亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

解方程教學設計

時間:2024-04-05 07:41:07 教學設計 我要投稿

(精品)解方程教學設計15篇

  作為一名默默奉獻的教育工作者,時常需要準備好教學設計,教學設計是一個系統化規劃教學系統的過程。教學設計要怎么寫呢?下面是小編整理的解方程教學設計,僅供參考,大家一起來看看吧。

(精品)解方程教學設計15篇

解方程教學設計1

  教學目標

  1、結合具體的題目,讓學生初步理解方程的解與解方程的含義。

  2、會檢驗一個具體的值是不是方程的解,掌握檢驗的格式。

  3、進一步提高學生比較、分析的能力。

  知識重點解方程的規范步驟

  教學難點比較方程的解和解方程這兩個概念的含義

  教學過程教學方法和手段

  引入

  (1)上一節課,我們學習了什么?

  復習天平保持平衡的規律及等式保持不變的規律。

  (2)學習這些規律有什么用呢?(用于解方程)從這節課開始我們就會逐漸發現到它的重要作用了。

  教學過程一、解決問題。

  出示P57的題目,從圖上可以獲取哪些數學信息?天平保持平衡說明什么?杯子與水的質量加起來共重250克。

  能用一個方程來表示這一等量關系嗎?得到:100+x=250,x是多少方程左右兩邊才相等呢?也就是求杯子中水究竟有多重。如何求到x等于多少呢?學生先自己思考,再在小組里討論交流,并把各種方法記錄下來。

  全班交流。可能有以下四種思路:

  (1)觀察,根據數感直接找出一個x的值代入方程看看左邊是否等于250。

  (2)利用加減法的關系:250-100=150。

  (3)把250分成100+50,再利用等式不變的規律從兩邊減去100,或者利用對應的關系,得到x的值。

  (4)直接利用等式不變的規律從兩邊減去100。

  對于這些不同的方法,分別予以肯定。從而得到x的值等于150,將150代入方程,左右兩邊相等。

  二、認識、區別方程的解和解方程。

  得出方程的解與解方程的含:

  像這樣,使方程左右兩邊相等的未知知數的值,叫做方程的解,剛才,x=150就是方程100+x=250的解。

  而求方程的解的過程叫做解方程,剛才,我們用這幾種方法來求100+x=250的解的過程就是解方程。

  這兩個概念說起來差不多,但它們的意義卻大不相同,它們之間的區別是什么呢?

  方程的解是一個具體的數值,而解方程是一個過程,方程的解是解方程的目的。

  三、方程的檢驗

  P58例1P59例2。

  怎么判斷X=6是不是方程的解?將x=6代入方程之中看左右兩邊是否相等,寫作格式是:方程左邊=x+3

  =6+3

  =9

  =方程右邊

  所以,x=6是方程的解。

  課堂練習獨立完成練習十一第4題,強調書寫格式。

  小結與作業

  課堂小結這節課你學到了什么?(1)解方程和方程的解有什么區別(2)解方程要按照什么樣的格式來寫?(3)如何檢驗呢?格式又是怎么樣的?

  課后追記

  本課應用方程平衡原理來解方程,要注意的是檢驗方程的時候,最后一句話,所以××是方程的解(這里的××學生容易寫成方程右邊的值)

  第7課時:解方程(2)

  教學內容P58-P59及“做一做”,練習十一第5-7題

  教學目標

  1、結合具體圖例,根據等式不變的規律會解方程。

  2、掌握解方程的格式和寫法。

  3、進一步提高學生分析、遷移的能力。

  知識重點掌握解方程的方法

  教學過程教學方法和手段

  引入前面,我們學習了等式保持不變的規律,等式在哪些情況下變換仍然保持不變呢?等式這些規律在方程中同樣適用嗎?完全可以,因為方程就是等式,今天我們將學習如何利用等式保持不變的規律來解方程。板書:解方程。

  教學過程新知學習

  (一)教學例1

  出示例1,從圖中可以獲取哪些信息?圖中表示了什么樣的等量關系?盒子中的皮球與外面的3皮個球加起來共有9個,方程怎么列?得到x+3=9

  要求盒子中一共有多少個皮球,也就是求x等于什么,我們該怎么利用等式保持不變的規律來求出方程的解呢?

  抽答。

  方程兩邊同時減去一個3,左右兩邊仍然相等。板書:x+3-3=9-3

  化簡,得到x=6

  這就是方程的'解,誰再來回顧一下我們是怎樣解方程的?

  左右兩邊同時減去的為什么是3,而不是其它數呢?因為,兩邊減去3以后,左邊剛好剩下一個x,這樣,右邊就剛好是x的值。因此,解方程說得實際一點就是通過等式的變換,如何使方程的一邊只剩下一個x即可。

  追問:x=6帶不帶單位呢?讓學生明白x在這里只代表一個數值,因此不帶單位。

  要檢驗x=6是不是正確的答案,還需要驗算。怎么驗算呢?可抽學生回答。

  板書:方程左邊=x+3

  =6+3

  =9

  =方程右邊

  所以,x=6是方程的解。

  小結:通過剛才解方程的過程,我們知道了在方程的左右兩邊同時減去一個相同的數,左右兩邊仍然相等。不過需要注意的是,在書寫的過程中寫的都是等式,而不是遞等式。

  (二)教學例2

  利用等式不變的規律,我們再來解一個方程。

  出示方程:3x=18,怎樣才能求到1個x是多少呢?同桌的同學互相討論,如有問題,可以出示書上的示意圖幫助分析。

解方程教學設計2

  教學內容:

  數學書P58-P59及“做一做”,練習十一第5-7題。

  教學目標:

  1、 結合具體圖例,根據等式不變的規律會解方程。

  2、 掌握解方程的格式和寫法。

  3、 進一步提高學生分析、遷移的能力。

  教學重難點:

  掌握解方程的方法。

  教學過程:

  一、導入新課

  二、新知學習

  (一) 教學例1

  出示例1,從圖中可以獲取哪些信息?圖中表示了什么樣的等量關系?盒子中的皮球與外面的3皮個球加起來共有9個,方程怎么列?得到x+3=9

  要求盒子中一共有多少個皮球,也就是求x等于什么,我們該怎么利用等式

  方程兩邊同時減去一個3,左右兩邊仍然相等。板書:x+3-3=9-3

  化簡,即得: x=6

  這就是方程的解,誰再來回顧一下我們是怎樣解方程的?

  左右兩邊同時減去的為什么是3,而不是其它數呢?

  追問:x=6帶不帶單位呢?讓學生明白x在這里只代表一個數值,因此不帶單位。

  要檢驗x=6是不是正確的答案,還需要驗算。怎么驗算呢?可抽學生回答。

  板書:方程左邊=x+3=6+3=9=方程右邊

  所以, x=6是方程的解。

  小結:通過剛才解方程的過程,我們知道了在方程的左右兩邊同時減去一個相同的數,左右兩邊仍然相等。不過需要注意的是,在書寫的過程中寫的都是等式,而不是遞等式。

  (二) 教學例2

  利用等式不變的規律,我們再來解一個方程。

  出示方程:3x=18,怎樣才能求到1個x是多少呢?同桌的同學互相討論,如有問題,可以出示書上的示意圖幫助分析。

  抽答,在方程兩邊同時除以3即可。為什么兩邊同時除以的是3,而不是其它數呢?剛好把左邊變成1個x。讓學生打開書59頁,把例2中的`解題過程補充完整。

  展示、訂正。

  通過,剛才的學習,我們知道了在方程的兩邊同時減去一個相同的數或同時除以一個不為0的數,左右兩邊仍然相等。這是我們解方程常用的兩種方法,想不想用它們來試一試呢?

  (三) 反饋練習

  1、 完成“做一做”的第1題。

  2、 試著解方程:x-2.4=6 x÷9=0.7 (強調驗算)

  三、課堂小結。

  這節課學習了什么?討論:什么時候應該在方程的兩邊加,什么時候該減,什么時候該乘,什么時候該除呢?

  四、作業:練習十一5—7題。

  解方程教學反思

  在本節課中我力圖直觀,讓學生在直觀的操作與演示中自主建構。同時借助觀察、操作、猜想與驗證,一方面來促使學生進一步理解等式的性質,能利用等式的性質來解方程,同時也讓學生抽象方程,解釋算理中來經歷代數的過程,發展學生的數感及數學素養。

  1、在具體情境中理解算理,經歷代數的過程。

  本節課屬于典型的計算課,所以算理與算法是二條主線,今天的算法主要是突破學生原有的認知,能夠利用天平的原理來解方程,所以理解算理,讓學生體驗到解方程只要使天平的一邊剩下一個未知數,但要在這個變化中必須使天平保持平衡,可以通過在天平的左右二邊同時減去相同的數是本節課的重點。我通過創設情境,讓學生來領悟算理,突顯出本節課的重點。

  2、在直觀操作中掌握方法,發展數學素養。

  在本節課中,通過充分的直觀,利用學生熟悉的素材,力圖把方程建構于天平之中,在學生的頭腦中建立深刻的模像。同時,在讓學生用自己的生活,用自己的操作解釋、驗證中發展學生的數學素養。

  3、困惑:縱觀學生的起點,他們已經具有豐富的生活經驗與知識背景來解簡單的方程,所以在教學中運用“逆運算”來解方程對于采用天平的原理來解方程造成了相當的沖突,部分學生雖然對于運用天平原理來解方程已經十分理解,但他們還是不愿意用這種方法,主要的原因是他們體驗不到這種方法的優越性,所以如何在本節課中讓學生體驗到天平原理的優越性,從而自愿的采用這種方法,沒有好的策略?

