亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

高中數學教學設計

時間:2023-03-28 19:35:33 教學設計 我要投稿

高中數學教學設計(15篇)

  作為一無名無私奉獻的教育工作者,通常需要準備好一份教學設計,借助教學設計可以更好地組織教學活動。我們應該怎么寫教學設計呢?下面是小編為大家收集的高中數學教學設計,歡迎閱讀,希望大家能夠喜歡。

高中數學教學設計(15篇)

高中數學教學設計1

  一、目標

  1.知識與技能

  (1)理解流程圖的順序結構和選擇結構。

  (2)能用字語言表示算法,并能將算法用順序結構和選擇結構表示簡單的流程圖

  2.過程與方法

  學生通過模仿、操作、探索、經歷設計流程圖表達解決問題的過程,理解流程圖的結構。

  3情感、態度與價值觀

  學生通過動手作圖,.用自然語言表示算法,用圖表示算法。進一步體會算法的基本思想——程序化思想,在歸納概括中培養學生的邏輯思維能力。

  二、重點、難點

  重點:算法的順序結構與選擇結構。

  難點:用含有選擇結構的流程圖表示算法。

  三、學法與教學用具

  學法:學生通過動手作圖,.用自然語言表示算法,用圖表示算法,體會到用流程圖表示算法,簡潔、清晰、直觀、便于檢查,經歷設計流程圖表達解決問題的過程。進而學習順序結構和選擇結構表示簡單的流程圖。

  教學用具:尺規作圖工具,多媒體。

  四、教學思路

  (一)、問題引入 揭示題

  例1 尺規作圖,確定線段的一個5等分點。

  要求:同桌一人作圖,一人寫算法,并請學生說出答案。

  提問:用字語言寫出算法有何感受?

  引導學生體驗到:顯得冗長,不方便、不簡潔。

  教師說明:為了使算法的表述簡潔、清晰、直觀、便于檢查,我們今天學習用一些通用圖型符號構成一張圖即流程圖表示算法。

  本節要學習的是順序結構與選擇結構。

  右圖即是同流程圖表示的算法。

 。ǘ、觀察類比 理解題

  1、 投影介紹流程圖的符號、名稱及功能說明。

  符號 符號名稱 功能說明

  終端框 算法開始與結束

  處理框 算法的各種處理操作

  判斷框 算法的各種轉移

  輸入輸出框 輸入輸出操作

  指向線 指向另一操作

  2、講授順序結構及選擇結構的概念及流程圖

  (1)順序結構

  依照步驟依次執行的一個算法

  流程圖:

  (2)選擇結構

  對條進行判斷決定后面的步驟的結構

  流程圖:

  3.用自然語言表示算法與用流程圖表示算法的比較

 。1)半徑為r的圓的面積公式 當r=10時寫出計算圓的`面積的算法,并畫出流程圖。

  解:

  算法(自然語言)

  ①把10賦與r

 、谟霉 求s

  ③輸出s

  流程圖

 。2) 已知函數 對于每輸入一個X值都得到相應的函數值,寫出算法并畫流程圖。

  算法:(語言表示)

 、 輸入X值

 、谂袛郮的范圍,若 ,用函數Y=x+1求函數值;否則用Y=2-x求函數值

  ③輸出Y的值

  流程圖

  小結:含有數學中需要分類討論的或與分段函數有關的問題,均要用到選擇結構。

  學生觀察、類比、說出流程圖與自然語言對比有何特點?(直觀、清楚、便于檢查和交流)

  (三)模仿操作 經歷題

  1.用流程圖表示確定線段A.B的一個16等分點

  2.分析講解例2;

  分析:

  思考:有多少個選擇結構?相應的流程圖應如何表示?

  流程圖:

 。ㄋ模w納小結 鞏固題

  1.順序結構和選擇結構的模式是怎樣的?

  2.怎樣用流程圖表示算法。

 。ㄎ澹┚毩暎99 2

 。┳鳂IP99 1

高中數學教學設計2

  一、單元教學內容

 。ǎ保┧惴ǖ幕靖拍

 。ǎ玻┧惴ǖ幕窘Y構:順序、條件、循環結構

 。ǎ常┧惴ǖ幕菊Z句:輸入、輸出、賦值、條件、循環語句

  二、單元教學內容分析

  算法是數學及其應用的重要組成部分,是計算科學的重要基礎。隨著現代信息技術飛速發展,算法在科學技術、社會發展中發揮著越來越大的作用,并日益融入社會生活的許多方面,算法思想已經成為現代人應具備的一種數學素養。需要特別指出的是,中國古代數學中蘊涵了豐富的算法思想。在本模塊中,學生將在中學教育階段初步感受算法思想的基礎上,結合對具體數學實例的分析,體驗程序框圖在解決問題中的作用;通過模仿、操作、探索,學習設計程序框圖表達解決問題的過程;體會算法的基本思想以及算法的重要性和有效性,發展有條理的思考與表達的能力,提高邏輯思維能力

  三、單元教學課時安排:

  1、算法的基本概念 3課時

 。、程序框圖與算法的'基本結構 5課時

  3、算法的基本語句 2課時

  四、單元教學目標分析

 。、通過對解決具體問題過程與步驟的分析體會算法的思想,了解算法的含義

 。、通過模仿、操作、探索,經歷通過設計程序框圖表達解決問題的過程。在具體問題的解決過程中理解程序框圖的三種基本邏輯結構:順序、條件、循環結構。

 。场⒔洑v將具體問題的程序框圖轉化為程序語句的過程,理解幾種基本算法語句:輸入、輸出、斌值、條件、循環語句,進一步體會算法的基本思想。

 。础⑼ㄟ^閱讀中國古代數學中的算法案例,體會中國古代數學對世界數學發展的貢獻。

  五、單元教學重點與難點分析

 。、重點

 。ǎ保├斫馑惴ǖ暮x (2)掌握算法的基本結構 (3)會用算法語句解決簡單的實際問題

  2、難點

 。ǎ保┏绦蚩驁D (2)變量與賦值 (3)循環結構 (4)算法設計

  六、單元總體教學方法

  本章教學采用啟發式教學,輔以觀察法、發現法、練習法、講解法。采用這些方法的原因是學生的邏輯能力不是很強,只能通過對實例的認真領會及一定的練習才能掌握本節知識。

  七、單元展開方式與特點

  1、展開方式

  自然語言→程序框圖→算法語句

 。、特點

  (1)螺旋上升 分層遞進 (2)整合滲透 前呼后應 (3)三線合

  一 橫向貫通 (4)彈性處理 多樣選擇

  八、單元教學過程分析

  1. 算法基本概念教學過程分析

  對生活中的實際問題通過對解決具體問題過程與步驟的分析(喝茶,如二元一次方程組求解問題),體會算法的思想,了解算法的含義,能用自然語言描述算法。

  2.算法的流程圖教學過程分析

  對生活中的實際問題通過模仿、操作、探索,經歷通過設計流程圖表達解決問題的過程,了解算法和程序語言的區別;在具體問題的解決過程中,理解流程圖的三種基本邏輯結構:順序、條件分支、循環,會用流程圖表示算法。

  3. 基本算法語句教學過程分析

  經歷將具體生活中問題的流程圖轉化為程序語言的過程,理解表示的幾種基本算法語句:賦值語句、輸入語句、輸出語句、條件語句、循環語句,進一步體會算法的基本思想。能用自然語言、流程圖和基本算法語句表達算法,

