討論并 匯報 ,得出初步分數的基本性質。
分數的分子、分母同時乘以或除以相同的數,分數的大小不變。
3、將結論應用到
(1)先從左往右看, 是怎樣變為與它相等的 的?分母乘2,分子乘2。
(2)由 到 ,分子、分母又是怎樣變化的? (把平均分的份數和取的份數都擴大了4倍。)
(3)是怎樣變化成與之相等的 的?
(4)又是怎樣變成 的?(把平均分的份數和取的份數都縮小了4倍。)
4、當兩個數相乘或相除時,其中一個數增大,另一個數減小,結果會更接近前者。不過,不能同時乘或除以0,因為0不能作為除數。
5、這就是今天我們所學的“分數的基本性質”(板書課題,出示“分數的基本性質”)。學生讀一遍,你認為哪幾個字特別重要?(相同的數、0除外)相同的數,指一些什么數?為什么零除外?
四、知識應用(你知道,阿凡提為什么會笑嗎?他對三兄弟講了哪些話?)
有一位父親將一塊土地留給了他的三個兒子。大兒子認為這塊土地是他的,二兒子認為這塊土地是他的,三兒子也認為這塊土地是他的。大兒子和二兒子覺得自己吃虧了,于是他們開始爭吵。這時,阿凡提路過,詢問了爭吵的原因后,他笑了笑,給了他們一些建議,三兄弟因此停止了爭吵。
分數的分子和分母同時乘或者除以相同的數,分數的大小不變。
分數的分子和分母同時乘或者除以一個數(零除外),分數的大小不變。
分數的分子和分母同時乘或者除以相同的數(零除外),分數的大小不變。
⒍小結。
從判斷題中我們可以看出,分數的基本性質要注意什么?學到這兒,大家想一想,我們以前學過的什么性質跟分數的基本性質類似?誰能用整數除法中商不變的性質來說明分數的基本性質?
學生通過觀察和比較發現,當分子和分母同時擴大或縮小相同的倍數時,所得的分數的大小并不會改變。這說明分數的大小取決于分子和分母的比例關系,只有在同向、同倍變化的情況下,分數的大小才能保持不變。這一規律也適用于其他分數,只要分子與分母按相同的比例變化,所得的分數大小仍然保持不變。因此,我們可以得出分數的基本性質:分子與分母是同時變化的,是同向變化的,是同倍變化的。
五、鞏固練習
⒈卡片練習:
⒉做P96“練一練”1、2。
⒊趣味游戲:
數學王國即將舉辦一場音樂會,分數大家族的節目是女聲大合唱,演出時間緊迫,需要大家快速幫助合唱隊的成員按照要求排好隊伍。請盡快協助整理隊伍,謝謝!
要求:第一排是所有同學的分數值等于,第二排是所有同學的分數值等于,還有一位同學是指揮,他是小明。我選擇小明作為指揮是因為他在團隊合作中展現出了出色的領導能力和組織能力,能夠有效地協調大家的行動,確保任務順利完成。
【通過練習,分數是數學中的一個重要概念,可以表示一個整體被等分成若干份的情況。分數由分子和分母組成,分子表示被等分的部分數量,分母表示整體被等分的份數。分數可以用來表示部分與整體之間的關系,比如$frac{1}{2}$表示一個整體被等分成兩份中的一份。在分數的運算中,我們需要掌握分數的基本性質,比如分數的大小比較、分數的化簡、分數的四則運算等。對分數的基本性質有深刻的理解可以幫助我們更好地應用分數解決實際問題。
六、課堂總結
這節課你學到了什么?什么是分數的基本性質?你是怎樣理解的?
七、布置作業
做P97練習十八2。
《分數的基本性質》教學設計2
【教學內容】:
【教學目標】:
1、使學生理解和掌握分數的基本性質,并會應用分數的基本性質把不同分母的分數化成分母相同而大小不變的分數。
2、通過猜想、驗證、歸納、總結等活動,讓學生經歷分數的基本性質的探究過程,體會舉具體事例、數形結合的思考方法,感受抽象、推理的基本數學思想。
3、在自主探究與合作交流的過程中,感受數學知識之間的聯系,激發學生探究學習的興趣,提高學生發現問題的能力。
【教學重點】:經歷質疑、猜想、驗證、觀察、歸納的學習過程,探究分數的基本性質。
【教學難點】:理解和掌握分數的`基本性質。
【教學方法】:
本節課我綜合采用了談話法,情境創設法、引導探究法、直觀演示法,組織學生經歷觀察,猜測,得出結論。
【學法指導】:
為了有效的達成上述教學目標,秉著新課程標準的精神指導,在整個教學活動中力求充分體現學數學就是做數學,數學教學就是數學活動的教學的理念,以學生為主體,以學生發展為本。在本節課教學中,我主要采用觀察發現法、動手操作法、舉例驗證法。引導學生靜心傾聽、認真操作、積極思考、大膽表達,通過動手實踐、自主探究、合作交流等多種方式獲得廣泛的數學活動經驗。
【教學準備】:
1、媒體準備:白板
2、資源準備:PPT
【資源運用】:
1、導入——課件出示問題-——喚醒舊知
2、探究新知——PPT課件——突破重點、分解難點
3、拓展延伸
【教學過程】:
一、聯系舊知,質疑引思。
1、在自然數的范圍內,可以找到兩個大小相等但各個數位上數字又都不相同的自然數嗎?
2、在小數的范圍內,可以找到兩個大小相等但各個數位上數字又都不相同的小數嗎?
3、在分數的范圍內,可以找到兩個大小相等但分子和分母又都不相同的分數嗎?
誰能說一個與《分數的基本性質》教學設計
【喚醒學生已有知識經驗而且引發學生的數學思考,為主動探究新知積聚動力。】
二、自主操作,驗證猜想
1、初步驗證
(1)提出問題
誰能說一個與《分數的基本性質》教學設計
如果讓你證明他們確實和《分數的基本性質》教學設計
(2)匯報方法
2、深入驗證:
(1)在紙上寫上一組你認為可能相等的分數;
(2)用你喜歡的方法來證明。
(3)學生操作。
(4)匯報交流。
3、概括性質,深化理解
(1)在操作的過程中,你有什么發現?分子分母怎樣變化分數的大小才不變?
(2)歸納概括,總結規律,揭示課題。
(3)根據我們以前學過的分數與除法的關系,以及整數除法中商不變的性質,來說明分數的基本性質嗎?
4、運用規律,完成例2。
(1)理解題意
(2)要把他們化成分母是12而大小不變的分數,分子應該怎么變化?變化的根據是什么?
(3)獨立完成,交流匯報
【給學生提供開放的探究空間,滿足學生的探索欲望。】
三、知識應用,鞏固提升
1、判斷
(1)分數的分子、分母同時乘以或除以一個數,分數的大小不變。
(2)兩個分數的分子、分母都不相同,這兩個分數一定不相等。
(3)《分數的基本性質》教學設計
2、五年級有《分數的基本性質》教學設計
3、把《分數的基本性質》教學設計
才能使分數的大小不變?
四、回顧總結,完善認知
通過本節課的學習,你有什么收獲?
【教學反思】:
1、課前準備不足,我用的20xx版做的,結果上課電腦是xxxx年版本的,展臺沒有試,影響教學流程。
2、教學機智不足,沒有關注學情,總想到20分鐘的課,時間短,有些趕,知識落實不夠扎實。
3、課堂提問語言不夠準確精煉,課堂評價不夠豐富、準確。例如開課語及結束語言有歧義。
《分數的基本性質》教學設計3
教學目標:
結合趣味故事經歷認識分數的基本性質的過程。
初步理解分數的基本性質,會應用分數的基本性質進行分數的改寫。
經歷觀察、操作和討論等學習活動,體驗數學學習的樂趣
教學重點:理解掌握分數的基本性質。
教學難點:歸納分數的性質。
學生準備:長方形紙片。
一、創設故事情境,激發學生學習興趣并揭示課題。
編了一個唐僧師徒4人分西瓜的故事,利用孫悟空的機智聰明和豬八戒貪吃的特點。創設問題情境引起學生的探究興趣,通過把一個西瓜平均分成4塊,豬八戒吃了一塊,再把這西瓜平均分成8塊,豬八戒吃了2塊。最后把西瓜分16塊,豬八戒吃了4塊,設計這個故事的目的是使學生在已有生活經驗和分數知識的背景下,了解豬八戒沒有多吃到餅的事實,為理解分數的基本性質提供實踐經驗。在看完故事后向學生提問你了解到了哪些數學信息,想到了什么問題?