解方程教學設計3

  [教學內容]

  五年級下冊第3~5頁例3、例4,“試一試”和“練一練”,練習一第4~6題。

  [教材簡析]

  這部分內容主要引導學生通過觀察、思考和交流,初步理解“等式兩邊同時加上或減去同一個數,所得結果仍然是等式”這一等式的兩條基本性質之一,初步學會運用這一性質解只含有加、減關系的一步方程。在此之前,學生已經初步認識了等式與方程;在此之后,學生還將學習等式的另一條基本性質。學好這部分內容,有利于學生加深對方程特點的認識,體會初步的方程思想。教材在安排這部分內容時,主要有兩個特點,一是借助直觀幫助學生理解等式的性質;二是對解方程的步驟及規范做了較為細致的處理。設計教學時,教材一方面注意通過天平兩邊物體質量的變化以及變化前后天平兩邊的狀態,引導學生理解相關的等式性質;另一方面則注意充分利用學生已有的知識和經驗,引導他們在用不同方法求未知數的過程中初步體會用等式性質解方程的便捷,并掌握相應的方法。

  [教學目標]

  1.使學生在具體情境中初步理解“等式兩邊同時加上或減去同一個數,所得結果仍然是等式”,會用這一性質解相關的方程。

  2.使學生聯系具體的例子初步理解“方程的解”和“解方程”的含義,知道“方程的解”是一個結果,“解方程”是一個過程。

  3.使學生在觀察、分析、抽象、概括等式的基本性質和交流的過程中,積累活動經驗,感受方程思想,培養自覺檢驗的意識,發展初步的抽象思維能力。

  [教學重點]

  引導學生探索等式的性質,利用等式性質解相關的方程。

  [教學難點]

  結合具體情境,抽象歸納出“等式兩邊同時加上或減去同一個數,所得結果仍然是等式”這一等式的性質。

  [教學過程]

  一、先扶后放,探究等式性質

  1.談話:我們已經認識了等式和方程。這節課,我們進一步學習與等式和方程有關的知識。

  2.出示例3第一幅天平圖,提問:你能根據圖意寫出一個等式嗎?

  根據學生的回答,板書:20=20。

  引導:現在的天平是平衡的。如果在天平的一邊添上一個10克的砝碼,這時天平會怎樣?(失去平衡)要使天平恢復平衡,可以怎么辦?(在天平的另一邊也添上一個10克的砝碼)

  根據學生的回答,出示第二幅天平圖。

  提出要求:現在天平平衡嗎?你能再用一個等式表示現在天平兩邊物體質量的關系嗎?同桌同學先互相說一說。

  學生活動后,板書:20+10=20+10。

  啟發:請同學們比較這里的兩幅天平圖和相應的兩個等式,想一想,第二個等式和第一個等式相比,發生了怎樣的變化?從這樣的變化中你能想到什么?

  3.出示例3第二組天平圖,提出要求:請同學們仔細觀察這里的兩幅天平圖,說一說天平兩邊物體的質量各是怎樣變化的。

  學生回答后,進一步要求:你能根據天平兩邊物體質量的變化情況,分別列出一個等式嗎?

  學生交流后板書:x=50,x+20=50+20。

  啟發:比較這里的兩個等式,它們有什么聯系和區別?你又發現了什么?

  學生討論后明確:等式兩邊同時加上同一個數,所得結果仍然是等式。

  【設計說明:第一組天平圖分步出示,第二組天平圖整體出示,有利于學生了解觀察活動的意圖,把握觀察和比較的重點,也有利于他們在此過程中逐步發現規律,并進行必要的抽象概括。】

  4.啟發猜想:如果等式兩邊同時減去一個相同的數,結果會怎樣呢?你能想辦法驗證自己的猜想嗎?分小組討論討論。

  出示例3第三組和第四組天平圖,啟發學生觀察比較,分別說一說這兩組天平中物體的質量各是怎樣變化的。在此基礎上,引導他們用等式分別表示每個天平兩邊物體變化前與變化后的關系。

  學生活動后組織交流,并板書相應的等式:

  70=70,70-20=70-20

  x+20=70,x+20-20=70-20。

  啟發:請同學們比較這里的兩組天平圖和相應的兩組等式,它們的變化有什么共同特點?

  明確:等式兩邊同時減去同一個數,所得結果仍然是等式。

  5.提出要求:剛才我們通過觀察天平圖,得到了兩個結論。你能把這兩個結論用一句話合起來說一說嗎?

  學生交流后揭示:等式兩邊同時加上或減去同一個數,所得結果仍然是等式。這是等式的性質。

  6.做教科書第4頁“練一練”第1題。

  先讓學生獨立完成,再指名說說填空的依據。

  【設計說明:有了“等式兩邊同時加上同一個數,結果仍然是等式”這一結論,通常不難聯想到“等式兩邊同時減去同一個數,結果仍然是等式”。先放手讓學生去猜想,再引導他們想辦法驗證猜想,既留出了充分探索的空間,又體現了探索性學習的基本方法。學生探索后的觀察、比較,以及相應的抽象、概括,既是對此前猜想的進一步驗證,又是對相關等式性質的進一步感知,能為學生建立正確的`理解提供堅實的基礎。讓學生及時應用等式性質進行填空練習,一方面是為了鞏固知識,另一方面也為接下來學習解方程做些鋪墊。】

  二、師生合作,學習解方程

  1.出示例4的天平圖,提出要求:你能根據天平兩邊物體質量的相等關系列出方程嗎?

  根據學生的回答,板書:x+10=50。

  啟發:怎樣才能求出方程中未知數x的值呢?你打算怎么做?把你的想法和小組里的同學商量商量。

  學生活動后,組織交流,重點突出把方程兩邊都減去10,使方程左邊只剩下x。

  2.介紹并示范解方程的過程:求方程中未知數x的值 時,要先寫“解:”,表示下面的過程是求未知數x的值的過程。再根據等式的性質在方程兩邊都減去10,求出方程中未知數x的值。書寫這一過程時,要注意把等號上下對齊。

  引導:x=40是不是正確的答案呢?我們可以通過檢驗來判斷,把x=40代入原方程,看看左右兩邊是不是相等。

  提問:如果等式的左右兩邊相等,說明什么?(答案是正確的)如果不相等呢?(說明答案是錯誤的)請同學們用這樣的方法試著檢驗一下。(隨學生的回答扼要板書檢驗過程)

  3.引導小結:像x=40這樣,能使方程左右兩邊相等的未知數的值叫做方程的解。而求方程的解的過程,叫做解方程。進一步要求:請同學們回憶剛才解方程的過程,你認為解方程時要注意什么?強調三點:正確應用等式性質、注意書寫規范、主動進行檢驗。

  4.指導完成“試一試”:解方程x-30=80。

  揭示:要使方程的左邊只剩下x,可以怎么做?這樣做的依據是什么?

  組織反饋時,注意提醒學生規范地書寫解方程的過程。

  5.做教科書第4頁“練一練”第2題。

  提問:解這里的方程時,分別怎樣做就可以使方程左邊只剩下x?

  要求:請同學們用這樣的方法求出每道方程的解,并進行檢驗。

  交流時讓學生再說一說解每道方程時第一步分別是怎樣做的,又是怎樣檢驗的。要求他們今后解方程時,都要進行檢驗,但檢驗的過程可以寫下來,也可以不寫。

  【設計說明:學生看圖列出方程后,先鼓勵他們充分利用已有的知識經驗自主探索求未知數x值的方法,再通過師生對話、示范板書,重點介紹用等式性質解方程的步驟和方法,既有利于保持學生主動學習的熱情,體現解決問題策略的多樣化,又有利于突出等式性質的應用。】

  三、鞏固練習,內化新知

  1.出示選擇題:

  (1)x+22=78(x=100,x=56)

  (2)x-2.5=2.5(x=0,x=5)

  說明:在每題的括號中有兩個備選答案,其中一個是左邊方程的解,另一個不是。

  提出要求:你能在方程的解下面畫上橫線嗎?學生完成后組織交流,并相機明確:做出選擇時,可以先把左邊的方程解出來,也可以把兩個備選答案分別代入原方程從而確定哪個答案是方程的解。

  2.做練習一第4題。

  先讓學生說說每道方程中,要使左邊只剩下x,應該怎樣做?