  4. 通過閱讀中國古代數學中的算法案例,體會中國古代數學對世界數學發展的貢獻。

  九、單元評價設想

  1.重視對學生數學學習過程的評價

  關注學生在數學語言的學習過程中,是否對用集合語言描述數學和現實生活中的問題充滿興趣;在學習過程中,能否體會集合語言準確、簡潔的特征;是否能積極、主動地發展自己運用數學語言進行交流的能力。

  2.正確評價學生的數學基礎知識和基本技能

  關注學生在本章(節)及今后學習中,讓學生集中學習算法的初步知識,主要包括算法的基本結構、基本語句、基本思想等。算法思想將貫穿高中數學課程的相關部分,在其他相關部分還將進一步學習算法

高中數學教學設計3

  一、課題:

  人教版全日制普通高級中學教科書數學第一冊(上)《2.7對數》

  二、指導思想與理論依據:

  《數學課程標準》指出:高中數學課程應講清一些基本內容的實際背景和應用價值,開展“數學建!钡膶W習活動,把數學的應用自然地融合在平常的教學中。任何一個數學概念的引入,總有它的現實或數學理論發展的需要。都應強調它的現實背景、數學理論發展背景或數學發展歷史上的背景,這樣才能使教學內容顯得自然和親切,讓學生感到知識的發展水到渠成而不是強加于人,從而有利于學生認識數學內容的實際背景和應用的價值。在教學設計時,既要關注學生在數學情感態度和科學價值觀方面的發展,也要幫助學生理解和掌握數學基礎知識和基本技能,發展能力。在課程實施中,應結合教學內容介紹一些對數學發展起重大作用的歷史事件和人物,用以反映數學在人類社會進步、人類文化建設中的作用,同時反映社會發展對數學發展的促進作用。

  三、教材分析:

  本節內容主要學習對數的概念及其對數式與指數式的互化。它屬于函數領域的.知識。而對數的概念是對數函數部分教學中的核心概念之一,而函數的思想方法貫穿在高中數學教學的始終。通過對數的學習,可以解決數學中知道底數和冪值求指數的問題,以及對數函數的相關問題。

  四、學情分析:

  在ab=N(a>0,a≠1)中,知道底數和指數可以求冪值,那么知道底數和冪值如何求求指數,從學生認知的角度自然就產生了這樣的需要。因此,在前面學習指數的基礎上學習對數的概念是水到渠成的事。

  五、教學目標:

  (一)教學知識點:

  1.對數的概念。

  2.對數式與指數式的互化。

  (二)能力目標:

  1.理解對數的概念。

  2.能夠進行對數式與指數式的互化。

  (三)德育滲透目標:

  1.認識事物之間的相互聯系與相互轉化,

  2.用聯系的觀點看問題。

  六、教學重點與難點:

  重點是對數定義,難點是對數概念的理解。

  七、教學方法:

  講練結合法八、教學流程:

  問題情景(復習引入)——實例分析、形成概念(導入新課)——深刻認識概念(對數式與指數式的互化)——變式分析、深化認識(對數的性質、對數恒等式,介紹自然對數及常用對數)——練習小結、形成反思(例題,小結)

  八、教學反思:

  對本節內容在進行教學設計之前,本人反復閱讀了課程標準和教材,教材內容的處理收到了一定的預期效果,尤其是練習的處理,充分發揮了學生的主體作用,也提高了學生主體的合作意識,達到了設計中所預想的目標。然而還有一些缺憾:對本節內容,難度不高,本人認為,教師的干預(講解)還是太多。在以后的教學中,對于一些較簡單的內容,應放手讓學生多一些探究與合作。隨著教育改革的深化,教學理念、教學模式、教學內容等教學因素,都在不斷更新,作為數學教師要更新教學觀念,從學生的全面發展來設計課堂教學,關注學生個性和潛能的發展,使教學過程更加切合《課程標準》的要求。

  對于本教學設計,時間倉促,不足之處在所難免,期待與各位同仁交流。

高中數學教學設計4

  我先來介紹一下參加我們這次講座的幾位嘉賓,我身邊這位是蘇州五中的羅強校長,這邊這位是蘇州中學的劉華老師,那邊那位是大家熟悉的首都師范大學數學系博士生導師王尚志教授。歡迎大家來到我們研討的現場!

  老師們都知道,素質教育要落實在課堂上,課堂是我們實行數學新課程的主戰場,做好教學設計是我們整個高中數學新課程推進的一個關鍵點。那么,怎樣才能做好數學的教學設計呢?我們問過一些老師,大家感覺有些疑惑,比如說有的老師們認為:教學設計是不是就是備備課,寫好一個教案、做一個課件,是不是這樣?我們想聽聽來自江蘇的老師怎么看這個問題?

  羅強:我來談談自己對教學設計理論的學習和實踐過程中的一些體會。以前我們在教學實踐中往往把教學設計變成一種簡單的教案設計,但實際上這只是一種經驗型的教學設計,沒有上升為科學型的教學設計。其實,國際上對教學設計的研究已經進行多年,提出了許多思想、理論、案例,教學設計已經成為一個獨立的研究領域。

  教學設計理論的發展基本上經歷了兩個階段:第一個階段是突出以“教的傳遞策略”為中心來進行教學設計的傳統教學設計理論,它更接近工程學,遵循設計的規則和程序,強調目標遞進和按部就班的系統操作過程,其特點是注重目標細化,注重分層要求,注重教學內容各要素的協調。就好像我們要造一幢房子,先要把這幢房子的圖紙設計出來,然后再設計一個施工的藍圖,教學就是按照這樣的設計來進行實施的一個過程。

  第二個階段是突出以“學的組織方式”為中心來進行教學設計的現代教學設計理論,它的基礎是信息加工理論與建構主義的學習理論,現代教學設計理論強調依據學習任務類型(如認知、情感與心理動作等)來選擇教學策略,強調以問題為中心,營造一個能激活學生原有知識經驗,有利于新知識建構的學習環境。其特點是問題與環境,強調創設情境,提出問題,營造問題解決的環境,突出學生的自主學習和自主探究。

  按照新的教學設計的理論,我們應該以學為中心來進行教學設計,簡單的說就是——為學習而設計教學!打個比喻,就是說我們教師好比是導游,帶著學生去一個新的景點旅游,那么在這個過程中間,教學設計就是設計這么一個導游圖,讓學生在參觀各個景點的過程中,經歷學習這些知識的一種過程。

  按照為學習而設計教學的理念,我覺得在教學設計時要考慮三條線索,這樣實際上也就構成了教學設計的一種三維結構。第一條線索就是一種數學知識線索。因為教師進行的是學科教學;第二個線索是學生的認知線索。因為學習的主體是學生;第三個線索就是教師的教學組織線索,因為教學過程是通過教師的組織來實現的。比如第一條線索——數學知識,我覺得數學知識實際有三個形態:一是自然形態,它既存在于客觀世界中間,實際上也存在于學生的頭腦中間;二是學術形態,它是作為數學學科的一種知識體系而存在。那么,我們的教學就是要在數學的自然形態和學術形態的中間架一座橋梁,這座橋梁就是數學的教育形態。因此,我覺得教學設計的本質就是設計好數學的教育形態,教學設計的過程實際上就是構建數學教育形態的一個過程。

  通過對教學設計理論的學習,并在實踐中反思和總結,我的體會很深。有一位美國學者蘭達曾經說過:教學設計是使天才能夠做到的事一般人也能去做。我想對教學設計理論的學習是一個大家都要努力的目標。

  張思明:剛才羅強老師從理論上分析了什么是教學設計?教學設計應該關注哪些問題?下面我們請劉華老師幫我們分析一下:在你們實驗區和老師接觸的實踐中,你感覺到老師們在教學設計中存在著哪些主要問題?