讓學生討論并用自己的方法說明八戒沒有多吃到餅。讓學生親自動手折一折、分一分、比一比,通過課件從直觀上讓學生感受到這三個分數大小是相等的。而這兩個分數的分子和分母都不相等,可分數卻相等,這其中有什么規律呢,從而來揭示課題。
二、小組合作,探究新知:
1、動手操作、形象感知
出示課件,讓學生觀察討論圖中分數的涂色部分是多少?
A、談話:請同學們拿出課前準備好的一張正方形的紙,你能先對折,并涂出它的1/4嗎?
B、追問:你能通過繼續對折,每次找一個和1/4相等的其他分數嗎?
C、學生操作,并組織交流:每次對折后,正方形被平均分成多少份。涂色部分有幾份。并思考可以用什么分數表示涂色的部分,得到的分數與1/4是否相等。交流時讓不同對折方法的學生充分展示。
2、觀察比較、探究規律
(1)通過動手操作,你認為它們誰大?請到展示臺上一邊演示一邊講一講。
(2既然這三個分數相等,那么我們可以用什么符號把它們連接起來?
(3)這三個分數的分子、分母都不相同,為什么分數的大小卻相等的?你們能找出它們的變化規律嗎?請同學們四人為一組,討論這兩個問題
(4)通過從左到右的觀察、比較、分析,你發現了什么?
使學生認識到這四個正方形同樣大,雖然平均分的份數不一樣,但陰影部分的面積相等,四個分數也相等。課件出示連等式子。
【通過展示不同的對折方法,使學生體會解決問題方法的多樣性,拓展學生的思維。】
3引導觀察:請大家觀察每個等式中的兩個分數,它們的分子、分母是怎樣變化的?
觀察思考后。在課文上填空,再在小組內交流。然后教師再集中指導觀察:
先從左往右看:1/4是怎樣變為與它相等的2/8的?由2/8到4/16,分子、分母又是怎樣變化的?誰用一句話說出它的變化規律?再從右往左看:4/16是怎樣變化成與之相等的2/8的?2/8、1/4呢?用一句話說出它的`變化規律?
4、歸納規律
提問:綜合以上兩種變化情況,誰能用一句話概括出其中的規律?
學生交流歸納,最后全班反饋“分數的分子和分母同時乘或除以相同的數﹙0除外﹚,分數的大小不變,這是分數的基本性質”
6、小結
同學們在這節課的學習中表現得很出色,說一說你有什么收獲或體會?
【通過小結,既對整個課堂學習的內容有一個總結,又能讓學生產生后續學習和探究的欲望,將學生的學習興趣延伸到了下節課】
四、鞏固強化,拓展應用
多樣的練習可以讓學生及時鞏固所學知識,又調動了學生學習的積極性。
五、游戲找朋友。
六、布置作業:
在上這課之前,認真備課,精心設計課堂思路,準備好教具。課前,活躍氣氛。開始可能是由于農村吧,基本上,上課都是用黑板,難得一次上課時利用多媒體上課的。學生對此也是很有興趣的,特別是在創設情景的時候,很開心的投入課堂氣氛來。緊接著動手操作等步驟都很好。唯一不足是學生沒感大膽發言。對于問題,答得不是很清晰。教師讓學生主動探索,逐步獲取規律,最后也都一一的解答并歸納分數的性質。對于從左到右的變化,分子分母都變大了,但分數大小不變。從右到左,分子分母都變小,分數大小不變。從而得出規律。對于這分數的性質要讓學生抓住幾個重點詞,“都”“乘以或除以”“相同的數”“零除外”重點讓學生熟記分數的性質。多層的鞏固練習。加深學生的理解。并且能運用分數的性質完成作業。最后,讓學生輕松愉快地應用著這節課所學的知識進行找朋友的游戲。
《分數的基本性質》教學設計4
一、故事引人,揭示課題。
1.教師講故事。猴山上的猴子最喜歡吃猴王做的餅了。有一天,猴王做了三塊大小一樣的餅分給小猴們吃,它先把第一塊餅平均切成四塊,分給猴1一塊。猴2見到說:“太少了,我要兩塊。”猴王就把第二塊餅平均切成八塊,分給猴2兩塊。猴3更貪,它搶著說:“我要三塊,我要三塊。”于是,猴王又把第三塊餅平均切成十二塊,分給猴3三塊。同學們,你知道哪只猴子分得多嗎?
討論:哪只猴子分得的多?讓學生發表自己的意見,教師出示三塊大小一樣的餅,通過師生分餅、觀察和驗證,得出結論:三只猴子分得的餅一樣多。
引導:聰明的猴王是用什么辦法來滿足小猴子們的要求,又分得那么公平的呢?同學們想知道嗎?學習了“分數的基本性質”就清楚了。(板書課題)
[一上課,先聽講一段故事,學生非常樂意,并會立即被吸引。思考故事當中提出的問題,學生自然興趣濃厚。通過故事設疑,激起了學生探求新知的欲望。]
2.組織討論。
(1)既然三只猴子分得的餅同樣多,那么表示它們分得餅的分數是什么關系呢?這三個分數什么變了,什么沒有變?讓學生小組討論后答出:這三個分數是相等關系,1/4=2/8=3/12,它們平均分的份數和表示的份數也就是分數的分子和分母變化了,但分數的大小不變。
(2)猴王把三塊大小一樣的餅分給小猴子一部分后,剩下的部分大小相等嗎?你還能說出一組相等的分數嗎?通過觀察演示得出:3/4=6/8=9/12。
(3)我們班有50名同學,分成了五組,每組10人。那么第一、二組學生的人數占全班學生人數的幾分之幾?引導學生用不同的分數表示,然后得出:1/2=2/4=20/40。
3.引入新課:黑板上三組相等的分數有什么共同的特點?學生回答后板書:
分數的分子和分母變化了, 分數的大小不變。
它們各是按照什么規律變化的呢?我們今天就來共同研究這個變化規律。
3.出示例2:把1/2和10/24化成分母是12而大小不變的分數。
思考:要把1/2和10/24化成分母是12而大小不變的分數,分子怎么不變?變化的依據是什么?
4.討論:猴王運用什么規律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?如果要五塊呢?
[得出性質后,再讓學生說出猴王的想法,并回答如果小猴子要四塊,猴王怎么辦?既前后照應,又讓學生在輕松愉快的幫猴王想辦法的過程中,運用新知解決實際問題。]
5.質疑:讓學生看看課本和板書,回顧剛才學習的過程,提出疑問和見解,師生答疑。
通過舉例,溝通分數的基本性質與商不變性質之間的聯系。引導學生運用分數與除數的關系,以及整數除法中商不變的性質,說明分數的基本性質。如:3/4=3÷4=(3×3)÷(4×3)=9÷12=9/12
[有助于學生順利地運用分數與除法的關系,以及整數除法中商不變性質說明分數的基本性質,實現新知化歸舊知。]它們各是按照什么規律變化的`呢?我們今天就來共同研究這個變化規律。
二、比較歸納,揭示規律。
1.出示思考題。
2.比較每組分數的分子和分母:
(1)從左往右看,是按照什么規律變化的?
(2)從右往左看,又是按照什么規律變化的?
讓學生帶著上面的思考題,看一看,想一想,議一議,再翻開教科書看看書上是怎么說的。
2.集體討論,歸納性質。(1)從左往右看,由3/4到6/8,分子、分母是怎么變化的?引導學生回答出:把3/4的分子、分母都乘以2,就得到6/8。原來把單位“1”平均分成4份,表示這樣的3份,現在把分的份數和表示份數都擴大2倍,就得到6/8。
板書:
(2)3/4是怎樣變化成9/12的呢?怎么填?學生回答后填空。
(3)引導口述:3/4的分子、分母都乘以2,得到6/8,分數的大小不變。
(4)在其它幾組分數中,分子、分母的變化規律怎樣?幾名學生回答后,要求學生試著歸納變化規律:分數的分子和分母都乘以相同的數,分數的大小不變。
(板書:都乘以 相同的數)
(5)從右往左看,分數的分子和分母又是按照什么規律變化的?通過分析比較每組分數的分子和分母,得出:分數的分子和分母都乘以相同的數,分數的大小不變。
(板書:都除以 )
(6)引導思考:都乘以、都除以兩個“都”字,去掉一個怎么改?(去掉第二“都”字,換成“或者”)再對照教科書中的分數基本性質,讓學生說出少了什么?(少了“零除外”)討論:為什么性質中要規定“零除外”?