  3.做練習一第5題。

  先讓學生獨立完成,再指名說說解方程時分別應用了等式的什么性質。

  4.做練習一第6題。

  先指名說說圖意,再組織學生交流推理過程。提醒學生:可以先在天平兩邊去掉相同個數的梨或橘子。

  【設計說明:通過有層次、有針對性的練習,既使學生加深了對等式性質的理解,又使他們進一步體會“方程的解”和“解方程”等概念的實際意義,同時也突出解方程這一重點。】

  四、全課總結,體驗收獲

  通過今天這節課的學習,你知道了什么,學會了什么?有哪些收獲,還有什么不懂的問題?

  [資料鏈接] 阿爾·花拉子米是阿拉伯的一位偉大的數學家,因為他在代數學方面做出過巨大貢獻,后人稱他為“代數學之父”。《還原和對消計算》是花拉子米著名的代數學著作。“還原”的意思是說在方程的一邊去掉一項就必須在另一邊加上這一項使之恢復平衡;“對消”是指把方程兩端的項消去或合并。例如,對方程5x-12=4x-9兩邊分別加上12和9,做還原運算,得:5x+9=4x+12;兩邊分別減去4x和9,做對消運算,結果得:x=3。容易看出,所謂還原和對消就相當于現在解方程時的移項和合并同類項。

解方程教學設計4

  教學目標

  1.使學生在解決實際問題的過程中,理解并掌握形如ax+b=c方程的解法,會列上述方程解決兩步計算的實際問題。

  2.使學生在觀察、分析、抽象、概括和交流的過程中,經歷將現實問題抽象為方程的過程,進一步體會方程的思想方法及價值。

  3.使學生在積極參與數學活動的過程中,養成獨立思考、主動與他人合作交流、自覺檢驗等習慣。

  教學重點:理解并掌握形如ax+b=c方程的解法,會列方程解決兩步計算的實際問題。

  教學難點:如何指導學生在觀察、分析、抽象、概括和交流的過程中,將現實問題抽象為方程。

  教學過程

  課前談話導入:同學們,經調查,我們班大部分同學的年齡是12歲(虛歲),也可以通過推理推算出來,7歲入學,在學校學了五年,正好是12歲。老師今年是39歲,師在黑板上板書39和12。下面請同學比較一下老師和你的年齡,并用一句話把比較的結果說出來,注意啟發引導學生說出:“老師的年齡比我年齡的3倍還多3歲”,“老師的年齡比我年齡的4倍少9歲”。兩種說法都可以。接著問,明年呢?“老師的年齡比我年齡的3倍還多l歲”。

  【設計意圖】通過學生熟悉的年齡話題引入,并訓練學生對兩數大小比較,為新課分析數量關系作理解鋪墊。把抽象的數量關系分析生活化,利于學生進入學習情境。

  一、在現實問題情境中分析數量關系,列出方程,探索解方程的方法——教學例1

  (一)在情境中分析數量關系.提出問題

  1.師談話進入情境:孫悟空跟隨師父歷盡千辛萬苦從西天取來大量經書,藏在古城西安的大雁塔中。大雁塔和小雁塔是著名的古代建筑。(出示大雁塔和小雁塔的圖片)這節課.我們先來研究一個與這兩處建筑高度有關的數學問題。(出示例1的一部分“西安大雁塔的高度比小雁塔高度的2倍少22米”,暫不出示所求的問題)

  2.師讓生讀出這段文字并提問:誰比誰少22米?讓學生明白“大雁塔高度和小雁塔高度的2倍比,少22米,可以把小雁塔高度的2倍看做一個整體。”

  師進一步啟發:這句話清楚地說明了大雁塔和小雁塔高度之間的關系,請同學們用數量關系式表示出大雁塔和小雁塔高度之間的相等關系。

  出示學生可能想到的等量關系式:①小雁塔的高度×2-22=大雁塔的高度;②小雁塔的高度×2=大雁塔的高度+22;③小雁塔的高度×2-大雁塔的高度=22。

  3.引導學生觀察第一個等量關系式。師:經測量小雁塔高度是43米,你能利用這個關系式口答出大雁塔的高度嗎?學生口答,師板書:2×43-22=64(米)。

  【設計意圖】運用數量關系直接求出高度,體會順向思維。既感受數量關系的價值,又為下面的逆向思維作出對比準備,更重要的是讓學生在下面列方程時也要像這樣順向思維進行思考。

  4.師:如果知道大雁塔的高度是64米,你能提出什么問題?

  生:小雁塔的高度是多少米?(出示“大雁塔高度是64米”和“小雁塔高度是多少米?”把例1補充完整。)

  【設計意圖】在清楚數量關系的基礎上,學生已經把問題遷移到需要用逆向思維考慮解決的問題上。讓學生自己提出問題,突出解決問題是學生自己的學習需求,也為他們探索解答作出心理準備。

  (二)根據等量關系布列方程,同時喚起有關方程的舊知

  1.生觀察第一個等量關系式,師提問:在這個等量關系式中,這時哪個數量是已知的?哪個數量是我們去求的?

  追問:讓你求小雁塔的高度怎么辦呢?我們可以用什么方法來解決這個問題?

  生:可以列方程解答。如果學生列出正確的算式進行解答,師給予肯定,再引導學生用方程的方法解決問題。

  師明確方法,并提示課題:這樣的問題可以列方程來解答。今天我們繼續學習列方程解決實際問題。(板書課題:列方程解決實際問題)

  2.師談話:我們在五年級已經學過列方程解決簡單的實際問題,結合今天我們學習的內容,誰來說一說列方程解決實際問題一般要經過哪幾個步驟?

  生能大概說出“寫設句、列方程、解方程和檢驗等即可。

  3.讓學生先自主嘗試設未知數,并根據第一個等量關系式列出方程。

  解:設小雁塔高x米。

  2x-22=64

  【設計意圖】經歷由現實問題抽象為方程的過程。在建構數學模型的過程中,先由情境抽象成數量關系式,再根據數量關系式列出方程,實現了學生在逐步抽象的過程中學習數學的方法,體現了數學的簡潔性和學習數學的必要性。

  (三) 自主探索解方程的方法,體會轉化的思想

  提問:這樣的方程,你以前解過沒有?運用以前學過的知識,你能解出這個方程嗎?

  交流中明確:首先要應用等式的性質將方程兩邊同時加上22,使方程變形為2x=?,即把用兩步計算的方程轉化為一步計算,變新知為舊知,再用以前學過的方法繼續求解。

  要求學生接著例題呈現的第一步繼續解出這個方程。學生完成后,組織交流解方程的完整過程,核對求出的解,并提示學生進行檢驗,最后讓學生寫出答句。

  【設計意圖】讓學生在自主探索方程解法的過程中,體會運用轉化策略,把兩步轉化成一步、復雜轉化成簡單、新知轉化成舊知。

  (四)思考其他方法,感受解法的多樣化

  1.提問:還可以怎樣列方程?

  學生列出方程后,要求他們在小組內交流各自列出的方程,并說說列方程的根據,以及可以怎樣解列出的方程。如果學生不能列出其他方程,師不能作硬性要求。

  2.引導小結:剛才我們通過列方程解決了一個實際問題。你能說說列方程解決問題的大致步驟嗎?其中哪些環節很重要?

  引導學生關注:(1)要根據題目中的信息尋找等量關系,而且一般要找出最容易發現的等量關系;(2)分清等量關系中的已知量和未知量,用字母表示未知量并列方程;(3)解出方程后要及時進行檢驗。(師板書:找等量關系;用字母表示未知數并列方程;解方程,檢驗。)

  【設計意圖】通過解法的多樣化,使學生明白可以根據自己學習實際和思維習慣分析數量關系,列方程解決問題,同時訓練學生思維,拓展學生解決問題的思路。

  二、自主嘗試列方程解決實際問題,注意比較例題,進一步形成解決問題模式——自主合作學習“練一練”

  “杭州灣大橋是目前世界上最長的.跨海大橋,全長大約36千米,比香港青馬大橋的16倍還長0.8千米。香港青馬大橋全長大約多少千米?”