  劉華:我想解剖一個由職初教師,就是剛剛工作的青年教師所提供的一個教學案例。

  我先簡單介紹一下他的教學設計。這是高一函數單調性的一節起始課,在教學設計中,這個職初教師首先明確了這節課的三維目標,然后他提出了兩個生活中的情境,一個情境是生活中的氣溫圖;第二個情境是股票的價格走勢圖,然后引入新課。接著把函數單調性的概念介紹給學生,緊接著進入了例題講解階段,最后是有兩個思考題。

  我覺得這個教學設計大致存在這樣四點比較普遍的問題:

  第一個問題就是這位教師在確定課程目標的時候,比較機械地套用了新課程的理念,按照“知識技能,方法與過程,情感、態度、價值觀”這樣的三維目標來敘述他的本節課目標。在這些目標中,知識與技能的目標還是比較實在的.,但“過程與方法”的目標以及“情感、態度、價值觀”的目標就比較空洞,流于形式。其實,這位老師對教學目標并沒有做深入的分析,這樣的教學目標只是一個標簽而已,這是第一個問題。

  第二個問題是問題情境的設計。好的情境應當是兼顧生活化與數學化,股票的價格走勢圖這個情境離學生的生活太遠,其中還包含了許多股票方面的專門知識,對函數單調性這個數學概念的反映也不夠準確,作為本課的情境,不太恰當。

  第三個問題就是在情境到數學概念的產生過程中,應當讓學生充分體驗或參與數學化的探索過程,從而建構起函數單調性這一概念。我們看到在這位教師的設計當中,他忽略了學生活動,尤其是學生思維活動這樣一個環節,而是直接把概念拋給了學生。我們認為學生在數學學習中,“過程”相對來說比僅僅接受概念這個“結果”更為重要。

  最后一個問題就是我們發現有很多老師認為數學教學設計主要就是習題的設計,這位教師本節課的例題、習題量非常多,而且對這些習題的要求他存在著一步到位的傾向,尤其是他最后拋出來的含字母的函數單調性的探索這個問題,我們覺得在新授課當中這個習題的要求太高了。我覺得老師們在教學設計中主要存在這樣幾點問題。

  張思明:劉華老師談了一個單調性的案例,對一個新教師的案例做了一個分析,分析出了我們老師在教學設計中常常出現的一些問題。那么面對這樣一些問題,我們應該怎么辦?我們就以這個案例為出發點,請羅強老師對函數單調性這個課題做了一個分析和再創造的工作,在這個工作中我們可以看到如何通過教師自己的再學習、再認識,設計出一個更好、更適用于學生的教學設計。我們來看一下羅強老師的說課錄像。

  羅強老師的說課:各位老師大家好,我向大家匯報一下我對函數單調性的教學設計。

  首先談一下我對教學設計的認識。我覺得教學設計的根本目的是創設一個有效的教學系統,這樣的教學系統不是隨意出現的而是教師精心創設的,沒有有效的教學設計就不可能保證教學的效果和質量。教學設計最根本的著力點是“為學習設計教學”,而不是“為教學設計學習”。

  教學設計的首要任務就是明確教學目標,實際上教學目標是教學設計的靈魂和統帥,將指引后續教學設計的方向,決定后續教學設計的具體工作。在制定教學目標的時候,我覺得要把握以下幾點:

  第一,把握教學要求,不求一步到位。函數單調性是高中階段刻劃函數變化的一個最基本的性質。在高中數學課程中,對于函數單調性的研究分成兩個階段:第一個階段是用運算的性質研究單調性,知道它的變化趨勢;第二階段用導數的性質研究單調性,知道它的變化快慢。那么高一我們是處在第一個階段。第二,明確知識目標,落實隱性目標。知識目標往往就是教學的顯性目標,確定知識目標的關鍵在于分清主次輕重,把握好教學要求。根據課程標準的要求,本節課的知識目標定位在以下三個方面:一是理解函數單調性的概念;二是掌握判斷函數單調性的方法;三是會用定義證明一些簡單函數在某個區間上的單調性。另外這節課的隱性目標我覺得也很重要,因為函數單調性的定義是對函數圖象特征的一種數學描述,它經歷了由圖象直觀特征到自然語言描述再到數學符號的描述的進化過程,反映了數學的理性思維和理性精神。對高一學生來講它是一個很有價值的數學教育載體和契機。因此這節課的隱性目標應該包括讓學生體驗數學知識的發生發展過程,學會數學概念符號化的建構過程。根據剛才的分析,我把教學流程分成了三個階段:第一個階段是進行函數單調性概念的數學化過程;第二個階段是從不同的角度幫助學生深入理解函數單調性的概念;第三個階段是讓學生學會判斷,并用函數單調性的定義證明函數的單調性。

  第一階段的教學流程分成三個教學環節。第一,問題情境;第二,溫故知新;第三,建構概念。具體如下:

  先是創設問題情境。由老師和學生一起舉出生活中描繪上升或者下降的變化規律的成語。老師可以啟發一下,先說一個“蒸蒸日上”,然后和學生一起舉出比如“每況愈下”,“波瀾起伏”這樣三種描繪不同變化的成語。然后請學生根據上述成語,給出一個函數,并在平面直角坐標系中繪制相應的函數圖象。這樣設計的意圖是讓學生結合生活體驗用樸素的生活語言描繪變化規律,體會如何將文字語言轉化為圖形語言。

  接下來是溫故知新。在剛才學生繪制出的三個函數圖象的基礎上,我請學生觀察它們變化的趨勢。在剛才學生繪制的三個函數圖象的基礎上,再請學生用初中的語言來敘述什么叫圖象呈逐漸上升的趨勢,也就是“函數值隨著的增大而增大”。這樣設計的意圖是讓學生對照繪制的函數圖象,用自然語言描述函數的變化規律,重溫初中函數單調性的描述定義。

  張思明:剛才我們看到了時駿老師的說課,下面我們來聽一聽嘉賓對這個說課的分析。

  羅強:我還是要強調教學設計一定要注意為學習而設計教學。還是拿我剛才的這個比喻,就是教師帶學生去旅游。既然是帶學生去旅游,首先就要考慮我要帶學生到什么地方去?然后需要考慮我怎么才能夠帶學生到達這個地方?然后我要確定學生是不是真的到達了這個地方?還要注意的是,作為教學的一種延伸,我覺得還應該讓學生有興趣、有能力繼續他自己的旅程。我覺得這是我們教學設計要做的主要工作。

  張思明:通過以上幾個案例,我想老師們對于如何做教學設計有了一個初步的認識。怎樣做好教學設計呢?我們也想聽一聽在教育指導部門的老師的一些想法,我們特別采訪了江蘇省教研室的董林偉主任,我們來聽一聽董主任關于教學設計的思考和認識。

  董主任:關于設計這兩個詞大家應該都非常的熟悉。當人們要從事一項有目的的活動的時候,事先都要有一些設想,要進行一些規劃,要進行一些設計。作為我們教學工作者來說,在開始我們的教學活動之前,我們的老師都必須做一項非常重要的工作,那就是教學設計。今天我要談的就是關于教學設計的話題。我想就三個方面來談談我的一些基本想法。第一,我想先談談什么叫教學設計?第二,談談我們在教學設計過程中應該來設計一些什么?第三,在設計的過程當中我們要注意哪幾點?下面我想簡要的把這三個方面跟大家做一個交流。

  一、關于什么叫教學設計?