(板書:零除外)
(7)齊讀分數的基本性質。先讓學生找出性質中關鍵的字、詞,如“都”、“相同的數”、“零除外”等。然后要求關鍵的字詞要重讀。師生共同讀出黑板上板書的分數基本性質。
[新知識力求讓學生主動探索,逐步獲取。“猴王分餅”和分析班級學生人數得出的三組相等的分數為學生探索新知提供材料,出示的思考題是學生探求新知、獨立思考的指南,教師環緊扣的提問以及引導學生逐步展開的充分的討論,幫助學生一步步走向結論。]
《分數的基本性質》教學設計5
教學要求
①分數是數學中的一種特殊表示形式,用來表示一個整體被分成若干等份中的一部分。分數有一些基本性質,比如分數的大小與分子成正比,分母成反比,即分子越大,分數越大;分母越大,分數越小。另外,分數可以化簡為最簡形式,即分子與分母沒有共同的因數。當我們需要比較或運算不同分母的分數時,可以通過找到它們的最小公倍數,將分數化為相同分母的形式,從而方便比較大小或進行運算。
②培養學生觀察、分析和抽象概括能力。
③滲透“事物之間是相互聯系”的辯證唯物主義觀點。
教學重點理解分數的基本性質。
教學用具每位學生準備三張同樣的長方形紙條;教師:紙條、投影片等。
教學過程
一、創設情境
1.120÷30的商是多少?被除數和除數都擴大3倍,商是多少?被除數和除數都縮小10倍呢?
2.說一說:
(1)商不變的性質是什么?
(2)分數與除法的關系是什么?
3.填空。
1÷2=(1×2)÷(2×2)==。
二、揭示課題
分數除法中是否存在商不變的性質,讓我們一起來探索吧!你認為在分數中會不會存在類似的性質呢?這個性質會是什么呢?讓我們一起大膽猜測吧!
隨著學生的回答,教師板書課題:分數的基本性質。
三、探索研究
1.動手操作,驗證性質。
(1)請拿出三張同樣大小的長方形紙條,將它們分別平均分成2份、4份、6份,并分別用不同顏色涂抹其中的1份、2份、3份。請用分數形式表示每張紙條上被涂色的部分。
(2)觀察比較后引導學生得出:==
(3)從左往右看:==
由變成,平均分的份數和表示的份數有什么變化?
把平均分的份數和表示的份數都乘以2,就得到,即==(板書)。
把平均分的份數和表示的份數都乘以3,就得到,即:==(板書)。
引導學生初步小結得出:分數的分子、分母同時乘以相同的數,分數的大小不變。
(4)從右往左看:==
引導學生觀察明確:的分子、分母同時除以2,得到。同理,的分子、分母同時除以3,也可以得到。
讓學生再次歸納:分數的分子、分母同時除以相同的數,分數的大小不變。
(5)引導學生概括出分數的基本性質,并與前面的猜想相回應。
(6)提問:這里的“相同的數“,是不是任何數都可以呢?(補充板書:零除外)
2.分數的基本性質與商不變的性質的比較。
在除法里有商不變的性質,在分數里有分數的基本性質。
想一想:根據分數與除法的關系以及整數除法中商不變的'性質,你能說明分數的基本性質嗎?
3.學習把分數化成指定分母而大小不變的分數。
(1)出示例2,幫助學生理解題意。
(2)啟發:要把和化成分母是12而大小不變的分數,分子應該怎樣變化?變化的根據是什么?
(3)讓學生在書上填空,請一名學生口答。
4.練習。教材第108頁的做一做。
四、課堂實踐。
練習二十三的1、3題。
五、課堂小結
1.這節課我們學習了什么內容?
2.什么是分數的基本性質?
六、課堂作業
練習二十三的第2題。
七、思考練習
練習二十三的第10題。
教學反思:
“分數的基本性質”是小學五年級下冊數學教材的重要內容,它是約分、通分的基礎,對于學習比的基本性質也具有重要意義。因此,分數的基本性質是本單元的重點課程。在這節課上,我將采用“猜想和驗證”的教學方法,為學生留出充分的探索時間和廣闊的思維空間,讓他們在實踐中掌握知識,培養數學思維。通過這樣的教學方式,不僅使學生掌握了數學基本知識,更重要的是激發了他們學習的主動性,培養了他們解決實際問題的能力。這樣的教學目的在于培養學生學會學習、學會思考、學會創造,從而使他們能夠運用數學的思維方式解決未來生活中遇到的各種問題,這也是學生必備的基本素質。
這節課是在學生已經掌握了商的不變性質,并具有一定應用經驗的基礎上進行的。在這節課中,我設計了一些新的挑戰和問題,幫助學生深入理解商的不變性質,并在實際問題中靈活運用所學知識。通過這種方式,學生可以提高對商的理解和運用能力,為他們進一步學習和應用商的相關知識打下堅實的基礎。
1、商不變的性質與除法、分數的關系密切相關,商不變意味著在一定條件下商的值保持不變。在商不變的基礎上,我們可以猜想分數的基本性質是什么?請同學們根據商不變的性質大膽猜想一下,分數的基本性質是什么?并且說出你們的想法。
2、讓學生在折紙游戲中充分發揮主體作用,通過操作、觀察、比較來驗證自己的猜想。可以讓他們嘗試不同的折法,觀察折疊后的形狀和顏色變化,并用不同的顏色表示不同的分數,培養他們的動手能力和觀察解決問題的能力。
3、設計練習時要考慮到知識的轉化能力,因此練習的設計應該具有典型性、多樣性、深度和靈活性。首先,通過基礎練習深化對分數基本性質的理解,包括分子、分母、約分、通分等方面。然后,在學完整個知識點后,進行綜合練習,鞏固知識,提高能力。在練習中注重應用拓展,讓學生能夠將所學知識應用到實際問題中,培養他們解決問題的能力。
《分數的基本性質》教學設計6
教學內容:蘇教版小學數學第十冊第95頁至97頁。
教學目標:
知識目標:通過教學使學生理解和掌握分數的基本性質,能利用它改變分數的分子和分母,而使分數的大小不變。
能力目標:培養學生的觀察能力、動手操作能力和分析概括能力等。
情感目標:讓學生在學習過程當中養成互相幫助、團結協作的良好品德。
教學準備:圓形紙片、彩筆、各種卡片。
教學過程:
一、創設情境,激發興趣
孫悟空有3根一模一樣的甘蔗,小猴子貝貝、佳佳、丁丁看見了,一哄而上,叫嚷著要吃甘蔗。孫悟空說: “好,貝貝分第一根甘蔗的,佳佳分第二根甘蔗的,丁丁分第三根甘蔗的。”貝貝、佳佳聽了,連忙說:“孫大圣,不公平,我們要分得和丁丁的同樣多。”孫悟空真的分得不公平嗎?(學生思考片刻)
【通過學生耳熟能詳的人物對話,給學生設計一個懸念,抓住學生的好奇心理,由此激發學生的學習興趣。】
二、動手操作 、導入新課
師:我們也來分分看。(學生拿出準備好的圓形紙片。)師:我們把三張紙片看成三塊餅,大家比比看,每人的三塊餅大小相等嗎?請拿出第一塊餅,我想要一塊,而且大小要是第一塊餅的一半,你能做到嗎?你給我的為什么是這塊餅的一半呢?用分數怎么表示呢?我現在想要兩塊,而且大小要跟剛才給我的餅一樣大,你又能做到嗎?用分數怎樣表示呢?我如果想要四塊,大小跟前兩次給我的一樣,你還能做到嗎?這次用分數又該怎樣表示呢?這三個分數大小相等嗎?為什么呢?這節課,我們就來研究這個數學問題。
【通過學生的動手操作,初步感知三個分數的大小相等,為尋找原因設置懸念,再次激發學生的學習興趣。】
三、觀察對比, 由“數”變 “式”
你們三次給我的餅大小相等嗎?那么這三個分數大小怎樣?可以用怎樣的式子表示?(==)(從這里你能看出,孫悟空分甘蔗,分得公平嗎?)
四、概括分析,由“式”變 “語”
⒈觀察一下這個式子,3個分數有什么不同?有什么地方相同?分數的大小為什么會不變呢?要弄清楚這個問題,我們必須先研究分數的分子、分母是怎樣變化的。
⒉先從左往右看,是怎樣變為與它相等的的?