  談話:我們已經初步掌握列方程解決稍復雜的實際問題的方法和步驟,下面就請同學們試著解決一個實際問題。做“練一練”。

  1.先讓學生讀題,并設想解決這一問題的方法和步驟,然后讓學生獨立完成。

  2.小組合作交流。交流前要出示交流順序提示:(1)說說找出了怎樣的等量關系;(2)根據等量關系列出了怎樣的方程;(3)是怎樣解列出的方程的;(4)對求出的解有沒有檢驗。

  3.最后讓學生核對自己的答案,檢查自己的解題過程。

  針對學生不同的思路和方法(包括用算術方法),教師在提出主導意見的基礎上要予以肯定。

  4.啟發思考:這個問題與例1有什么相同的地方?有什么不同的地方?提煉出列方程解決稍復雜的實際問題的基本思路和解形如ax±b=c方程的一般方法。

  【設計意圖】讓學生在獨自解決問題的過程中學會解決問題,在探究中學會合作。

  三、運用方程策略獨立解決實際問題,牢固形成解決問題模式(建構牢固的數學模型)——做“練習一”的第1~5題

  談話:在列方程解決問題的過程中,有兩個方面要引起我們重視,一個是尋找等量關系,能用含有字母的式子表示具體數量;另一個就是解方程。下面我們就對這兩個方面進行進一步的學習和訓練。

  1.做“練習一”第1題

  “解方程。4x+20=56 1.8+7x=3.9 5x-8.3=10.7”

  先讓學生說說解這些方程時,第一步要怎樣做.依據是什么,然后讓學生獨立完成。交流反饋時,要在關注結果是否正確的同時,了解學生是否進行了檢驗。(三個同學到黑板上板演,其他同學選做一題。)

  2.做“練習一”第2題

  在括號里填上含有字母的式子。(1)張村果園有桃樹x棵,梨樹比桃樹的3倍多15棵。梨樹有( )棵。

  (2)王叔叔在魚池里放養鯽魚x尾,放養的鳊魚比鯽魚的4倍少80尾。放養鳊魚( )尾。

  學生獨立完成后,再要求學生說說寫出的每個含有字母的式子分別表示哪個數量,是怎樣想到寫這樣的式子的?(把題目中的多、少改成少、多讓學生再表示)

  3.做“練習一”第3題

  “獵豹是世界上跑得最快的動物,時速能達到110千米,比貓最快時速的2倍還多20千米。貓的最快時速是多少千米?”

  談話:同學們,我們既能準確地找到等量關系,又能正確解方程,那么我們就具備了解決實際問題的能力了。就請同學們獨立解決一個問題。

  學生獨立完成后,指名說說自己的思考過程,進一步突出要根據題中數量之間的相等關系列方程。

  4.課堂作業:做“練習一”的第4題和第5題。

  “北京故宮占地大約72公頃,比天安門廣場的2倍少8公頃。天安門廣場大約占地多少公頃?”

  “世界上最小的鳥是蜂鳥,最大的鳥是鴕鳥。一個鴕鳥蛋長17.8厘米,比一只蜂鳥體長的3倍還多1厘米。這只蜂鳥體長多少厘米?”

  【設計意圖】在鞏固訓練和應用策略階段采用先部分后整體的練習步驟,進一步深化認識,并在體驗中達到知識和技能的內化。

  四、總結列方程解決問題的思路、方法,體會方程的思想和價值——學生拓展設計

  1.學生拓展設計

  師:請同學們回到課前,我們師生關于年齡的對話中,看39歲和12歲,你能設計一個用今天所學的策略和方法解答的實際問題嗎?

  師要多聽學生的發言.考慮學生所說數量之間的關系以及提出問題的貼切性并作出評價和概括。

  2.今天這節課我們學習了什么內容?你有哪些收獲?還有沒有疑惑的地方?教師同時總結,方程是我們解決問題很重要的一個策略,正確地運用方程,能幫助我們解決很多實際問題,尤其是用算術方法不容易解決的一些問題。我相信同學們經過今天的學習,對方程會有更深的認識,并在以后的學習和運用中進一步學好和用好方程。

  【設計意圖】在照應課前學習和學生拓展運用的基礎上,充分體會方程的思想和價值,把學生的認識進一步提升,對方程有較為全面的理解和掌握。

解方程教學設計5

  設計說明

  1.引導學生把握解決問題的關鍵,提高學習效率。

  數學教學中先引導學生把握解決問題的關鍵,再去探究解題方法,能有效提高學生的學習效率。在教學例4時,引導學生發現解題關鍵:一是根據情境圖找出題中的數量關系,列出方程;二是在解形如3x+4=40這類方程的過程中,把3x看成一個整體,也就是把稍復雜的方程轉化成簡單的方程去解答。這樣的設計使學生能夠發現問題的本質,加深對知識的`理解,提高了應用能力。

  2.自主合作,探究新知。

  學生學習方式的轉變是新課程改革的主要特征,自主、合作、探究的新型學習方式,把基礎知識與技能的學習和掌握與終身學習聯系起來,是在傳統學習方式基礎上的進步和發展。本教學設計在新授知識的學習中充分發揮學生的主體作用,引導學生通過觀察、分析、討論等一系列的數學活動,讓學生全面參與新知的發現過程。在此過程中,教師抓住“把什么看成一個整體”這個關鍵問題,層層深入進行引導,注重知識間的遷移,引導學生根據運算定律,把形如ax±b)=c的方程轉化成簡單的方程并求解。

  課前準備

  教師準備PPT課件學情檢測卡課堂活動卡

  學生準備練習卡片

  教學過程

  ⊙回顧舊知,引出課題

  1.解方程。(口答)

  4x=52 x÷1.2=5 x+3.7=10 x-56=44

  2.引出課題。

  師:今天我們繼續學習解方程的內容。[板書課題:解方程(二)]

  設計意圖:由于解形如ax±bcax±b)=c的方程的方法與解形如x±abaxb的方程的方法類似,因此在教學新知前,組織學生復習、回憶解形如x±abaxb的方程的方法,目的是為自主探究本節課的新知作鋪墊。

  ⊙探究新知

  1.教學例4。

  (1)課件出示教材69頁例4情境圖及相關內容。

  (學生先獨立觀察圖意,思考如何列方程,再在小組內交流)

  (2)學生根據圖意列方程。

  (板書:3x+4=40)

  (3)組織學生討論解法。

  師:這個方程應該怎樣解?說明理由。

  預設生1:我是這樣想的,先在方程的兩邊同時減去4,得出3x=36,再在方程的兩邊同時除以3,就能得出x=12。

  生2:可以先把3x看成一個整體,在方程的兩邊同時減去4,得出3x=36,然后在方程的兩邊同時除以3,得出x=12。

  ……

  (4)明確解法。(師邊講解邊板書)

  3x+4=40

  解:3x+4-4=40-4

  3x=36

  3x÷3=36÷3

  x=12

解方程教學設計6

  教學目標:

  1.經歷解方程基本思路是把“復雜”轉化為“簡單”,把“新”轉化為“舊”的過程.進一步理解并掌握如何去分母的解題方法.

  2.通過解方程時去分母過程,體會轉化思想.

  3.進一步體會解方程方法的靈活多樣.培養解決不同問題的能力.

  4.培養學生自覺反思求解和自覺檢驗方程的解是否正確的良好習慣,團結合作的精神. 教學重點:解方程時如何去分母.

  教學難點:解方程時如何去分母.

  教學方法:引導發現

  教學設計:

  一、用小黑板出示一組解方程的練習題.

  解方程:

  (1)8=7-2y;

  (3)4x-3(20-x)=3;

  1、自主完成解題.

  2、同桌互批.

  3、哪組同學全對人數多.

  (根據學生做題情況,教師給予評價).

  二、出示例題7,鼓勵學生到黑板板演,教師給予評價.

  一名同學板演,其余同學在練習本上做.

  針對學生的實際,教師有目的引導學生如何去掉分母.去分母時要引導學生規范步驟,準確運算.

  三、組織學生做教材159頁“想一想”,鼓勵并引導學生總結解一元一次方程有哪些步驟. 分組討論、合作交流得出結論:方程兩邊都乘以所有分母的最小公倍數去掉分母.

  四、出示例題6,并鼓勵學生靈活運用解一元一次方程的步驟解方程.

  出示快速搶答題:有幾處錯誤,請把它們—一找出來并改正.

  ①先自己總結.

  ②互相交流自己的.結論,并用語言表述出來.

  教師給予評價.

  引導學生總結本節的學習內容及方法.

  五、出示隨堂練習題(根據學生情況做部分題或全部題).

  ①自主完成解方程

  ②互相交流自己的結論,并用語言表述出來.

  ③自覺檢驗方程的解是否正確.

  (選代表到黑板板演).

  ①學生搶答.

  ②同組補充不完整的地方.

  ③交流總結方程變形時容易出現的錯誤.

  ①獨立完成解方程.

  ②小組互評,評出做得好的同學.

  六、小結

  ①做出本節課小結共交流.

  (2)5x-2=7x+8; (4)-2(x-2)=12.