  所謂的教學設計就是用系統的方法對各種課程資源進行有機的整合,對教學過程中相互聯系的各個部分作出整體安排的一種構想。它是一種構想,是一種整體的安排,是我們教師為將來進行的教學勾畫的一些圖景,它反映了我們的教師對自己未來教學的一種認識和期望。如果通俗一點來說,那么所謂的教學設計可以這樣來理解,就是:你要把學生帶到哪里去?你怎樣把學生帶到那里去?你這樣做能把學生帶到那里去嗎?

  二、在教學設計過程當中我們應該關注些什么,就是說設計一些什么?

  首先,我們必須明確我們的教學目標,教學目標是我們教學根本的指向與核心的任務,是教學設計的關鍵。教學的目標是教學中師生所預期達到的一種教學效果和標準,因此,明確教學目標就是要明確你要把學生帶到哪里去。在確定教學目標的時候,我們要關注以下的幾點:第一,整體性。就是要注意這部分內容在整個高中階段數學教學中的聯系,以達到教學的一種連貫性,要正確處理好我們的近期的目標跟遠期目標的相互關系。第二,在我們明確目標的時候,要關注它的全面性。新課程對數學教學的目標提出了新的一種要求,三維目標在關注知識結果的同時,更注重對過程目標的關注和對學習者——學生的關注,更關注學生獲取數學知識的過程以及在學習中的經歷、感受和體驗。因此,教師在設計數學教學目標時,應特別注意關注新課程所提出的過程性目標。第三,我們要關注目標的現實性。確定教學目標時,應當注意它與所授課任務的實質性聯系,以避免目標空洞、無法落實。我們在設計教學目標時,常見的一種狀況是目標過分的大,過分的空洞,那么在落實過程中,就難以達到預設的目標。其次,我們在教學設計中要非常關注學生,要了解學生。我想,以下幾個方面,至少老師在教學設計過程中應該心中有數。

  第一,在數學方面學生以前做過什么?他在數學活動或者是在數學實驗方面,曾經做過什么?這里我們實際上要關注的是學生的活動經驗。

  第二,不同的學生在思維方式上會有什么不同。實際上就是要在教學中關注我所授課的學生的特點,關注我班學生的構成,班級當中不同群體的學生在思維方面有些什么樣的不同。

  第三,要初步確定課堂的組織形式,就是說我這一堂課是整個班級一起學習,還是將學生分成若干個組來活動,甚至于是一種個體性的活動,包括開展一些個體性的實驗活動,包括自主學習的一種活動方式。組織形式上還要關注這堂課需要利用什么模型?是否需要做適當的課件?或者準備一些相關的硬件設施。這也是我們在確定課堂組織形式是所必須要關注的。

  第四,要勾勒教學的一種順序。這個順序當中主要包括這樣幾點:

  第一點,應當怎樣提出主題,通俗一點講就是問題情境的創設。關于問題情境的創設,我們在相關的專題中也都提到它的重要性和一些要求。我們在勾勒教學順序的時候,首先要關注的是怎樣提出主題,這個主題應該是跟學生接近的,又要能夠引起他的興趣,又要圍繞著我們的教學主題的,而且能夠使得學生迅速的進入學習活動中。

  第二點,就是要關注是否需要復習以前的相關知識。一堂課的教學它往往不是獨立的,而是有前后聯系的,因此需要考慮我在這堂課教學中是否需要復習相關的知識?

  第三點,當學生對材料產生爭論的時候,你準備提出怎樣的探索性問題。當我們提出問題以后學生可能會產生什么樣的一種思考,可能會產生一種什么樣的爭論?我們要了解這些爭論的思維的背景,需要進行正確的引導,那么你就必須要設計好一些問題串,來引導學生圍繞主題展開探索。

  第四點,我們在設計教學程序的過程中要關注一下我們使用的材料,我們的課本提出了什么樣的觀點,使用什么樣課外的材料來幫助我們的教學。

  第五點,要根據學生對主題的掌握程度,準備幾個可以供選擇的,課堂當中要自主完成的練習,或者是課后要完成家庭作業。這些是勾勒我們整個教學流程的一些關鍵程序。

  三、教學設計中我們應該注意的方面。

  教學設計永遠只是教學過程的一種預期,實際的教學活動則永遠是一個謎。我們老師都有經驗,同樣的一個課題,同一個老師的備課,他在不同班的授課過程中都會產生不同的教學流程、教學效果。因為我們所面對的學生是不同的,是在變化的,我們的教學生成是變化的,只有當這堂課教學完成了,我們才能知道這堂課最后的結果。所以前面的教學設計只是一種預期,我們的教學設計就是要關注這樣的一種變化。

  因此,教學設計首先要注意它的整體性,就是說我們的教學設計不是一種片斷,是一種整體的設計,它不是寫在我們紙上的一種文本,而是我們教師對自己和學生所持的一種整體性的目標。其次,要注意它的可變性,沒有一件事情是絲毫不差地按照計劃進行的。學生的思維可能還停留在你認為根本不重要的問題上,他們還會以你幾乎不能想象的方式來理解某些概念。當活動過程受到影響時,你必須放棄你原來的教學計劃,運用你對學生已有的知識的了解和更宏觀的數學教學目標,去指導你的教學行動,也就是說要產生一些生成的問題。第三,要注意它創造性。我們的教師很大程度上會依賴于教材或教學參考書,以確保他們的數學教學內容符合一個內部連貫的發展框架。這種依賴有一定的好處,它能夠使得我們的教學設計能夠圍繞著我們課程的設計來進行,但是同時也存在一些問題,就是說畢竟教材是我們課程的一種呈現,跟教學的呈現還是有著本質差別的。我們的教學設計應該是一種流動的過程,應該適合我們的學生,就像設計師設計的服裝要符合你所設計的群體的特點和要求,如果考慮到個體,就要符合他的氣質,符合他的整體形象。我們的教學設計也是這樣,我想每個人都應該有個人設計的一種思考和魅力。

  剛才談到這幾點僅供我們老師做一種參考。

  張思明:各位老師,我們這一講把教學設計中存在的問題通過幾個案例給大家做了一個初步的展示。我想教學設計中的問題是一個教學實踐過程中產生的問題,我們每一個老師都有自己的設計理念,都有自己設計成功或者不如意甚至失敗的地方。我們希望研討是一個互動的過程,我們真誠的期待著老師們把您們在教學設計中遇到的問題和成功的經驗寄給我們,我們一起來研討。那么這一講就到這里,謝謝老師們的參與!

高中數學教學設計5

  教學目標:

  ①掌握對數函數的性質。

  ②應用對數函數的性質可以解決:對數的大小比較,求復合函數的定義域、值域及單調性。

 、圩⒅睾瘮邓枷、等價轉化、分類討論等思想的滲透,提高解題能力。

  教學重點與難點:

  對數函數的性質的應用。

  教學過程設計:

  ⒈復習提問:對數函數的概念及性質。

 、查_始正課

  1比較數的大小

  例1比較下列各組數的大小。

 、舕oga5.1 ,loga5.9 (a>0,a≠1)

  ⑵log0.50.6 ,logЛ0.5 ,lnЛ

  師:請同學們觀察一下⑴中這兩個對數有何特征?

  生:這兩個對數底相等。

  師:那么對于兩個底相等的對數如何比大小?

  生:可構造一個以a為底的對數函數,用對數函數的單調性比大小。

  師:對,請敘述一下這道題的解題過程。

  生:對數函數的.單調性取決于底的大。寒0調遞減,所以loga5.1>loga5.9 ;當a>1時,函數y=logax單調遞增,所以loga5.1

  板書:

  解:Ⅰ)當0

  ∵5.1<5.9 loga5.1="">loga5.9

 、)當a>1時,函數y=logax在(0,+∞)上是增函數

  ∵5.1<5.9 ∴loga5.1

  師:請同學們觀察一下⑵中這三個對數有何特征?