(1)分母乘2,分子乘2。
根據分數的意義,""表示把單位"1"平均分成2份,取其中的1份,而現在把單位"1"平均分成4份,也就是把原兩份中的每一份又平均分成2份, 所以現在平均分成了2×2=4(份),現在要得跟原來的同樣多,必須取幾份?[1×2=2(份)]==
即原來把單位"1"平均分成2份,取1份,現在把平均分的份數和取的份數都擴大2倍,就得到。與的大小相等,分數值沒變。
(2)由到,分子、分母又是怎樣變化的?(把平均分的份數和取的份數都擴大了4倍。)==
(3)誰能用一句話說出這兩個式子的變化規律?
⒊再從右往左看
(1) 是怎樣變化成與之相等的的?
原來把單位"1"平均分成4份,取其中的`2份,現在把同樣的單位"1"平均分成2份,即把原來的每兩份合并成 1份,現在要取得跟原來的同樣多,只需取幾份?[2÷2=1(份)]也就是現在把平均分的份數和取的份數都縮小了2倍,得到,分數的大小沒有變。
==
(2) 又是怎樣變成的?(把平均分的份數和取的份數都縮小了4倍。)
==
(3)誰能用一句話說出這兩個式子的變化規律?
⒋綜合以上兩種變化情況,誰能用一句話概括出其中的規律?你覺得有什么要補充的嗎?(不能同時乘或除以0)為什么?
⒌這就是今天我們所學的“分數的基本性質”(板書課題,出示“分數的基本性質”)。
(1)理解概念。
學生讀一遍,你認為哪幾個字特別重要?(相同的數、0除外)相同的數,指一些什么數?為什么零除外?
(2)瘃木鳥診所。(請說出理由)
分數的分子和分母同時乘或者除以相同的數,分數的大小不變。( )
分數的分子和分母同時乘或者除以一個數(零除外),分數的大小不變。( )
分數的分子和分母同時乘或者除以相同的數(零除外),分數的大小不變。( )
⒍小結。
從判斷題中我們可以看出,分數的基本性質要注意什么?學到這兒,大家想一想,我們以前學過的什么性質跟分數的基本性質類似?誰能用整數除法中商不變的性質來說明分數的基本性質?
【此過程主要由學生通過觀察、比較,得出這三個分數大小相等的規律,由此牽引到其他的有同等規律的分數中,從而引出分數的基本性質:分子、分母是同時變化的,是同向變化的(是擴大都擴大,是縮小都縮小),是同倍變化的(擴大或縮小的倍數相同)。只有這樣變化,分數的大小才不會變。】
五、鞏固練習
⒈卡片練習:
⒉做P96“練一練”1、2。
⒊趣味游戲:
數學王國開音樂會,分數大家族的節目是女聲大合唱,只有幾分鐘就要演出了,請大家趕緊幫合唱隊的成員按要求排好隊。
要求:第一排是分數值等于的,第二排是分數值等于的,還有一位同學是指揮,他是誰?你是怎樣想的?
【通過練習,讓學生加深對分數的基本性質的理解,為下節課分數的基本性質的應用打好堅實的基礎。】
六、課堂總結
這節課你學到了什么?什么是分數的基本性質?你是怎樣理解的?
七、布置作業
做P97練習十八2。
《分數的基本性質》教學設計7
教學目標:
知識與技能:理解和掌握分數的基本性質,知道分數基本性質與整數除法中商不變性質的關系。能運用分數的基本性質把一個分數化成分母相同而大小不變的分數;培養學生觀察比較、抽象概括及動手實踐的能力,進一步發展學生的思維。
過程與方法:經歷探究分數基本性質的過程,感受“變與不變”,“轉化”等數學思想方法。情感態度與價值觀:激發學生積極主動的情感狀態,養成注意傾聽的習慣,體驗互助合作的樂趣。
教學重點:理解和掌握分數的基本性質,會運用分數的基本性質。
教學難點:自主探究出分數的基本性質
教學準備:PPT課件、每小組準備三個同樣大小的圓形紙片、三張完全一樣的長方形(正方形)紙、直尺、彩筆等。
教學流程:
一、故事導入激趣引思
引言:細心的同學一定聽出來了,剛剛老師播放的是哪部動畫片的主題歌?對,我們今天的學習就從西游記的故事說起。
講故事:話說唐僧師徒四人去西天取經,一路上歷經磨難。一天,他們走得又累又餓,幸好路過一個村莊,化緣得到三塊同樣大小的餅。唐僧心想:三塊餅,四個人不太好分呀!但是很快他就想到了一個分餅的方案,他對徒弟們說:我準備將第一塊餅,平均分成2份,八戒吃其中的二分之一;將第二塊餅平均分成4份,沙和尚吃其中的四分之二;將第三塊餅平均分成8份,悟空吃其中的八分之四,你們同意這樣的分配方案嗎?師父的話音未落,豬八戒便跳出來說:“我不同意這樣的分法,師父你太偏心了,憑什么猴哥吃那么多有八分之四,而我卻吃那么少才二分之一。同學們,請你們判斷一下,豬八戒說的對嗎,師父真的偏心嗎?
生發表見解。
二、自主合作探索規律
1、反饋引導:1/2=2/4=4/8。“三個徒弟分得的餅一樣多---等式---仔細瞧瞧這組分數等式的分子分母相同么?但是它們的.大小卻?再用變化的眼光瞧瞧,(師畫正反向兩箭頭)我們發現分數的分子分母改變了,什么卻沒有變?師貼板帖分數可真與眾不同呵!
2、提出探究任務:那如果我讓們動手做或者聯系生活實際想,像這樣大小相等的分數,只有一組嗎?你們能不能找出一些給老師看看?找之前請位同學為我們讀一讀小組合作學習要求:
(1)每個小組找出一組大小相等的分數,并想辦法證明這組分數大小相等。
(2)思考:在寫分數的過程中你們發現了什么規律?
組內商量一下然后開始行動!
3、小組研究教師巡視
4、全班匯報
交流評價(教師相機板書)圓紙片匯報長方形紙匯報正方形紙匯報及聯系一組人數說發現規律把每組數從左往右或者從右向左仔細觀察你能發現分子分母的怎樣的變化規律?(可以舉例說演繹推理深入)隨機更換貼圖
板書課題:分數的基本性質打出幻燈
5、反思規律看書對照找出關鍵詞要求重讀共同讀
6、引證規律:3/4=12/16剛剛動手做我們驗證了這組大小相等的分數的正確性并由此發現了分數的基本性質那你能否利用分數與除法的關系以及整數除法中商不變性質,再一次說明分數的基本性質。
三、自學例題運用規律
過渡:同學們剛剛的精彩表現展示出了你們強大的學習能力,所以在接下來的一段時間里,老師請你們自學課本96頁的例2并完成相應“練一練”。現在開始
生自學
集體評議:例2練一練1和2,請說說你的根據和想法!重點讓學生說說根據什么,分母、分子是如何變化的。
四、多層練習鞏固深化
1、判斷對錯并說明理由
2/9=8/36,4/9=2/3,3/4=3a/4a,5/10=3/6,1/5=4/8
2、把6/20,70/100,45/50,1/2,4/5化成分母相同而大小不變的分數
思考:分數的分母相同,能有什么作用?
3、圈分數游戲圈出與1/2相等的分數
4、對對碰與1/2,2/3,3/4生生組組師生互動
五、課堂小結課堂作業
結語:你看,運用數學知識玩游戲,也是樂趣無窮。這節課我們就上到這兒,
作業:余下來的時間請完成課本97頁練習十八的1-3題,做在書上。
《分數的基本性質》教學設計8
教學目標
1、經歷探索相等分數的分子、分母變化規律的過程,使學生理解分數的基本性質。
2、能運用分數的基本性質把一個分數化成指定分母而大小不變的分數。
3、培養學生觀察、分析和抽象概括的能力。
教學重點
理解分數的基本性質
教學難點
發現和歸納分數的基本性質,并能應用它解決相關的問題。
教學過程
一、復習導入
1、說說下面各分數的含義、分數單位及它有幾個這樣的分數單位。
2、口算
120÷30= 40÷5=
12÷3= 400÷50=
師:觀察兩組算式,說說你發現了什么?是我們已經學過的除法的什么性質呢?
在除法運算中,被除數和除數同時乘或除以同一個非零數時,商不會改變,這就是除法的商不變性質。
師:除法和分數有什么關系呢?