  ②說出自己的收獲及最困惑的地方

  八、板書設計

解方程教學設計7

  本節課是解方程的第1課時,要求學生通過演示操作理解天平平衡的原理,初步理解方程的解和解方程的含義,會檢驗一個具體的值是不是方程的解,掌握檢驗的格式。

  1.充分發揮學生的自主能動性,培養學生的自學能力。

  《數學課程標準》中指出“教師活動是師生積極參與,交往互動,共同發展的過程”“學生是學習的主體,教師是學習的組織者、引導者、合作者”。本設計首先采用“先試后教,先做后說”的方法,充分發揮學生的主體性和主動性,引導學生從復習天平平衡的原理入手,產生質疑,然后認識“方程的解”和“解方程”這兩個概念,明確兩者之間的區別與聯系,師生共同探討解方程的過程,培養學生的自主探究能力,探索交流解方程的方法。

  2.規范書寫格式,養成良好的學習習慣。

  數學學習要求學生養成規范書寫,認真檢驗的良好習慣。因此在解方程的過程中,對書寫格式進行要求,強化必要的書寫規范。通過安排小組對解方程的檢驗進行交流,明確檢驗的思路,培養學生良好的學習習慣。

  課前準備

  教師準備 PPT課件 天平 盒子 乒乓球

  學生準備 練習卡片 天平 盒子 乒乓球

  教學過程

  ⊙創設情境,生成問題

  師:現在我們一起玩一個猜球游戲。

  (出示一個不透明的盒子,讓學生猜里面有幾個球;學生可以任意猜)

  師:你們能準確說出盒子里有幾個球嗎?

  生:不能!(師引導學生可以用字母x來表示球的個數)

  (課件出示教材67頁例1情境圖)

  師:從圖上你知道了什么信息?

  師:你能用一個方程來表示嗎?(板書:x+3=9)

  設計意圖:通過猜一猜游戲導入新課,為下面的學習創設良好的問題情境,提高學生的學習興趣。

  ⊙探索交流,解決問題

  1.教學例1。

  (1)獨立思考:盒子里有幾個球?x的值是多少?(由于數據較小,學生能夠獨立思考出結果)

  (2)小組內交流:說說你是怎樣想的。

  (這里給予學生一定思考和交流的時間,重點讓學生說說自己的思考過程)

  (3)全班交流:x的值是多少?說說你是怎樣想的。

  學生可能有以下幾種想法:

  預設 生1:利用加減法的關系計算:9-3=6。

  生2:想6+3=9,所以x=6。

  生3:把9分成6和3,想x+3=6+3,所以x=6。

  生4:在方程兩邊同時減去3,就得到x=6。

  師:同學們的想法真不少!前3個同學都是利用加減法的關系或數的`分成想出了答案。第4個同學的想法有什么不同?他的想法對嗎?我們可以來驗證一下。

  (4)操作驗證:師拿出課件演示中的天平實物。(天平左邊有一個不透明盒子和3個球,右邊有一個相同的透明的盒子,里面有9個球,天平平衡)

  師:現在誰來試一試?左右兩邊同時拿走3個球,天平會怎么樣?(學生拭目以待,躍躍欲試)

  學生操作演示,天平平衡。

  2.指導解方程的書寫格式。

  師:通過操作我們發現他的想法是對的。以后我們就用等式的性質來求方程中未知數的值。這個演算過程應該如何書寫呢?

  (讓學生與同桌交流,發表自己的看法)

  師:從方程的第二行起寫一個“解:”,利用等式的性質兩邊同時減去一個3,為了美觀,要注意每步中的等號要對齊。(師邊強調邊示范)

  師:左右兩邊同時減去的為什么是3,而不是其他數呢?

  學生紛紛說出自己的想法。

解方程教學設計8

  教學目標:

  1、學會利用等式性質1解方程;

  2、理解移項的概念;

  3、學會移項.

  教學重點:利用等式性質1解方程及移項法則;

  教學難點:利用等式性質1來解釋方程的變形.

  教學方法:引導發現

  教學過程:

  一、引入新課:

  1、上節課的想一想引入新課:等式和方程之間有什么區別和聯系?

  方程是等式,但必須含有未知數;

  等式不一定含有未知數,它不一定是方程.

  2、下面的一些式子是否為方程?這些方程又有何特點?

  ①5x+6=9x;②3x+5;③7+5×3=22;④4x+3y=2.

  由學生小議后回答:①、④是方程.

  分析這些方程得:①等式兩邊都是一次式或等式一邊是一次式,另一邊是常數,②這些方程中有的含一個未知數,也有的含兩個未知數.

  我們先來研究最簡單的(只含有一個未知數的)的一元一次方程.

  3、一次方程:我們把等號兩邊是一次式、或等號一邊是一次式另一邊是常數的.方程叫做一次方程.

  注意:一次方程可以含有兩個或兩個以上的未知數:如上例的④.

  4、一元一次方程:只含有一個未知數的一次方程叫做一元一次方程.

  5、判斷下列方程哪些是一次方程,哪些是一元一次方程?(口答)

  ①2x+3=11;②y=16;③x+y=2;④3y-1=4y.

  6、什么叫方程的解?怎樣解方程?

  關鍵是把方程進行變形為x=?即求得方程的解.今天我們就來研究如何求一元一次方程的解(點出課題)利用等式性質1解一元一次方程

  二、講解新課:

  1、等式性質1:

  出示天平稱,在天平平衡的兩邊同時都添上或拿去質量相同的物體,天平仍保持平衡,指出:等式也有類似的情形.

  強調關鍵詞:“兩邊”、“都”、“同”、“等式”.

  2、利用等式性質1解方程:x+2=5

  分析:要把原方程變形成x=?只要把方程兩邊同時減去2即可.

  注意:解題格式.

  例1 解方程5x=7+4x

  分析:方程兩邊都有含x的項,要解這個方程就需要把含x的項集中到一邊,即可把方程變形成x=?(一般是含x的項集中到方程的左邊,使方程的右邊不含有x的項),此題的關鍵是兩邊都減去4x.

  (解略)

  解完后提問:如何檢驗方程時的計算有沒有錯誤?(由學生回答)

  只要把求得的解代替原方程中的未知數,檢查方程的左右兩邊是否相等,(由一學生口頭檢驗) 2

  觀察前面兩個方程的求解過程:

  x+2=5

  x=5-2 5x=7+4x 5x-4x=7

  思考:(1)把+2從方程的一邊移到另一邊,發生了什么變化?

  (2)把+4x從方程的一邊移到另一邊,又發生了什么變化?(符號改變)

  3、移項:

  從變形前后的兩個方程可以看到,這種變形相當于:把方程中的某一項改變符號后,從方程的一邊移到另一邊,我們把這種變形叫做移項.

  注意:①移項要變號;

  ②移項的實質:利用等式性質1對方程進行變形.

  例2 解方程:3x+4=2x+7

  解:移項,得3x-2x=7-4,

  合并同類項,得x=3.

  ∴x=3是原方程的解.

  歸納:①格式:解方程時一般把含未知數的項移到方程的左邊,把常數項移到方程的右邊,以便合并同類項;

  ②解方程與計算不同:解方程不能寫成連等式;計算可以寫成連等式;

  ③一個方程只寫一行,每個方程只有一個等號(理由:利用等式性質1對方程進行變形,前后兩個方程之間沒有相等關系).

  四、課堂小結:

  ①什么是一次方程,一元一次方程?

  ②等式性質1(找關鍵詞);

  ③移項法則;

  ④應用等式性質1的注意點(例2歸納的三條).

  六、板書設計

  七、教學后記

解方程教學設計9

  教學目標:

  1、理解解方程的意義。

  2、會用等式的性質解形如:ax=b的方程,并能用方程的解對方程進行驗算。

  教學重點:學生利用等式的性質來解方程。

  教學難點:學生利用等式的性質來解方程。

  教學過程:

  一、 復習引入

  1、填空:

  加數=( )-另一個加數 被減數=( )+( )

  被除數=( )×( ) 因數=( )÷( )

  2、CIA課件出示:根據題中的數量關系,列出方程。

  (1)小明有30元錢。買鋼筆用了m元,買本子用了10元,剛好用完。

  (2)小紅家買了50千克的大米,吃了n千克,還剩42千克。

  (3)全班a個同學,平均分成個7小組,每個小組8人。

  (4)鋼筆每支4元,買X支用了24元。

  師:剛才我們列出的這些方程,你能求它的解嗎?(師板書:4X=24)

  這個方程的解是多少呢?(X=6)

  今天我們就一起來學習怎樣求方程的'解——解方程

  揭示課題并板書:解方程

  二、探究學習

  1、學習解方程

  (1)自主探究求方程的解。

  (2)匯報,抽生板演。

  (3)師指導學生看書101頁的內容,學習正確的書寫格式,動筆勾畫出你認為比較重要的地方.

  (4)師規范解方程的格式。

  第一種:根據四則混合運算各部分之間的關系

  4X=12

  解: X=12÷4

  X=3

  第二種:根據等式的性質

  4X=12

  解: 4X÷4=12÷4

  X=3

  比較兩種方法的優點和缺點,請將剛才的解題過程再按正確的書寫格式做一遍。

  揭示解方程的含義;區分解方程和方程的解。

  2、方程的檢驗。

  3、鞏固練習:CIA課件出示(學生獨立完成,集體評講)

  三、自主學習

  剛才的幾個方程,請任選一道用你喜歡的方式求方程的解,并口頭檢驗。

  師:大家認為在解方程的時候應該注意些什么?在哪些方面需要提醒同學主義的呢?