  生:這三個對數底、真數都不相等。

  師:那么對于這三個對數如何比大小?

  生:找“中間量”,log0.50.6>0,lnЛ>0,logЛ0.5<0;lnл>1,

  log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

  板書:略。

  師:比較對數值的大小常用方法:

 、贅嬙鞂岛瘮,直接利用對數函數的單調性比大小;

 、诮栌谩爸虚g量”間接比大小;

 、劾脤岛瘮祱D象的位置關系來比大小。

  2函數的定義域,值域及單調性。

高中數學教學設計6

  一、教學內容分析

  圓錐曲線的定義反映了圓錐曲線的本質屬性,它是無數次實踐后的高度抽象.恰當地利用定義解題,許多時候能以簡馭繁.因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質后,再一次強調定義,學會利用圓錐曲線定義來熟練的解題”。

  二、學生學習情況分析

  我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數學語言的表達能力也略顯不足。

  三、設計思想

  由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情.在教學時,借助多媒體動畫,引導學生主動發現問題、解決問題,主動參與教學,在輕松愉快的環境中發現、獲取新知,提高教學效率.

  四、教學目標

  1.深刻理解并熟練掌握圓錐曲線的定義,能靈活應用定義解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線的方程。

  2.通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。

  3.借助多媒體輔助教學,激發學習數學的興趣.

  五、教學重點與難點:

  教學重點

  1.對圓錐曲線定義的理解

  2.利用圓錐曲線的定義求“最值”

  3.“定義法”求軌跡方程

  教學難點:

  巧用圓錐曲線定義解題

  六、教學過程設計

  【設計思路】

  (一)開門見山,提出問題

  一上課,我就直截了當地給出——

  例題1:(1) 已知A(-2,0), B(2,0)動點M滿足|MA|+|MB|=2,則點M的軌跡是( )。

  (A)橢圓 (B)雙曲線 (C)線段 (D)不存在

  (2)已知動點 M(x,y)滿足(x1)2(y2)2|3x4y|,則點M的軌跡是( )。

  (A)橢圓 (B)雙曲線 (C)拋物線 (D)兩條相交直線

  【設計意圖】

  定義是揭示概念內涵的邏輯方法,熟悉不同概念的不同定義方式,是學習和研究數學的一個必備條件,而通過一個階段的學習之后,學生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質,是我本節課首先要弄清楚的問題。

  為了加深學生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準備了兩道練習題。

  【學情預設】

  估計多數學生能夠很快回答出正確答案,但是部分學生對于圓錐曲線的定義可能并未真正理解,因此,在學生們回答后,我將要求學生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學完圓錐曲線這部分知識的學生來說,并不是什么難事。但問題(2)就可能讓學生們費一番周折—— 如果有學生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)2

  5這樣,很快就能得出正確結果。如若不然,我將啟發他們從等式兩端的式子|3x4y|5

  入手,考慮通過適當的變形,轉化為學生們熟知的兩個距離公式。

  在對學生們的.解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標是 ,實軸長為 ,焦距為 。以深化對概念的理解。

  (二)理解定義、解決問題

  例2 (1)已知動圓A過定圓B:x2y26x70的圓心,且與定圓C:xy6x910 相內切,求△ABC面積的最大值。

  (2)在(1)的條件下,給定點P(-2,2), 求|PA|

  【設計意圖】

  運用圓錐曲線定義中的數量關系進行轉化,使問題化歸為幾何中求最大(小)值的模式,是解析幾何問題中的一種常見題型,也是學生們比較容易混淆的一類問題。例2的設置就是為了方便學生的辨析。

  【學情預設】

  根據以往的經驗,多數學生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實上,解決本題的關鍵在于能準確寫出點A的軌跡,有了練習題1的鋪墊,這個問題對學生們來講就顯得頗為簡單,因此面對例2(1),多數學生應該能準確給出解答,但是對于例2(2)這樣相對比較陌生的問題,學生就無從下手。我提醒學生把3/5和離心率聯系起來,這樣就容易和第二定義聯系起來,從而找到解決本題的突破口。

  (三)自主探究、深化認識

  如果時間允許,練習題將為學生們提供一次數學猜想、試驗的機會——

  練習:設點Q是圓C:(x1)2225|AB|的最小值。 3y225上動點,點A(1,0)是圓內一點,AQ的垂直平分線與CQ交于點M,求點M的軌跡方程。

  引申:若將點A移到圓C外,點M的軌跡會是什么?

  【設計意圖】 練習題設置的目的是為學生課外自主探究學習提供平臺,當然,如果課堂上時間允許的話,

  可借助“多媒體課件”,引導學生對自己的結論進行驗證。

  【知識鏈接】

  (一)圓錐曲線的定義

  1. 圓錐曲線的第一定義

  2. 圓錐曲線的統一定義

  (二)圓錐曲線定義的應用舉例

  1.雙曲線1的兩焦點為F1、F2,P為曲線上一點,若P到左焦點F1的距離為12,求P到右準線的距離。

  2.|PF1||PF2|2.P為等軸雙曲線x2y2a2上一點, F1、F2為兩焦點,O為雙曲線的中心,求的|PO|取值范圍。

  3.在拋物線y22px上有一點A(4,m),A點到拋物線的焦點F的距離為5,求拋物線的方程和點A的坐標。

  4.(1)已知點F是橢圓1的右焦點,M是這橢圓上的動點,A(2,2)是一個定點,求|MA|+|MF|的最小值。

  x2y211(2)已知A(,3)為一定點,F為雙曲線1的右焦點,M在雙曲線右支上移動,當|AM||MF|最小時,求M點的坐標。

  (3)已知點P(-2,3)及焦點為F的拋物線y,在拋物線上求一點M,使|PM|+|FM|最小。

  5.已知A(4,0),B(2,2)是橢圓1內的點,M是橢圓上的動點,求|MA|+|MB|的最小值與最大值。

  七、教學反思

  1.本課將借助于,將使全體學生參與活動成為可能,使原來令人難以理解的抽象的數學理論變得形象,生動且通俗易懂,同時,運用“多媒體課件”輔助教學,節省了板演的時間,從而給學生留出更多的時間自悟、自練、自查,充分發揮學生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學理念的有機結合的教學優勢。

  2.利用兩個例題及其引申,通過一題多變,層層深入的探索,以及對猜測結果的檢測研究,培養學生思維能力,使學生從學會一個問題的求解到掌握一類問題的解決方法. 循序漸進的讓學生把握這類問題的解法;將學生容易混淆的兩類求“最值問題”并為一道題,方便學生進行比較、分析。雖然從表面上看,我這一堂課的教學容量不大,但事實上,學生們的思維運動量并不會小。

  總之,如何更好地選擇符合學生具體情況,滿足教學目標的例題與練習、靈活把握課堂教學節奏仍是我今后工作中的一個重要研究課題.而要能真正進行素質教育,培養學生的創新意識,自己首先必須更新觀念——在教學中適度使用多媒體技術,讓學生有參與教學實踐的機會,能夠使學生在學習新知識的同時,激發起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗,于不知不覺中改善了他們的思維品質,提高了數學思維能力。