板書課題:分數的基本性質
二、新授
師:阿凡提同學都熟悉吧?今天老師帶來一個有關阿凡提的數學小故事,跟同學分享一下:
有一個農夫爺爺,他有三頭同樣健壯的牛,要分給他的三個兒子。老大分到第一頭牛的一半,老二分到第二頭牛的四分之二,老三分到第三頭牛的八分之四。老二聽了,覺得自己很吃虧,于是三兄弟大吵起來。正巧經過的`智者阿凡提問清爭吵原因后,他想了想,然后跟他們說了幾句話。三兄弟聽后恍然大悟,停止了爭吵。
同學們,你們知道阿凡提跟三兄弟講了什么嗎?
生自由發揮。
師:這里有三張同樣大小的正方形紙,分別代表著地主爺爺家的三塊地。我們一起來看看三兄弟分到的地。你能用分數來表示嗎?(出示三張紙)
師:通過觀察,可知,三兄弟分到的地同樣多。那這三個分數是什么關系呢?
生:相等
師:請觀察這三個分數的分子和分母,它們之間存在一種規律。經過仔細觀察可以發現,這三個分數的分子和分母在每個分數中都是互換位置的。也就是說,第一個分數的分子和分母交換位置后得到第二個分數,第二個分數的分子和分母再次交換位置后得到第三個分數。這種規律使得這三個分數的大小相等,但分子和分母各不相同。
(預設)生1:分子、分母同時擴大2倍。
生2:分子、分母同時擴大4倍。
師:那從右往左看呢?
總結規律:分數的基本性質是指分數中的分子和分母同時乘或除以相同的數(除數不能為0),分數的大小不變。這一性質可以幫助我們簡化分數,使得計算更加方便和簡便。
師:和除法商不變的性質對比觀察,你有什么發現?
三、分數基本性質的運用
把和化成分母是12而大小不變的分數。
四、鞏固練習
五、課堂總結
《分數的基本性質》教學設計9
1.教材簡析
《分數的基本性質》是蘇教版小學數學教材第十冊的內容之一,在小學數學學習中起著承前啟后、舉足輕重的作用,它既與整數除法的商不變性質有著內在的聯系,也是后面進一步學習分數的計算、比的基本性質的基礎。分數的基本性質是一種規律性知識,分數的分子分母變了,分數的大小會變嗎?分數的分子分母如何變化,分數的大小不變呢?學生在這種“變”與“不變”中發現規律。
2.教材處理
以前,教師通常把《分數的基本性質》看作一種靜態的數學知識,教學時先用幾個例子讓學生較快地概括出規律,然后更多地通過精心設計的練習鞏固應用規律,著眼于規律的結論和應用。隨著課程改革的深入,教師們越來越重視學生獲取知識的過程,但我們也看到這樣的現象:問題較碎,步子較小,放手不夠,探究的過程體現不夠充分。《分數的基本性質》可不可以有別的教學思路呢?新的課程標準提出:“教師應向學生提供充分從事數學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能、數學思想和方法”。根據這一新的理念,我認為教師可以為學生創設一種大問題背景下的探索活動,使學生在一種動態的探索過程中自己發現分數的基本性質,從而體驗發現真理的曲折和快樂,感受數學的思想方法,體會科學的學習方法。所以,教師的著眼點,不能只是規律的結論和應用,而應有意識地突出思想和方法。基于以上思考,我以讓學生探究發現分數基本性質的過程為教學重點,創設了一種“猜想——驗證——反思”的教學模式,以“猜想”貫穿全課,引導學生遷移舊知、大膽猜想——實驗操作、驗證猜想——質疑討論、完善猜想等,把這一系列探究過程放大,把過程性目標”凸顯出來。
設計意圖:
本課主要本著遵循小學數學課程標準“創設問題情境提出問題解決問題建立數學模型解釋數學模型運用數學模型拓展數學模型”的指導思想而設計的。
1、通過故事創設問題情境,貼近學生生活,有利于激發學生學習興趣。
2、從故事情境中提出問題,體現數學來源于生活。
3、小組合作學習,共同探究解決問題,讓學生充分體驗知識產生的過程。
4、從幾組分數中分析,找到分數的基本性質,從而初步建立數學模型。
5、設計有坡度的練習,穿插師生互動,生生互動,讓整個運用知識的形式活潑有趣。、
6、在游戲活動中對數學知識進行拓展運用。
教學目標
1.知識與技能
(1)經歷探索分數的基本性質的過程,理解分數的基本性質。
(2)能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數。
2.過程與方法
(1) 經歷觀察、操作和討論等學習活動,并在探索過程中,能進行有條理的思考,能對分數的'基本性質作出簡要的、合理的說明。
(2) 培養學生的觀察、比較、歸納、總結概括能力。
(3)能根據解決問題的需要,收集有用的信息進行歸納,發展學生的歸納、推理能力。
3.情感態度與價值觀
(1)經歷觀察、操作和討論等數學學習活動,使學生進一步體驗數學學習的樂趣。
(2)體驗數學與日常生活密切相關。
教學重點
理解分數的基本性質
教學難點
能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數
教學準備
師:電腦課件 學生:圓紙片 長方形紙
教學步驟:
一、故事引人,揭示課題。
1.教師講故事。
話說唐僧師徒四人去西天去取經,這天走在路上,唐僧感覺餓了,就叫孫悟空去化齋,孫悟空答應了聲駕起筋斗云走了,不一會,他就帶回了三塊一樣大的餅,唐僧說:三塊餅,我們四個人怎么吃呢?孫悟空說:“你分給我一塊餅的四分之一就行了” 唐僧就把第一塊餅平均分成四塊,給了一塊給孫悟空。沙僧說:“我想要兩塊”
唐僧把第二塊餅平均分成八塊,給了2塊給沙僧。豬八戒比較貪心,他說:“我要三塊,我要三塊”,于是唐僧把第三塊餅又平均分成12塊,給了豬八戒3塊。同學們,你知道孫悟空、豬八戒、沙僧三人誰分的多嗎?
[ 一上課,先聽講一段故事,學生非常樂意,并會立即被吸引。思考故事當中提出的問題,學生自然興趣濃厚。通過故事設疑,激起了學生探求新知的欲望。]
2、組織討論,動手操作。
(1)小組討論,誰分的多
(2)拿出三張紙,分別涂出它們的1/4、2/8、3/12。
(3)比較涂色部分的大小,有什么發現,得出什么結論。
既然他們三個分得的餅同樣多,那么表示它們分得餅的分數是什么關系呢?這三個分數什么變了,什么沒有變?讓學生小組討論后答出:這三個分數是相等關系,1/4=2/8=3/12,它們平均分的份數和表示的份數也就是分數的分子和分母變化了,但分數的大小不變。
(4)教師演示
3、教學例1
(1)引導比較。
師問:這四個分數,為什么分母不同呢?前兩個分數的分子為什么都是1?
你知道其中哪些分數是相等的嗎?
根據學生回答板書:1/3=2/6=3/9
師追問:你是怎么知道這三個分數相等的?(圖中觀察出來的)
(2)師演示驗證大小。
(3)完成“練一練”第1題
學生先涂色表示已知分數,再在右圖中涂出相等部分。
完成填空后,說說怎么想的。
4、教學例2。
(1)組織操作。
師:取出正方形紙,先對折,用涂色部分表示它的1/2。
學生完成折紙、涂色。
師問:你能通過繼續對折,找出和1/2相等的其它分數嗎?
學生在小組中操作,教師巡視指導。
學生展開折法并匯報,可能出現的方法有:
連續對折兩次,平均分成4份。如圖:
1/2=1/4
②連續對折三次,平均分成8份。如圖:
1/2=4/8
③連續對折四次,平均分成16份。
師追問:每次對折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分數表示?
得到的這些分數與1/2相等嗎?能不能再寫一些與1/2相等的數?
板書:1/2=2/4=4/8=8/16=16/32……
(2)發現規律。
師:你有什么發現?(如學生觀察有困難,可進行以下提示)
①、從左往右看,它們的分子、分母是怎樣變化的?你有什么發現?
學生觀察、思考,在小組中交流。
師問:觀察例1中的1/3=2/6=3/9,有這樣的規律嗎?