  四、全課小結。通過這節課的學習,你有什么收獲?你還有哪些疑問?或者是不明白的地方嗎?

  五、課堂練習:

  1、解方程

  20-X =9 25+ X =80 6.3 ÷X =7

  2、做書上104頁1、2、3題。

  六、板書設計:

  解方程

  法一:四則混合運算各部分之間的關系 法二:等式的性質

  4X=12 4X=12

  解: X=12÷4 解: 4X÷4=12÷4

  X=3 x=3

  七、教學反思:

  通過本節課的學習,學生已經基本上掌握了方程的解題的依據以及書寫格式,但是很多同學在做a÷x=b這種形式的方程時還是容易搞混淆。需要加強練習和多做相關的題型,特別是在前節內容據題意列方程還得多找相關等量的關系,達到復習以前的知識和鞏固現在的新知識的目的。

解方程教學設計10

  教學過程:

  一、導入新課

  前面,我們學習了等式保持不變的規律,等式在哪些情況下變換仍然保持不變呢?等式這些規律在方程中同樣適用嗎?完全可以,因為方程就是等式,今天我們將學習如何利用等式保持不變的規律來解方程。板書:解方程。

  二、新知學習

  (一)教學例1

  出示例1,從圖中可以獲取哪些信息?圖中表示了什么樣的等量關系?盒子中的皮球與外面的3皮個球加起來共有9個,方程怎么列?得到x+3=9

  要求盒子中一共有多少個皮球,也就是求x等于什么,我們該怎么利用等式保持不變的規律來求出方程的解呢?

  抽答。

  方程兩邊同時減去一個3,左右兩邊仍然相等。板書:x+3-3=9-3

  化簡,即得:x=6

  這就是方程的解,誰再來回顧一下我們是怎樣解方程的?

  左右兩邊同時減去的為什么是3,而不是其它數呢?因為,兩邊減去3以后,左邊剛好剩下一個x,這樣,右邊就剛好是x的值。因此,解方程說得實際一點就是通過等式的變換,如何使方程的一邊只剩下一個x即可。

  追問:x=6帶不帶單位呢?讓學生明白x在這里只代表一個數值,因此不帶單位。

  要檢驗x=6是不是正確的答案,還需要驗算。怎么驗算呢?可抽學生回答。

  板書:方程左邊=x+3

  =6+3

  =9

  =方程右邊

  所以,x=6是方程的'解。

  小結:通過剛才解方程的過程,我們知道了在方程的左右兩邊同時減去一個相同的數,左右兩邊仍然相等。不過需要注意的是,在書寫的過程中寫的都是等式,而不是遞等式。

  (二)教學例2

  利用等式不變的規律,我們再來解一個方程。

  出示方程:3x=18,怎樣才能求到1個x是多少呢?同桌的同學互相討論,如有問題,可以出示書上的示意圖幫助分析。

  抽答,在方程兩邊同時除以3即可。為什么兩邊同時除以的是3,而不是其它數呢?剛好把左邊變成1個x。讓學生打開書59頁,把例2中的解題過程補充完整。

  展示、訂正。

  通過,剛才的學習,我們知道了在方程的兩邊同時減去一個相同的數或同時除以一個不為0的數,左右兩邊仍然相等。這是我們解方程常用的兩種方法,想不想用它們來試一試呢?

  (三)反饋練習

  1、完成“做一做”的第1題,先找到等量關系,再列方程,解方程。集體評講。

  2、思考“想一想”:如果方程兩邊同時加上或乘上一個數,左右兩邊還相等嗎?依據是什么?等式保持不變的規律。

  試著解方程:x-2.4=6 x÷9=0.7(強調驗算)

  (四)課堂作業:“做一做”第2題。

  三、課堂小結。

  這節課學習了什么?討論:什么時候應該在方程的兩邊加,什么時候該減,什么時候該乘,什么時候該除呢?

  四、作業:練習十一5—7題。

  教學內容:數學書P58-P59及“做一做”,練習十一第5-7題。

  教學目標:

  1、結合具體圖例,根據等式不變的規律會解方程。

  2、掌握解方程的格式和寫法。

  3、進一步提高學生分析、遷移的能力。

  教學重難點:掌握解方程的方法。

解方程教學設計11

  學習內容:人教版五年級上冊P57頁

  學習目標:

  1、通過操作、演示,進一步理解等式的性式,并能用等式的性質解簡單的方程,在解方程的過程中,進一步理解方程的解與解方程。

  2、會根據等式不變的規律解形如X±a=b的方程,掌握解方程的格式和寫法。

  3、會檢驗一個具體的值是不是方程的解,掌握檢驗的格式。

  3、通過創設情境,經歷從具體抽象為代數問題的過程,滲透代數化思想,并通過驗算,促進良好學習習慣的養成。

  4、在觀察、猜想、驗證等數學活動中,發展學生的數學素養。

  教學重點:會解形如X±a=b的方程,并檢驗。

  教學難點:理解形如X±a=b的方程原理,掌握正確的解方程格式及檢驗方法。

  教學過程:

  一、激趣復習感悟

  (一)導入:秋天是一個瓜果飄香的季節,在這個季節里我們可以吃到各種各樣的水果對不對?你知道嗎?這些水果除了好吃以外還能做許多有趣的事想不想和老師一起去看看?

  (二)觀察理解,復習感悟

  (1)課件出示天平,一個蘋果等于幾個草莓?。

  你看到了什么?能用語言來描述嗎?這個時候天平是怎么樣的?能回答這個問題嗎?要告訴大家你是怎么知道的?

  能說一說為什么要減去兩個草莓嗎?

  (2)課件出示第二個天平,原來一袋海棠果等于幾個海棠果的重量。從這個天平的狀態中你知道了什么?仔細觀察你發現了什么,我們現在怎樣做能一下子找到這個問題的答案。為什么要加上兩個海棠果呢?

  二、自主探究算理

  (一)情境引入列出方程

  老師這還有一個蘋果,你能不能表示出它的重量呢?可以用一個字母X來表示。我用天平稱了一下這個蘋果結果有了一個新發現。你知道了什么信息?

  誰能根據天平稱得的重量來列一個方程。X+20=130

  (二)合作交流得出方法

  X是多少天平兩邊能相等呢?

  看你的意見和其它同學的意見一樣嗎?一會要和大家說說你是怎么想的,是怎樣算出來的?

  預設:

  (1)130-20=110利用加減法之間的關系

  (2)(110)+20=130利用自己的計算經驗

  (3)利用天平平衡原理(等式的性質):由于數目簡單有可能出現不了。

  出現不了教師引導:還有沒有其它方法。根據讓天平兩邊平衡我們來想一種方法。

  (三)小結方法板書課題

  以上同學們說的方法都正確。我們這節課就來看看利用天平平衡原理來解方程的這種方法。(板書解方程)因為這種方法是我們今天剛遇到的而且它對我們今后的學習很有幫助,所以我們就來研究一下它。

  (四)加深理解規范書寫

  誰能向大家再來介紹一下這種方法。在天平上我們會操作可是在怎么用算式把它記錄下來呢。學生說教師引導學生進行正確書寫。

  這里大家都有明白嗎?有問題嗎?老師想問一下這里為什么要減20呢?而且兩邊都要減?所以在我們剛開始學習解方程時等式兩邊同時減的數我們一定要寫,

  請大家注意這里的X=110是一個數值,所以我們不寫單位名稱。

  我們計算的結果對不對呢X=110能不能讓方程的左右兩邊相等是不是方程的解呢?你認為我們應該怎么做?

  指導驗算方法。

  引導學生觀察解題過程并編出兒歌進行記憶:首先要把解字寫,兩邊的.計算要同時進行,所有等號要對齊,X一步都不能少,檢驗的習慣要牢記,這樣才會不出錯。

  這樣的書寫規范、整齊、清楚就像一件藝術品一樣值得人們去欣賞,老師希望同學們今后解題的過程中都能這樣去做。能做到嗎?

  (五)鞏固遷移研究方法

  (1)練習鞏固

  X+3.2=4.6X-2=15

  先在練習本上試試看,有勇氣的同學可以到前邊來試試。

  有困難的同學可以找老師或找小伙伴幫助。

  訂證答案讓我們一起來看。他完成的怎么樣?你對他的解題過程有什么意見要提嗎?

  (2)利用方法遷移自主學習

  再來一起看X-2=15這一道題你是怎么想的,為什么要加上2呢。

  (六)鞏固練習加深理解

  (1)基本練習

  老師這還有兩個問題要靠大家積極動腦來完成。我們一起來看一看。

  請大家根據圖意列出方程再解方程。

  你是怎樣列的算式,怎樣解答的,

  (2)拓展提高

  生活中有許多問題需要我們用解方程的方法來解決,我們一起來看看這幾道題。

  四、課堂總結深化認識

  解方程是一個過程,這個過程就像我們用天平上操作。讓我們一起來回想一下,在這個過程中我們都做了什么?