高中數學教學設計7

  一、教材分析

  本小節選自《普通高中課程標準數學教科書-數學必修(一)》(人教版)第二章基本初等函數(1)2.2.2對數函數及其性質(第一課時),主要內容是學習對數函數的定義、圖象、性質及初步應用。對數函數是繼指數函數之后的又一個重要初等函數,無論從知識或思想方法的角度對數函數與指數函數都有許多類似之處。與指數函數相比,對數函數所涉及的知識更豐富、方法更靈活,能力要求也更高。學習對數函數是對指數函數知識和方法的鞏固、深化和提高,也為解決函數綜合問題及其在實際上的應用奠定良好的基礎。雖然這個內容十分熟悉,但新教材做了一定的改動,如何設計能夠符合新課標理念,是人們十分關注的,正因如此,本人選擇這課題立求某些方面有所突破。

  二、學生學習情況分析

  剛從初中升入高一的學生,仍保留著初中生許多學習特點,能力發展正處于形象思維向抽象思維轉折階段,但更注重形象思維。由于函數概念十分抽象,又以對數運算為基礎,同時,初中函數教學要求降低,初中生運算能力有所下降,這雙重問題增加了對數函數教學的難度。教師必須認識到這一點,教學中要控制要求的拔高,關注學習過程。

  三、設計理念

  本節課以建構主義基本理論為指導,以新課標基本理念為依據進行設計的,針對學生的學習背景,對數函數的教學首先要挖掘其知識背景貼近學生實際,其次,激發學生的學習熱情,把學習的主動權交給學生,為他們提供自主探究、合作交流的機會,確實改變學生的學習方式。

  四、教學目標

  1.通過具體實例,直觀了解對數函數模型所刻畫的數量關系,初步理解對數函數的概念,體會對數函數是一類重要的函數模型;

  2.能借助計算器或計算機畫出具體對數函數的圖象,探索并了解對數函數的單調性與特殊點;

  3.通過比較、對照的方法,引導學生結合圖象類比指數函數,探索研究對數函數的性質,培養學生運用函數的觀點解決實際問題。

  五、教學重點與難點

  重點是掌握對數函數的圖象和性質,難點是底數對對數函數值變化的影響.

  六、教學過程設計

  教學流程:背景材料→引出課題→函數圖象→函數性質→問題解決→歸納小結

  (一)熟悉背景、引入課題

  1.讓學生看材料:

  材料1(幻燈):馬王堆女尸千年不腐之謎:一九七二年,馬王堆考古發現震驚世界,專家發掘西漢辛追遺尸時,形體完整,全身潤澤,皮膚仍有彈性,關節還可以活動,骨質比現在六十歲的正常人還好,是世界上發現的首例歷史悠久的濕尸。大家知道,世界發現的不腐之尸都是在干燥的環境風干而成,譬如沙漠環境,這類干尸雖然肌膚未腐,是因為干燥不利細菌繁殖,但關節和一般人死后一樣,是僵硬的,而馬王堆辛追夫人卻是在濕潤的環境中保存二千多年,而且關節可以活動。人們最關注有兩個問題,第一:怎么鑒定尸體的年份?第二:是什么環境使尸體未腐?其中第一個問題與數學有關。

  圖4—1 (如圖4—1在長沙馬王堆“沉睡”近2200年的古長沙國丞相夫人辛追,日前奇跡般地“復活”了)那么,考古學家是怎么計算出古長沙國丞相夫人辛追“沉睡”近2200年?上面已經知道考古學家是通過提取尸體的殘留物碳14的殘留量p,利用t?logp 57302估算尸體出土的年代,不難發現:對每一個碳14的含量的取值,通過這個對應關系,生物死亡年數t都有唯一的值與之對應,從而t是p的函數;

  如圖4—2材料2(幻燈):某種細胞分裂時,由1個分裂成2個,2個分裂成4個??,如果要求這種細胞經過多少次分裂,大約可以得到細胞1萬個,10萬個??,不難發現:分裂次數y就是要得到的細胞個數x的函數,即y?log2x;

  圖4—2 1.引導學生觀察這些函數的特征:含有對數符號,底數是常數,真數是變量,從而得出對數函數的定義:函數y?logax(a?0,且a?1)叫做對數函數,其中x是自變量,函數的定義域是(0,+∞).

  1對數函數的定義與指數函數類似,都是形式定義,注意辨別.如:注意:○ x2對數函數對底數的限制:(a?0,都不是對數函數.○5y?2log2x,y?log5且a?1).

  3.根據對數函數定義填空;

  例1 (1)函數y=logax的定義域是___________ (其中a>0,a≠1) (2)函數y=loga(4-x)的'定義域是___________ (其中a>0,a≠1)說明:本例主要考察對數函數定義中底數和定義域的限制,加深對概念的理

  解,所以把教材中的解答題改為填空題,節省時間,點到為止,以避免挖深、拓展、引入復合函數的概念。

  [設計意圖:新課標強調“考慮到多數高中生的認知特點,為了有助于他們對函數概念本質的理解,不妨從學生自己的生活經歷和實際問題入手”。因此,新課引入不是按舊教材從反函數出發,而是選擇從兩個材料引出對數函數的概念,讓學生熟悉它的知識背景,初步感受對數函數是刻畫現實世界的又一重要數學模型。這樣處理,對數函數顯得不抽象,學生容易接受,降低了新課教學的起點] 2

  (二)嘗試畫圖、形成感知1.確定探究問題

  教師:當我們知道對數函數的定義之后,緊接著需要探討什么問題?學生1:對數函數的圖象和性質

  教師:你能類比前面研究指數函數的思路,提出研究對數函數圖象和性質的方

  法嗎?

  學生2:先畫圖象,再根據圖象得出性質

  教師:畫對數函數的圖象是否象指數函數那樣也需要分類?學生3:按a?1和0?a?1分類討論

  教師:觀察圖象主要看哪幾個特征?

  學生4:從圖象的形狀、位置、升降、定點等角度去識圖

  教師:在明確了探究方向后,下面,按以下步驟共同探究對數函數的圖象:步驟一:(1)用描點法在同一坐標系中畫出下列對數函數的圖象y?log2xy?log1x 2 (2)用描點法在同一坐標系中畫出下列對數函數的圖象y?log3xy?log1x 3步驟二:觀察對數函數y?log2x、y?log3x與y?log1x、y?log1x的圖象特23征,看看它們有那些異同點。

  步驟三:利用計算器或計算機,選取底數a(a?0,且a?1)的若干個不同的值,

  在同一平面直角坐標系中作出相應對數函數的圖象。觀察圖象,它們有哪些共同特征?

  步驟四:規納出能體現對數函數的代表性圖象

  步驟五:作指數函數與對數函數圖象的比較2.學生探究成果

  (1)如圖4—3、4—4較為熟練地用描點法畫出下列對數函數y?log2x、 y?log1x、 y?log3x、y?log1x的圖象23圖4—3圖4—4 (2)如圖4—5學生選取底數a=1/4、1/5、1/6、1/10、4、5、6、10,并推薦幾位代表上臺演示‘幾何畫板’,得到相應對數函數的圖象。由于學生自己動手,加上‘幾何畫板’的強大作圖功能,學生非常清楚地看到了底數a是如何影響函數y?logax(a?0,且a?1)圖象的變化。

  圖4—5 (3)有了這種畫圖感知的過程以及學習指數函數的經驗,學生很明確y = loga x (a>1)、y = loga x (0(中部)

高中數學教學設計8

  教學目標:

  1、理解流程圖的選擇結構這種基本邏輯結構。

  2、能識別和理解簡單的框圖的功能。

  3、能運用三種基本邏輯結構設計流程圖以解決簡單的問題。

  教學方法:

  1、通過模仿、操作、探索,經歷設計流程圖表達求解問題的過程,加深對流程圖的感知。

  2、在具體問題的解決過程中,掌握基本的流程圖的畫法和流程圖的三種基本邏輯結構。

  教學過程:

  一、問題情境

  情境:

  某鐵路客運部門規定甲、乙兩地之間旅客托運行李的費用為

  其中(單位:)為行李的重量。

  試給出計算費用(單位:元)的一個算法,并畫出流程圖。

  二、學生活動

  學生討論,教師引導學生進行表達。

  解算法為:

  輸入行李的重量;

  如果,那么,

  否則;

  輸出行李的重量和運費。

  上述算法可以用流程圖表示為:

  教師邊講解邊畫出第10頁圖1-2-6。

  在上述計費過程中,第二步進行了判斷。

  三、建構數學

  1、選擇結構的概念:

  先根據條件作出判斷,再決定執行哪一種操作的結構稱為選擇結構。

  如圖:虛線框內是一個選擇結構,它包含一個判斷框,當條件成立(或稱條件為“真”)時執行,否則執行。

  2、說明:

  (1)有些問題需要按給定的條件進行分析、比較和判斷,并按判斷的不同情況進行不同的操作,這類問題的實現就要用到選擇結構的`設計;

 。2)選擇結構也稱為分支結構或選取結構,它要先根據指定的條件進行判斷,再由判斷的結果決定執行兩條分支路徑中的某一條;

 。3)在上圖的選擇結構中,只能執行和之一,不可能既執行,又執行,但或兩個框中可以有一個是空的,即不執行任何操作;

 。4)流程圖圖框的形狀要規范,判斷框必須畫成菱形,它有一個進入點和兩個退出點。

  3、思考:教材第7頁圖所示的算法中,哪一步進行了判斷?

高中數學教學設計9

  重點難點教學:

  1.正確理解映射的概念;

  2.函數相等的兩個條件;

  3.求函數的定義域和值域。

  教學過程:

  1.使學生熟練掌握函數的概念和映射的定義;

  2.使學生能夠根據已知條件求出函數的定義域和值域; 3.使學生掌握函數的三種表示方法。

  教學內容:

  1.函數的定義

  設A、B是兩個非空的數集,如果按照某種確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數fx和它對應,那么稱:fAB?為從集合A到集合B的一個函數(function),記作:,yf A其中,x叫自變量,x的取值范圍A叫作定義域(domain),與x的值對應的y值叫函數值,函數值的集合{|}f A?叫值域(range)。顯然,值域是集合B的.子集。

  注意:

  ① “y=f(x)”是函數符號,可以用任意的字母表示,如“y=g(x)”;

 、诤瘮捣枴皔=f(x)”中的f(x)表示與x對應的函數值,一個數,而不是f乘x.

  2.構成函數的三要素定義域、對應關系和值域。

  3、映射的定義

  設A、B是兩個非空的集合,如果按某一個確定的對應關系f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:A→B為從集合A到集合B的一個映射。

  4.區間及寫法:

  設a、b是兩個實數,且a

  (1)滿足不等式axb??的實數x的集合叫做閉區間,表示為[a,b];

  (2)滿足不等式axb??的實數x的集合叫做開區間,表示為(a,b);

  5.函數的三種表示方法

  ①解析法

 、诹斜矸

 、蹐D像法

高中數學教學設計10

  教學目標:

  1.掌握基本事件的概念;

  2.正確理解古典概型的兩大特點:有限性、等可能性;

  3.掌握古典概型的概率計算公式,并能計算有關隨機事件的概率.

  教學重點:

  掌握古典概型這一模型.

  教學難點:

  如何判斷一個實驗是否為古典概型,如何將實際問題轉化為古典概型問題.

  教學方法:

  問題教學、合作學習、講解法、多媒體輔助教學.

  教學過程:

  一、問題情境

  1.有紅心1,2,3和黑桃4,5這5張撲克牌,將其牌點向下置于桌上,現從中任意抽取一張,則抽到的牌為紅心的概率有多大?

  二、學生活動

  1.進行大量重復試驗,用“抽到紅心”這一事件的頻率估計概率,發現工作量較大且不夠準確;

  2.(1)共有“抽到紅心1” “抽到紅心2” “抽到紅心3” “抽到黑桃4” “抽到黑桃5”5種情況,由于是任意抽取的,可以認為出現這5種情況的可能性都相等;

 。2)6個;即“1點”、“2點”、“3點”、“4點”、“5點”和“6點”,

  這6種情況的可能性都相等;

  三、建構數學

  1.介紹基本事件的'概念,等可能基本事件的概念;

  2.讓學生自己總結歸納古典概型的兩個特點(有限性)、(等可能性);

  3.得出隨機事件發生的概率公式:

  四、數學運用

  1.例題.

  例1

  有紅心1,2,3和黑桃4,5這5張撲克牌,將其牌點向下置于桌上,現從中任意抽取2張共有多少個基本事件?(用枚舉法,列舉時要有序,要注意“不重不漏”)

  探究(1):一只口袋內裝有大小相同的5只球,其中3只白球,2只黑球,從中一次摸出2只球,共有多少個基本事件?該實驗為古典概型嗎?(為什么對球進行編號?)

  探究(2):拋擲一枚硬幣2次有(正,反)、(正,正)、(反,反)3個基本事件,對嗎?

  學生活動:探究(1)如果不對球進行編號,一次摸出2只球可能有兩白、一黑一白、兩黑三種情況,“摸到兩黑”與“摸到兩白”的可能性相同;而事實上“摸到兩白”的機會要比“摸到兩黑”的機會大.記白球為1,2,3號,黑球為4,5號,通過枚舉法發現有10個基本事件,而且每個基本事件發生的可能性相同.

  探究(2):拋擲一枚硬幣2次,有(正,正)、(正,反)、(反,正)、(反,反)四個基本事件.

  (設計意圖:加深對古典概型的特點之一等可能基本事件概念的理解.)

  例2

  一只口袋內裝有大小相同的5只球,其中3只白球,2只黑球,從中

  一次摸出2只球,則摸到的兩只球都是白球的概率是多少?

  問題:在運用古典概型計算事件的概率時應當注意什么?

 、倥袛喔怕誓P褪欠駷楣诺涓判

 、谡页鲭S機事件A中包含的基本事件的個數和試驗中基本事件的總數.

  教師示范并總結用古典概型計算隨機事件的概率的步驟

  例3

  同時拋兩顆骰子,觀察向上的點數,問:

 。1)共有多少個不同的可能結果?

 。2)點數之和是6的可能結果有多少種?

 。3)點數之和是6的概率是多少?

  問題:如何準確的寫出“同時拋兩顆骰子”所有基本事件的個數?

  學生活動:用課本第102頁圖3-2-2,可直觀的列出事件A中包含的基本事件的個數和試驗中基本事件的總數.

  問題:點數之和是3的倍數的可能結果有多少種?

  (介紹圖表法)

  例4

  甲、乙兩人作出拳游戲(錘子、剪刀、布),求:

 。1)平局的概率;(2)甲贏的概率;(3)乙贏的概率.

  設計意圖:進一步提高學生對將實際問題轉化為古典概型問題的能力.

  2.練習.

 。1)一枚硬幣連擲3次,只有一次出現正面的概率為_________.

  (2)在20瓶飲料中,有3瓶已過了保質期,從中任取1瓶,取到已過保質期的飲料的概率為_________..

 。3)第103頁練習1,2.

  (4)從1,2,3,…,9這9個數字中任取2個數字,

  ①2個數字都是奇數的概率為_________;

  ②2個數字之和為偶數的概率為_________.