《分數的基本性質》教學設計10
教學目標:
1、通過教學使學生理解和掌握分數的基本性質,能利用它改變分數的分子和分母,而使分數的大小不變。
2、培養學生的觀察能力、動手操作能力和分析概括能力等。
3、讓學生在學習過程中養成互相幫助、團結協作的良好品德。
重點難點:
從相等的分數中看出變與不變,觀察、發現、概括其中的規律。理解分數的基本性質。
教具學具: 課件,每人一張白紙,一張圓紙片,彩筆
教學時間:1課時
教學流程:
一、復習引入
1、120÷30的商是多少?被除數和除數同時擴大3倍,商是多少?被除數和除數同時縮小10倍,商是多少?
120÷30=4
(120×3)÷(30×3)
=360÷90
=4
120÷30=4
(120÷10)÷(30÷10)
=12÷3
=4
在除法中,被除數和除數同時擴大(或縮小)相同的倍數(零除外),商不變。
除法與分數之間有什么聯系?
被除數÷ 除數=被除數/除數
教師板書:分數的基本性質
二、動手操作
(1)用分數表示涂色部分。
( )
( ) )
( ) )
①請大家拿出1張長方形紙片,現在我們把它對折平均分成4份,涂出其中的3份,寫上分數。
②把它繼續對折平均分成8份,看看原來的3/4現在成了?(6/8)
③繼續折成16份,看看原來的3/4現在又成了?(12/16)
(2)小結:原來,這張紙的3/4 、6/8、 和它的12/16同樣大!看來不管選擇哪種折法,分到的數都一樣多!
(教師隨機板書 )3/4=3×2/4×2=6/8=6×2/8×2=12/16
(2)用分數表示涂色部分。
( ) )
( ) )
( ) )
根據上面的過程,你能得到一組相等的分數嗎?
8/12= 8÷2/12÷2= 4÷2/6÷2=2/3
三、發現規律
1、請大家觀察每個等式中的兩個分數,它們的分子。分母是怎樣變化的?
學生觀察、思考,完成上面的圖形,再在小組內交流。
學生交流后,教師集中指導觀察,板書這組數字,說出其中的規律。
3/4=6/8=12/16 8/12=4/6=2/3
從這些數字中可以得出:
分數的分子和分母同時乘或者除以相同的數,分數的大小不變。(相同的數,這個數能不能是0 ?)
教師舉例說明:3/4,8/12分子和分母分別乘以零,分數大小怎么樣?
得出分數基本性質: 分數的分子和分母同時乘或者除以相同的數(零除外),分數的大小不變。這叫做分數基本性質。
在除法中,被除數和除數同時擴大(或縮小)相同的倍數(零除外),商不變。這叫做商不變性質。
3、課件出一組分數讓學生練習填
2/3=()/12 6/21=()/7 3/5=21/() 27/39=9/() 5/8=20/() 24/42=()/7 2/5=()/25 4/6=()/()
四、練一練(課件出示)
1、判斷.(手勢表示。)
(1)分數的分子、分母都乘或除以相同的數,分數的大小不變。() (2)把 15 /20 的分子縮小5倍,分母也同時縮小5倍,分數的大小不變。()
(3) 3 /4 的分子乘3,分母除以3,分數的大小不變。 ( )
( 4)把3/5的分子加上4,要使分數的大小不變,分母加4。 ( )
2、把5 /6和1/4都化成分母是12大小不變的分數。(課件出示 )
3、數學游戲(課件出示)
說出相等的`分數 1/4和2/8
(1)你能根據分數的基本性質,再寫出一組相等的分數?
所寫的分數是否相等?你是怎樣想的?
(2)根據分數與除法的關系,你能用商不變的規律來說明分數的基本性質嗎?
五、課本練習中的第1,2題。
六、課堂總結
這節課你學到了什么?什么是分數的基本性質?你是怎樣理解的分數的基本性質要注意什么?我們以前學過的什么性質跟分數的基本性質類似?誰能用整數除法中商不變的性質來說明分數的基本性質?
七、板書設計:
3/4=3×2/4×2=6/8=6×2/8×2=12/16
8/12= 8÷2/12÷2= 4÷2/6÷2=2/3
分數的分子和分母同時乘或者除以相同的數(零除外),分數的大小不變。這叫做分數基本性質。
《分數的基本性質》教學設計11
教學目標:
情感態度:培養學生觀察、比較、抽象、概括的邏輯思維能力,并且滲透事物間相互聯系,發展變化的辯證唯物主義觀點。
知識技能:理解分數的基本性質,并且能夠靈活應用。
過程方法:動手操作、觀察、討論
教學重、難點:理解并掌握分數的基本性質并靈活應用。
教具準備:自制多媒體課件、圖(2組)、拼圖畫一幅、實物投影儀。
學具準備:拼圖12組。
教學設計理念:
《新課標》要求,讓學生在動手操作中觀察、思考,在生動具體的情境中學習數學,參與知識的發現過程。在教學分數的基本性質時,選擇了學生喜聞樂見的游戲形式,在學生人人參與的教學情境中,讓學生發現問題——討論問題——解決問題。力求通過學生動手實踐,自主探索和合作交流的學習方式,新知識的教學,訓練學生思維,引導學生把所學數學知識應用于實際中。感受數學的價值,本課設計完全從學生發展為本,在教學中大膽的把課堂還給學生,讓學生成為課堂真正的主人。
教學過程:
一、 創設情境,激趣導入。
設計意圖:讓學生在喜聞樂見的游戲情境中,以濃厚的興趣參與學習,激發學生探索數學問題欲望,并訓練學生小組合作學習的方法和習慣。
師:請看這幅拼圖漂亮嗎?老師這還有三幅漂亮的圖片(投影展示)可愛的青蛙,朝氣彭勃的太陽,誘人的蘋果,用你們靈巧的雙手能不能把他們拼出來?請小組合作完成。同學們,準備好了嗎?我宣布:拼圖比賽現在開始。
請看拼圖要求:1、用所給材料拼成三個完全一樣圖形。
2、用分數表示陰影部分占整幅圖的幾分之幾,并寫出來。
二、合作交流,探究規律。
設計意圖:讓學生在具體的情境中充分利用現有資源,增強學生的學習興趣,既有張揚個性的獨立思考,又有發揮集體力量的小組合作學習,培養學生敢于探索的精神與大膽嘗試的能力,同時讓學生選擇自己喜歡的方式,既尊重了學生,又激發了學生的學習興趣,體現了主體性。
(一)拼圖,寫分數。
(1)教師組織小組活動,并巡視,參與,指導小組活動。學生拼好圖后寫出分數。
(2)匯報優勝組介紹經驗,并展示作品。(體會小組合作的有效性)教師貼圖并板書分數。( = = )
(二)找分數間的大小關系。
(1)師:請同學們用自己喜歡的方法找一找每組中三個分數的大小關系,學生獨立思考后與同桌交流方法。
(2)匯報:每組中三個分數大小相等。
比較方法。(1)看圖比較(2)化小數比較(3)利用商不變的性質比較(4)……
(三)探究規律
(1)每組中三個分數看似不同,實質大小相等,它們之間到底有什么聯系?小組討論探究規律。
(2)交流自己的發現。①每組中三個分數平均分的'份數不同取的分數也不同?②分子,分母都擴大了2倍(3倍)③……
(3)師:分數的分子和分母怎樣變化時,分數的大小才會不變,學生自由發言,教師給予肯定和鼓勵。
(4)師結合圖依據分數的意義講解變化規律。
(5)小結分數的基本性質:強調“相同”“同時”組織討論:“相同的數”可以是哪些數?