  秋天是收獲的季節,能和大家在這個收獲的季節一起學習老師很高興,希望大家在這節課上也能收獲累累碩果!

解方程教學設計12

  【教學內容】:

  《義務教育課程標準實驗教科書數學》五年級上冊第

  58、59頁例

  1、例2。

  【教材分析】:

  本節課是學生在掌握了等式的性質及方程的意義的基礎上正式學習解方程的初始課。主要討論x+a=b, ax=b的方程的解法。這部分知識的學習是學生進一步學習稍復雜的方程和應用方程解決實際問題的重要基礎,是本單元的重點內容之一。對于本課中較簡單的方程,教材要求,直接利用等式的性質,只要通過一次變形,即在方程兩邊同時加上或減去、乘上或除以一個數(0除外)就能求出方程的解。

  【教學目標】:

  1、能根據等式的`性質解較簡單的方程。

  2、通過探究較簡單的方程的解法,培養利用已有知識解決問題的意識和能力。

  3、培養規范書寫和自覺檢查的習慣。

  【教學準備】:

  掛圖、天平、小球、小黑板等。

  【教學課時】:

  1課時。

  【教學過程】:

  (一)、復習舊知,導入新課

  1、什么叫方程的解?什么叫解方程?

  方程的解:使方程左右兩邊相等的未知數的值,叫做方程的解; 解方程:求方程的解的過程叫做解方程;

  揭示課題:這節課我們就來學習解最簡單的方程——簡易方程。 板書:解簡易方程。(學生齊讀課題)

  (二)、提出問題,探究新知

  1、提出問題,教學例1 師:請看掛圖,請你說出圖上的意思。(盒子里有x個小球,盒子外有3個球,合起來一共是9個小球。)

  師:能不能用我們新學的方程解決這個問題

  學生列出方程:X+3=9(引導學生根據加法的意義列出方程。)

  師:同學們根據加法的意義的到方程X+3=9,(板書:X+3=9)那么X是多少?(異口同聲說6)

  - 1X+3=9 解: X+3-3=9-3 X=6 提問書寫解方程的過程要注意什么?

  教師示范書寫格式,①、先寫方程X+3=9。②、接下來寫“解:”。③、方程的左右兩邊同時減去3。④方程的左邊只剩下未知數X。方程的右邊9-3是6。得到方程的解是X=6。

  在這里需要強調一點,解方程時每一步得到的都是一個等式,不能連等。另外還要注意等號對齊。

  師:X=6是不是就是正確答案呢?我們來驗算一下。 指名學生回答,教師板書:方程的左邊= X+3 =6+3 =9 =方程的右邊

  所以X=6是方程的解

  像這樣我們就把X+3=9這個方程的解解了出來,那么我們是怎么做到的?

  我們是在方程兩邊同時減去同一個數,方程左右兩邊仍然相等。

  5、鞏固練習

  20+x=47 解: 20+x○□=47○□ x=□

  (自己解方程,對照答案,檢查自己做的,哪兒錯了。)

  (設計意圖:從一開始就強化必要的書寫規范,以發揮首次感知先入為主的強勢效應,有利于促進良好的書寫習慣的形成。)

  6、教學例2 師:同學們我們剛才用解方程的方法求出了X+3=9這個方程的解是X=6那么你對解方程這個概念是不是有一點感覺不知道換一種形式你還有沒有把握。

  出示例2:解方程3X=18 師:你能用解這個方程嗎? 3X表示什么意思?

  那么這個方程就可以理解成已知3個X等于18,求一個X等于多少? 師:請同學們獨立思考,自己試著完成例2的填空,并自己驗算。

  7、討論交流:

  ①、你是怎樣讓方程的左邊只剩下X,還能讓方程的兩邊相等? ②、怎樣把這個過程在方程中表示出來,又使方程左右兩邊保持相等?

  3X÷3=18÷3

解方程教學設計13

  這節課的內容包括兩個方面:一是探索并理解“等式兩邊同時加上或減去同一個數,所得結果仍然是等式”;二是應用等式的性質解只含有加法和減法運算的簡便方程。解方程是學生剛接觸的新鮮知識,學生在知識經驗的儲備上明顯不足,因此數學中老師要時刻關注學生的學習狀態,引領學生經歷將現實、具體的問題加以數學化,引導學生通過操作、觀察、分析和比較,由具體到抽象理解等式的性質,并應用等式的性質解方程。在這節課的教學中,讓學生理解并掌握等式的性質應是解決一系列問題的關鍵。

  一、讓學生在操作中發現

  課開始,老師出示天平并在兩邊各放一個50克的砝碼,“你能用式子表示出兩邊的關系嗎?”學生寫出 50=50;老師在天平的一邊增加一個20克砝碼,“這時的關系怎么表示?”學生寫出50+20>50,“這時天平的兩邊不相等,怎樣才能讓天平兩邊相等?”學生交流得出在天平的另一邊增加同樣重量的砝碼;“你有什么發現嗎?”“自己寫幾個等式看一看。”通過具體的`操作為學生探究問題,尋找結論提供了真實的情境,輔以啟發性、引領性的問題,讓學生經歷了解決問題的過程,并在問題的解決中發現并獲得知識。

  二、讓學生在發現中操作

  引入了等式的性質,其目的就是讓學生應用這一性質去解方程,第一次學生解方程,學生心理上難免會有些準備不足,為了幫助學生應用等式的性質解方程,教者先利用天平所顯示的數量關系,引導學生發現“在方程的兩邊都減去100,使方程的左邊只剩下x”,通過這樣有步驟的練習,幫助學生逐漸掌握解方程的方法。

解方程教學設計14

  學習內容:人教版五年級上冊p57-59頁

  學習目標:

  1、通過操作、演示,進一步理解等式的性式,并能用等式的性質解簡單的方程,在解方程的過程中,初步理解方程的解與解方程。

  2、通過創設情境,經歷從具體抽象為代數問題的過程,滲透代數化思想,并通過驗算,促進良好學習習慣的養成。

  3、在觀察、猜想、驗證等數學活動中,發展學生的數學素養。

  學習重點:用等式的的性質解方程,理解算理

  學習過程:

  一、創設情境,引出方程

  1、研究例1:

  猜球游戲:出示一個乒乓球盒,猜里面有幾個球?引導學生用字母來表示球數?

  導語:要想精確知道多少個球?再給大家一些信息(課件出示:天平左邊盒子和二個球,右邊有七個球)

  設問:能用一個方程來表示嗎?板書x+2=6

  二、探究算理

  設問:你們知道x等于多少嗎?那這個答案4你們是怎么想出來的嗎?說說你們的想法?

  預設:a、7-4=2;b、4+2=7,所以x=4,c、左右二邊都拿掉二個乒乓球,右邊還剩下4個,所以x=4

  研究第三種想法:設問:左右同時拿個二個乒乓球天平會怎么樣?

  學生上臺用天平演示

  請學生們把剛才的過程用式子表示出來,板書:x+2-2=6-2

  追問:你怎么想到是拿到二個乒乓球,而不是拿到一個或者三個呢?

  嘗試驗算:板書:左邊=4+2=6=右邊,所以我們就說x=4是方程的解,板書方程的解,嘗試說說方程的解;剛才我們求方程的解的過程叫做解方程。(可以自學書本)

  講解解方程的書寫格式(與天平相對應)

  小結:剛才我們用了好多方法來解方程,重點研究了第三種解方程的方法,這種方法我們用到了什么知識?課件再次演示后,得出方程的兩邊同時去掉相同的數,左右兩邊仍相等。

  嘗試:解方程:x-1=3,

  想一想:如果要用天平的乒乓球,如何來表示出這個方程?

  指名擺一擺,學生嘗試解決,并用操作來驗證

  2、研究例2:3x=18

  學生嘗試后出示:3x÷3=12÷3

  用小棒操作后交流后想法:方程的左右二同時除以一個相同的數(零除外),左右二邊仍舊相等。

  展示,課件演示后小結:方程的左右二邊可以同時除以相同的數(零除外),左右二邊仍舊相等,追問得到還可以同時乘以一個相同的數

  總結:解方程時,我們都是想使方程的一邊只剩下一個x,而且在這個過程中還要使方程保持平衡,我們可以采用……

  三、鞏固練習:

  1、p59頁1

  2、后面括號中哪個是x的值是方程的解?