(四)對比分數的基本性質和商不變的性質。
學生對比,說出兩個性質間的區別與聯系。
三、應用。
設計意圖:本環節所設計是由易到難,緊扣本課的重難點,練習具有針對性、實用性、開放性。通過變式練習讓學生的思維得到訓練,激發探究熱情,培養創新能力。
1、填空
(1)學生獨立思考。(2)交流口答,并說明依據,同時訓練學生應用所學知識解決實際問題的能力。
2、比較 和 的大小。
四、游戲"找朋友”。
設計意圖:游戲的情境,形式活潑,讓學生通過大小相等的分數找到自己的朋友。游戲規則新穎而恰當,既鞏固新知又體會到數學與生活的密切聯系。
同學們拿出課前老師發給你的紙,紙上所寫分數大小相等的同學,你們是“好朋友”。請學生讀自己的分數,與他所讀分數大小相等的同學舉起來確定后手拉手離場。
,五年級數學分數的基本性質教學設計
《分數的基本性質》教學設計12
教學目標:
知識與技能:掌握分數的基本性質對于學生來說非常重要。分數的基本性質包括:分數的大小與分子、分母的關系,分數的化簡和擴大,分數的比較大小等。通過學習分數的基本性質,可以幫助學生更好地理解和運用分數,提高他們的數學能力。同時,分數的基本性質與整數除法中商不變性質有著密切的關系,這也有助于學生對整數除法的理解和運用。在學習中,學生需要掌握如何將一個分數化簡為分母相同而大小不變的分數。這需要學生觀察比較分數的大小,抽象概括規律,并進行實際操作。通過這樣的練習,可以培養學生的邏輯思維能力和數學解決問題的能力。因此,學生在學習分數的基本性質時,應注重理解概念,掌握方法,多進行練習,提高自己的數學素養。
過程與方法:
在探索分數基本性質的過程中,我們體會到了數學思想方法中的“變與不變”以及“轉化”的重要性。這個過程激發了我們的求知欲,也讓我們體會到了數學思維的樂趣。通過互相交流和合作,我們不僅增進了對分數的理解,還培養了團隊合作的意識。這種積極主動的學習態度將成為我們探索更多數學知識的動力,讓我們更加享受數學帶來的樂趣。
教學重點:
理解和掌握分數的基本性質,會運用分數的基本性質。
教學難點:
自主探究出分數的基本性質
教學準備:
PPT課件、每小組準備三個同樣大小的圓形紙片、三張完全一樣的長方形(正方形)紙、直尺、彩筆等。
教學流程:
一、故事導入激趣引思
引言:好的,我來修改一下:大家是否能猜出剛剛老師播放的是哪首經典動畫片的主題曲呢?沒錯,我們今天的學習將從中國古典名著《西游記》的故事開始。
講故事:唐僧師徒四人行至一村莊,路過一家餅鋪,慈悲心化緣得到三塊同樣大小的餅。唐僧想著如何公平地分配這三塊餅,便提出了一個方案:將第一塊餅平均分成2份,讓豬八戒吃其中的一半;將第二塊餅平均分成4份,讓沙和尚吃其中的一半;將第三塊餅平均分成8份,悟空吃其中的`一半。唐僧的提議引起了豬八戒的不滿,他認為這樣分配偏心,為什么悟空可以吃到一半,而他只能吃到一半。唐僧聽了豬八戒的意見后,考慮了一下,覺得確實不太公平。于是,他重新想了一個更公平的分餅方案,讓每個人都能公平地分享這三塊餅。
生發表見解。
二、自主合作探索規律
1、三個徒弟平均分得的餅一樣多。我們來看一下這組分數等式:1/2=2/4=4/8。觀察一下這些分數的分子和分母,它們是相同的嗎?雖然分數的分子和分母不同,但它們的值卻相等。再換個角度看,我們發現分數的分子和分母發生變化,但它們的比值保持不變。分數真是一種獨特的數學形式呢!
2、
(1)每個小組找出一組大小相等的分數,并想辦法證明這組分數大小相等。
(2)思考:在寫分數的過程中你們發現了什么規律?
組內商量一下然后開始行動!
3、小組研究教師巡視
4、全班匯報
交流評價(教師相機板書)圓紙片匯報長方形紙匯報正方形紙匯報及聯系一組人數說發現規律把每組數從左往右或者從右向左仔細觀察你能發現分子分母的怎樣的變化規律?(可以舉例說演繹推理深入)隨機更換貼圖
板書課題:分數的基本性質打出幻燈
5、反思規律看書對照找出關鍵詞要求重讀共同讀
6、當我們將3除以4得到的結果3/4,與12除以16得到的結果12/16進行比較時,我們發現它們是相等的。這說明了分數的一個基本性質:即分子和分母同時乘以(或除以)同一個非零數時,分數的值不變。這個性質也可以通過整數除法中商不變的性質來解釋:在分數中,當分子和分母同時乘以(或除以)同一個非零數時,相當于整數除法中被除數和除數同時乘以(或除以)同一個非零數,商的值也不變。這再次強調了分數的基本性質,幫助我們更好地理解和運用分數的概念。
三、自學例題運用規律
過渡:同學們展現出了強大的學習能力,在接下來的學習中,老師希望你們能夠自主學習課本96頁的例2,并完成相應的練習。現在開始自主學習吧!祝你們學習順利!
生自學
集體評議:例2練一練1和2,請說說你的根據和想法!重點讓學生說說根據什么,分母、分子是如何變化的。
四、多層練習鞏固深化
1、判斷對錯并說明理由
2/9=8/36,4/9=2/3,3/4=3a/4a,5/10=3/6,1/5=4/8
2、把6/20,70/100,45/50,1/2,4/5化成分母相同而大小不變的分數
思考:分數的分母相同,能有什么作用?
3、圈分數游戲圈出與1/2相等的分數
4、對對碰與1/2,2/3,3/4生生組組師生互動
五、課堂小結課堂作業
結語:你看,運用數學知識玩游戲,也是樂趣無窮。這節課我們就上到這兒,作業:余下來的時間請完成課本97頁練習十八的1-3題,做在書上。
《分數的基本性質》教學設計13
一、教學目標
1、使學生理解和掌握分數的基本性質,能應用分數的基本性質把一個分數化成指定分母而大小不變的分數。
2、學生通過觀察、比較、發現、歸納、應用等過程,經歷探究分數的基本性質的過程,初步學習歸納概括的方法。
3、激發學生積極主動的情感狀態,體驗互相合作的樂趣。
二、教學重點
1、理解、掌握分數的基本性質,能正確應用分數的基本性質。
2、自主探究出分數的基本性質。
三、教學準備
課件、正方形的紙
四、教學設計過程
(一)遷移舊知.提出猜想
1、回憶舊知
根據“288÷24=12”填空
28.8÷2.4=
2880÷240=
2.88÷0.24=
0.288÷()=12
被除數÷除數=()
說一說你是根據什么算的?引導學生回憶商不變的性質?媒體出示:商不變的性質:
被除數和除數同時乘或除以相同的數(零除外),商不變。
2、提出猜想
既然分數與除法的關系這么緊密.除法有商不變性質,那分數是否也會有這樣的性質,請大家大膽猜想一下。(學生可能根據商不變性質推導出分數的基本性質,學生匯報后投影出示:分數的分子和分母同時乘或除以相同的數(零除外),分數的大小不變。)
(二)驗證猜想,建構新知
1、你有什么辦法來驗證自己的猜想?(折一折、分一分、涂一涂等方法。)
2、出示學習提示。
學習提示
A、同桌合作,借助手中的學具,選擇喜歡的方法,驗證自己的猜想。
B、驗證結束后,把你的驗證方法和結論與小組同學交流。
3、匯報交流
指名3到4名同學到講臺前與全班同學交流自己的驗證方法和過程,教師相機板書。
C、總結規律
1、師:請同學們看黑板上的兩組分數,說說它們的分子和分母分別是按什么規律變化的。指名回答,教師板書。
2、總結:對于任何一個分數,只要滿足:分數的分子和分母同時乘或除以相同的數,分數的大小就不會發生變化。
3、強調0除外。哪位同學將分數的分子和分母同時乘或除以0進行驗證的?
如果有,問他是否驗證出猜想,驗證過程中出現了什么問題,如果沒有,肯定他們的做法是對的,從而出示完整的規律:分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
師:為什么要0除外?
師:對于這句話,你是怎么理解的?(讓學生互相討論,并進行說明。)
教師以3/4為例說明分數的分子和分母同時乘或除以0是沒有意義的`。
師:再次出示分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。這叫做分數的基本性質。(板書課題)
D教學例2
把2/3和10/24都化為分母為12而大小不變的分數。
學生獨立完成,集體訂正。
(三)練習升華
1、填空
2、下面算式對嗎?如果有錯,錯在哪里?
3、把相等的分數寫在同一個圈里。
4、老師給出一個分數,同學們迅速說出和它相等的分數。
(四)作業
教材59頁第9題。
(五)思維拓展
(六)總結延伸
師:這節課你有什么收獲?