  (1)x+32=76 (x=44, x=108)

  (2)12-x=4 (x=16, x=8)

  3、解方程

  p59頁第2題的前面四題,要求口頭驗算

  四、總結:

  五、機動:研究練習2中的第二題,怎么用今天的方法來解方程。

  讓"天平"植入解方程中

  《解簡易方程》是數與代數領域中的一個重要內容,是“代數”教學的起始單元,對于滲透與發展學生的代數化思想有著極其重要的作用。本節課教材在編寫上為了實現中小學的銜接,改變了以往利用“加減法逆運算和乘除法逆運算”而是利用天平原理即等式的性質來解方程,由于學生在前面已經積累了大量的感性經驗(逆運算)來解方程,對于今天運用天平的原理來解方程,造成了極大的干擾,所以在本節課中我力圖直觀,讓學生在直觀的操作與演示中自主建構。同時借助觀察、操作、猜想與驗證,一方面來促使學生進一步理解等式的性質,能利用等式的性質來解方程,同時也讓學生抽象方程,解釋算理中來經歷代數的過程,發展學生的數感及數學素養。

  1、在具體情境中理解算理,經歷代數的過程。

  新課程在數與代數的編排中最大的變化是取消了單獨的應用題編排,而是把應用與計算緊密的結合起來編排,每一個內容都是以主題圖的形式來呈現,主要的是目的是讓學生在具休的情境中理解算理,同時也在計算教學中培養學生的應用意識。本節課屬于典型的計算課,所以算理與算法是二條主線,今天的算法主要是突破學生原有的認知,能夠利用天平的原理來解方程,所以理解算理,讓學生體驗到解方程只要使天平的一邊剩下一個未知數,但要在這個變化中必須使天平保持平衡,可以通過在天平的左右二邊同時加上、減去、乘以或者除以相同的數是本節課的重點。我通過創設情境,通過天平上的乒乓球的移動和補湊,來理解算理,而后利用小棒和棋子自己來解釋說明算理,突顯出本節課的'重點。同時在情境的創設中,通過猜球,與天平的呈現信息,讓學生經歷由直觀的生活抽象為化數化的過程,從中滲透化數化的思想。

  2、在直觀操作中掌握方法,發展數學素養。

  新課程標準指出“學生的數學學習內容應當是現實的、有意義的、富有挑戰性的,這些內 容要有利于學生主動地進行觀察、實驗、猜測、驗證、推理與交流等數學活動,讓學生親身經歷將實際問題抽象成數學模型并進行解釋與應用的過程,進而使學生獲得對數學理解的同時,在思維能力、情感態度與價值觀等多方面得到進步和發展。”在本節課中,通過充分的直觀,利用學生熟悉的乒乓球、小棒等素材,力圖把方程建構于天平之中,通過導入時從直觀到抽象,再到嘗試時從抽象的式子分別直觀的乒乓球與小棒來表示,打通天平與方程之間的關系,在學生的頭腦中建立深刻的模像。同時,在讓學生用自己的生活,用自己的圖畫,用自己的操作解釋、驗證中發展學生的數學素養。

  二點困惑:

  1、縱觀學生的起點,他們已經具有豐富的生活經驗與知識背景來解簡單的方程,所以在教學中運用“逆運算”來解方程對于采用天平的原理來解方程造成了相當的沖突,部分學生雖然對于運用天平原理來解方程已經十分理解,但他們還是不愿意用這種方法,主要的原因是他們體驗不到這種方法的優越性,所以如何在本節課中讓學生體驗到天平原理的優越性,從而自愿的采用這種方法,沒有好的策略?

  2、教材中回避了a-x=b與a/x=b二種方程,但在實踐中經常要碰到,教師如何來解決這個問題?

  一點遺憾:這節課在構思加入了大量的操作活動和直觀材料,主要的目的是讓學生解方程的過程中在學生的頭腦中植入天平,并給學生以自我解釋與驗證的機會,但操作的作用在每一次實踐中都沒有得到最大化的發揮,如何來提高操作的效性,讓操作的目標更明確,是以后這節課研討中重點商切的問題。

解方程教學設計15

  解方程例4、例5教案

  嵐山區虎山鎮官山小學 周明娜

  教學內容:

  教材P69例4、例5及練習十五第6、8、9、13題。

  教學目標:

  知識與技能:鞏固利用等式的性質解方程的知識,學會解ax ±b=c與a(x ±b)=c類型的方程。

  過程與方法:進一步掌握解方程的書寫格式和寫法。 情感、態度與價值觀:在學習過程中,進一步積累數學活動經驗,感受方程的思想方法,發展初步的抽象思維能力。

  教學重點:

  理解在解方程過程中,把一個式子看作一個整體。

  教學難點:

  理解解方程的方法。

  教學方法:

  觀察、分析、抽象、概括和交流.教學準備:多媒體。

  教學過程

  一、復習導入

  1.出示習題:解下面方程:4x = = 學生自主解答練習,并說一說是怎么做的。并在訂正的過程中,規范書寫。 2.引出:這節課我們來繼續學習解方程。(板書課題:解方程)

  二、互動新授

  1.出示教材第69頁例4情境圖。

  引導學生觀察,并說一說圖意。再讓學生根據圖列一個方程。 學生列出方程3x +4=40后,讓學生說一說怎么想的。 (一盒鉛筆盒有x 支鉛筆,3盒鉛筆盒就有3x 支鉛筆。)

  在學生說自己的想法時,引導學生說出把3個未知的鉛筆盒看作一部分,4支鉛筆看作一部分。

  2.讓學生試著求出方程的解。

  學生在嘗試解方程時,可能會遇到困難,要讓學生說一說自己的困惑。 學生可能會疑惑:方程的左邊是個二級運算不知識如何解。

  也有學生可能會想到,把3個未知的鉛筆盒看作一部分,先求出這部分有多少支,再求一盒多少支。(如果沒有,教師可提示學生這樣思考。)

  提問:假如知道一盒鉛筆盒有幾支,要求一共有多少支鉛筆,你會怎么算? 學生會說:先算出3個鉛筆盒一共多少支,再加上外面的4支。

  師小結:在這里,我們也是先把3個鉛筆盒的支數看成了一個整體,先求這部分有多少支。解方程時,也就是先把誰看成一個整體?(3x ) 讓學生嘗試繼續解答,訂正。 根據學生的.回答,板書解題過程: 3x +4=40 解: 3x =40-4 3x =36 (先把3x 看成一個整體) 3x ÷3=36÷3 x =12 讓學生同桌之間再說一說解方程的過程。

  3.出示教材第69頁例5:解方程2(x -16)=8。

  先讓學生說一說方程左邊的運算順序:先算x -16,再乘2,積是8。 思考:你能把它轉換成你會解的方程嗎?

  讓學生嘗試解方程,再在小組內交流自己的做法,然后集體訂正,學生可能會有兩種做法:

  (1)利用例4的方法來解。

  讓學生說一說自己的思考,重點說一說把什么看作一個整體? (先把x -16看作一個整體。)板書計算過程:

  2(x -16)=8 解:2(x -16)÷2=8÷2(把x -16看作一個整體)

  x -16=4 x -16+16=4+16 x =20 (2)用運算定律來解。 引導學生觀察方程,有些學生會看出這個方程是乘法分配律的逆運算。可以運用乘法分配律把它轉化成我們學過的方程來解。

  根據學生回答,板書計算過程: 2(x -16)=8 解: 2x -32=8 (運用了乘法分配律) 2x -32+32=8+32 (把2x 看作一個整體) 2x =40 2x ÷2=40÷2 x =20 4.讓學生檢驗方程的解是否正確。先說一說如何檢驗,再自主檢驗。 (可以把方程的解代入方程中計算,看看方程左右兩邊是否相等。)

  三、鞏固拓展

  1.完成教材第69頁“做一做”第1題。

  先讓學生分析圖意,再列方程解答。解答時,讓學生說一說自己的想法,把誰看作一個整體。(可以把5個練習本的總價5x 看作一個整體。)

  2.完成教材第69頁“做一做”第2題。 先讓學生自主解方程,再集體訂正。

  3.完成教材第71頁“練習十五”第8題。

  先讓學生說一說圖意,再列方程解答。特別是第一幅圖,要提醒學生天平兩邊的砝碼不一樣重,審題要細心。第二幅圖,學生可能會列出方程30×2+2x =158,再引導學生觀察有兩個30和兩個x ,可以運用乘法分配律。

  四、課堂小結

  這節課你學會了什么知識?有哪些收獲?

  引導總結:1.在解較復雜的方程時,可以把一個式子看作一個整體來解。 2.在解方程時,可以運用運算定律來解。

  作業:教材第71~72頁練習十五第6、9、13題。

  板書設計:

  解方程

  例4:3x +4=40 解: 3x =40-4 (先把3x 看成一個整體) 3x =36 3x ÷3=36÷3 x =12 例5:2(x -16)=8 (把x -16看作一個整體) 方法1: 方法2:

  解:2(x -16)÷2=8÷2 解:2x -32=8 (運用了乘法分配律)

  x -16=4 x -32+32=8+32 (把2x 看作一個整體)

  x -16+16=4+16 2x =40 x =20 2x ÷2=40÷2 X =20

【解方程教學設計】相關文章:

解方程教學設計04-07

解方程教學設計03-08

解方程教學設計04-07

人教版解方程教學設計09-09

解方程教學設計(15篇)05-14

解方程教學設計15篇04-07

解方程的教學設計(精選14篇)07-17

解方程教學設計(精選15篇)07-14

方程和解方程的教學設計05-05

解方程教學設計通用15篇06-01