六、板書設計
分數基本性質
分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
《分數的基本性質》教學設計14
教材分析
1.分數基本性質是約分和通分的基礎,而約分、通分又是分數四則運算的重要基礎,因此,理解分數基本性質顯得尤為重要。而分數與除法的關系以及除法中的商不變規律,與這部分知識緊密聯系,是學習這部分內容的基礎。
2.教材安排了兩個學習活動,讓學生尋找相等的分數,通過活動使學生初步體驗分數的大小相等關系,為觀察發現分數的基本性質提供的豐富的學習資料,然后引導學生分別觀察這兩組相等的分數,尋找每組分數的分子、分母的變化規律,并展開充分的交流討論,在此基礎上歸納出:分數的分子和分母都乘或除以相同的數(零除外),分數的大小不變。
學情分析
學生已明確商不變規律,分數與除法的關系等知識,這些都為本課學習做了知識上的鋪墊。五年級學生已經初步養成了合作學習的習慣,并具有了一定的分析和解決問題的能力,因此能夠在教師的引導下完成“質疑—探索——釋疑——應用”這一完整的學習過程。
因此在教學中,我主要采用引導學生探索以及小組合作學習相結合的方法,讓學生探索出分數的基本性質,并會運用分數的基本性質把一個分數化成分母不同但大小相等的分數,能有效地提高教學效率。
教學目標
經歷探索分數基本性質的過程,理解分數基本性質。
能運用分數基本性質,把一個分數化成指定分母(或分子)而大小不變的分數。
經歷觀察、操作和討論等學習活動,體驗數學學習的樂趣。
教學重點和難點
理解分數基本性質,能運用分數基本性質轉化分數。
教學過程
一、復習導入
二、探究新知
實踐操作,探究規律
觀察發現:初步概括分數基本性質
括歸納分數基本性質
三、課堂練習
四、課堂小結
出示復習題口答卡片, 復習商不變的規律、分數與除法的關系。1、 講述唐僧分餅的故事:“……貪吃的豬八戒搶著說要吃這個餅的9/12,孫悟空說要吃這個餅的6/8,沙僧說要吃這個餅的3/4。同學們可知道誰吃的餅最多?”
提出問題: 這些分數都相等嗎?
觀察這組相等的分數,你發現了什么?把你的發現說給同伴聽。
分子、分母都乘或除以一個數,這個數可以是0嗎?為什么?
1、課本P43的“試一試”2、數學游戲:說出相等的分數3、課本P44的“練一練”第1~2、4
通過這節課的學習、你學會了那些知識
口答
小組討論
拿出準備好的圓形紙片,折一折,畫一畫、涂一涂
小組討論、交流
小組討論、交流
做練習,完成后集體交流。
說說,讀分數基本性質
復習舊知,為學習新知識作鋪墊。
將例1改編成故事 提出問題,讓學生對故事中的人物進行直觀評價,為后續探究營造良好氛圍。
讓學生通過實踐操作,激發學生參與學習探究的興趣,通過合作探究,初步感知有些分數的分子、分母不同,但分數的大小卻相等。
引導學生通過不同形式的觀察,逐步總結出存在的規律,這樣由淺入深,循序漸進,有利于學生探究學習知識。
在學生初步發現規律的基礎上,進一步理解分數的基本性質,并對分數的基本性質進行全面概括。
讓學生利用分數的基本性質解決問題,使學生對分數的基本性質理解的更深刻,同時體驗解決問題的樂趣。
對本節課的.所學知識的回顧,及所學知識點的總結。
板書設計(需要一直留在黑板上主板書)分數基本性質被除數和除數同時擴大或縮小相同的倍數(零除外),商不變,這就是商不變的規律分數的分子和分母都乘或除以相同的數(零除外),分數的大小不變,這叫做分數基本性質。
教學反思:
分數的基本性質在小學階段是數運算的又一次質的飛躍與擴展,是重要的一個環節。我在引導學生觀察探究中,重視學生的主動參與,多次組織學生小組討論交流,讓每個小組成員都能充分的說說自己的看法,相互交流,相互啟迪,以感知分數的分子、分母是按一定的規律變化而分數大小不變。體現了理解與掌握數與數之間聯系、變化的觀點。
在本節課中,由于我對學困生關注度不高,,使得他們在分數基本性質應用的過程中產生了困難。小組合作探究中的小組學習亦要不斷地完善。
《分數的基本性質》教學設計15
教學內容:人教版五年級數學下冊57頁內容及58、59頁練習。
教學目標:
知識與技能:通過教學使學生理解的掌握分數的基本性質,能運用分數的基本性質把一個分數化成指定分母(或分子)相同而大小不變的分數,并能應用這一性質解決簡單的實際問題。
過程與方法:引導學生在參與觀察、比較、猜想、驗證等學習活動的過程中,有條理,有根據地思考、探究問題,培養學生的抽象概括能力。
情感、態度和價值觀:使學生受到數學思想方法的熏陶,培養樂于探究的學習態度。
教學重點:理解和掌握分數的基本性質。
教學難點:應用分數的基本性質解決問題。
教學準備:預習生成單、作業紙、課件
教學課時:一課時
教學過程:
一、導入新課,揭示課題
1、師:通過昨天的預習,你知道我們今天要學習什么內容?(生:分數的基本性質)
2、師:針對這個內容,同學們做了充分的預習,相信你們一定提出了不同的數學問題,現在請組長帶領組員提煉出你們組最想研究的問題。
3、指名學生匯報。
4、師:同學們,不管你們提出什么樣的問題,都與分數的基本性質有關,今天我們就帶著這些問題走進課堂。
二、檢查預習,自主探究
1.出示預習生成單:(師:我們已經預習了這部分內容,請同學們組內交流一下你們的預習成果,形成統一意見準備匯報。)
2.指名上臺展示并匯報。(師:哪個組的同學愿意最先上來展示你們的成果?)
3.(學生展示中注意分工匯報,在匯報中要注意學生用比一比的方法證明涂色部分相等,如果有用分數的意義的理解“都是相同紙的一半”或者“分子是分母的一半”理解也要給予肯定,教師應及時提出,照這樣一半的理解,提問:你能在寫出一個和他們大小一樣的分數嗎?教師及時的板演,
4.師:其他同學還有補充嗎?你們得出這個結論了嗎?
三、合作交流,探究新知
1.師:第一張紙涂色部分是這張紙的(學生說二分之一),第二張紙涂色部分是這張的(四分之二),第三張紙涂色部分是這張紙的(八分之四),涂色部分都相同,也就證明這三個分數的大小也(學生說相等),可是,它們的分子分母卻不相同,他們有沒有一定的變化規律呢?我們通過合作交流來探究這個問題。
2.出示合作要求(課件),指名學生讀一讀。
3.學生合作交流,探究學習。
4.學生匯報中教師要及時糾正學生的語言要規范,同時,可以讓小組回想補充,特別是,跳躍的兩個分數的分子和分母之間的變化規律是怎樣?
5.指導匯報,總結規律。誰能完整的說一下你們剛才總結出的規律?
6.教師歸納板書:分數的分子和分母同時乘或者除以相同的.數,分數的大小不變。
7.請同學們讀一讀這句話,想一想:還有需要補充的內容嗎?(0除外)
8.再讀一讀,說說這句話中哪個詞比較關鍵。
9.拓展深化,加深理解,完成練習,思考:分數的基本性質與商不變的性質之間的聯系。(練習一)這個過程也要看學生的生成在哪,教師及時的給予肯定。
9.教師小結:通過剛才的學習,孩子們的表現特別出彩,老師相信你們接下來的表現會更棒。
四、應用拓展,新知內化
1.出示例2,指名讀題,理解題意。
2.師:你覺得解決這道題應該利用什么知識?(生:分數的基本性質)
3.學生獨立在練習本上完成,指名板演,集體訂正。
4.小結:剛才,我們通過自主學習、小組探究知道了什么是分數的基本性質,下面就應用分數的基本性來解決一些實際問題。
五、當堂檢測
(一)、下面每組中的兩個分數是否相等?相等的在括號里畫“√”,不相等的畫“X”。
和()和()和()和()
(二)、填空。
======
(三)、把下列分數化成分母是10而大小不變的分數。
===
(四)、涂色表示出與給定分數相等的分數。
(五)、如果一堂課40分鐘,哪個班做練習用的時間長?
六、課堂小結:通過這節課的學習,你學會了什么?
板書設計:
分數的基本性質
分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
這節課最多的考慮就是分數的基本性質這個規律怎樣才能讓學生真正的夯實,怎樣設計才能讓學生水到渠成的加深了理解。在練習的設計和過渡語的設計都是關鍵。
【《分數的基本性質》教學設計】相關文章:
分數的基本性質教學設計11-05
分數的基本性質教學設計09-26
《分數基本性質》教學設計11-10
分數的基本性質的教學設計08-27
分數的基本性質的教學設計06-28
《分數的基本性質》教學設計05-24
分數基本性質教學設計08-29
《分數基本性質》教學設計10-11
《分數的基本性質》教學設計09-23
分數的基本性質教學設計08-11