  五、要點歸納與方法小結

  本節課學習了以下內容:

  1.基本事件,古典概型的概念和特點;

  2.古典概型概率計算公式以及注意事項;

  3.求基本事件總數常用的方法:列舉法、圖表法.

高中數學教學設計11

  教學準備

  教學目標

  1、掌握平面向量的數量積及其幾何意義;

  2、掌握平面向量數量積的重要性質及運算律;

  3、了解用平面向量的數量積可以處理垂直的問題;

  4、掌握向量垂直的條件。

  教學重難點

  教學重點:平面向量的數量積定義

  教學難點:平面向量數量積的定義及運算律的理解和平面向量數量積的應用

  教學過程

  1、平面向量數量積(內積)的'定義:已知兩個非零向量a與b,它們的夾角是θ,

  則數量|a||b|cosq叫a與b的數量積,記作a×b,即有a×b = |a||b|cosq,(0≤θ≤π)。

  并規定0向量與任何向量的數量積為0。

  ×探究:1、向量數量積是一個向量還是一個數量?它的符號什么時候為正?什么時候為負?

  2、兩個向量的數量積與實數乘向量的積有什么區別?

 。1)兩個向量的數量積是一個實數,不是向量,符號由cosq的符號所決定。

 。2)兩個向量的數量積稱為內積,寫成a×b;今后要學到兩個向量的外積a×b,而a×b是兩個向量的數量的積,書寫時要嚴格區分。符號“· ”在向量運算中不是乘號,既不能省略,也不能用“×”代替。

 。3)在實數中,若a?0,且a×b=0,則b=0;但是在數量積中,若a?0,且a×b=0,不能推出b=0。因為其中cosq有可能為0。

高中數學教學設計12

  前言

  為了更好地貫徹落實和科課程標準有關要求,促進廣大教師學習現代教學理論,進一步激發廣大教師課堂教學的創新意識,切實轉變教學觀念,積極探索新課程理念下的教與學,有效解決教學實踐中存在的問題,促進課堂教學質量的全面提高,在20xx年由福建省普通教育教學研究室組織,舉辦了一次教學設計大賽活動。這次活動數學學科高中組共收到有49篇教學設計文章。獲獎文章推薦評審專家組本著公平、公正的原則,經過認真的評審,全部作品均評出了相應的獎項;專家組還為獲得一、二等獎的作品撰寫了點評。本稿收錄的作品全部是參加此次福建省教學設計競賽獲獎作者的文章。按照征文的規則,我們對入選作品的格式作了一些修飾,并經過適當的整合,以饗讀者。

  在此還需要說明的是,為了方便閱讀,獲獎文章的排序原則,并非按照獲獎名次的前后順序,而是按照高中數學新課程必修1—5的內容順序,進行編排的。部分體現大綱教材內容的文章則排在后面。

  不管你獲得的是哪個級別的獎項,你們都可以有成就感,因為那是你們用心、用汗澆灌出的果實,它記錄了你們奉獻于數學教育事業的心路歷程.書中每一篇的教學設計都耐人尋味,都能帶給我們許多遐想和啟迪.你們是優秀的,在你們未來悠遠的職業里程中,只要努力,將有更多的輝煌在等待著大家。謝謝你們!

  1、集合與函數概念實習作業

  一、教學內容分析

  《普通高中課程標準實驗教科書·數學(1)》(人教A版)第44頁。-----《實習作業》。本節課程體現數學文化的特色,學生通過了解函數的發展歷史進一步感受數學的魅力。學生在自己動手收集、整理資料信息的過程中,對函數的概念有更深刻的理解;感受新的'學習方式帶給他們的學習數學的樂趣。

  二、學生學習情況分析

  該內容在《普通高中課程標準實驗教科書·數學(1)》(人教A版)第44頁。學生第一次完成《實習作業》,積極性高,有熱情和新鮮感,但缺乏經驗,所以需要教師精心設計,做好準備工作,充分體現教師的“導演”角色。特別在分組時注意學生的合理搭配(成績的好壞、家庭有無電腦、男女生比例、口頭表達能力等),選題時,各組之間盡量不要重復,盡量多地選不同的題目,可以讓所有的學生在學習共享的過程中受到更多的數學文化的熏陶。

  三、設計思想

  《標準》強調數學文化的重要作用,體現數學的文化的價值。數學教育不僅應該幫助學生學習和掌握數學知識和技能,還應該有助于學生了解數學的價值。讓學生逐步了解數學的思想方法、理性精神,體會數學家的創新精神,以及數學文明的深刻內涵。

  四、教學目標

  1.了解函數概念的形成、發展的歷史以及在這個過程中起重大作用的歷史事件和人物;

  2.體驗合作學習的方式,通過合作學習品嘗分享獲得知識的快樂;

  3.在合作形式的小組學習活動中培養學生的領導意識、社會實踐技能和民主價值觀。

  五、教學重點和難點

  重點:了解函數在數學中的核心地位,以及在生活里的廣泛應用;

  難點:培養學生合作交流的能力以及收集和處理信息的能力。

  六、教學過程設計

  【課堂準備】

  1.分組:4~6人為一個實習小組,確定一人為組長。教師需要做好協調工作,確保每位學生都參加。

  2.選題:根據個人興趣初步確定實習作業的題目。教師應該到各組中去了解選題情況,盡量多地選擇不同的題目。

高中數學教學設計13

  一、教學目標

  1、在初中學過原命題、逆命題知識的基礎上,初步理解四種命題。

  2、給一個比較簡單的命題(原命題),可以寫出它的逆命題、否命題和逆否命題。

  3、通過對四種命題之間關系的學習,培養學生邏輯推理能力

  4、初步培養學生反證法的數學思維。

  二、教學分析

  重點:四種命題;難點:四種命題的關系

  1。本小節首先從初中數學的命題知識,給出四種命題的概念,接著,講述四種命題的關系,最后,在初中的基礎上,結合四種命題的知識,進一步講解反證法。

  2。教學時,要注意控制教學要求。本小節的內容,只涉及比較簡單的命題,不研究含有邏輯聯結詞“或”、“且”、“非”的命題的逆命題、否命題和逆否命題,

  3.“若p則q”形式的`命題,也是一種復合命題,并且,其中的p與q,可以是命題也可以是開語句,例如,命題“若,則x,y全為0”,其中的p與q,就是開語句。對學生,只要求能分清命題“若p則q”中的條件與結論就可以了,不必考慮p與q是命題,還是開語句。

  三、教學手段和方法(演示教學法和循序漸進導入法)

  1。以故事形式入題

  2多媒體演示

  四、教學過程

 。ㄒ唬┮耄阂粋生活中有趣的與命題有關的笑話:某人要請甲乙丙丁吃飯,時間到了,只有甲乙丙三人按時赴約。丁卻打電話說“有事不能參加”主人聽了隨口說了句“該來的沒來”甲聽了臉色一沉,一聲不吭的走了,主人愣了一下又說了一句“哎,不該走的走了”乙聽了大怒,拂袖即去。主人這時還沒意識到又順口說了一句:“俺說的又不是你”。這時丙怒火中燒不辭而別。四個客人沒來的沒來,來的又走了。主人請客不成還得罪了三家。大家肯定都覺得這個人不會說話,但是你想過這里面所蘊涵的數學思想嗎?通過這節課的學習我們就能揭開它的廬山真面,學生的興奮點被緊緊抓住,躍躍欲試!

  設計意圖:創設情景,激發學生學習興趣

 。ǘ⿵土曁釂枺

  1.命題“同位角相等,兩直線平行”的條件與結論各是什么?

  2.把“同位角相等,兩直線平行”看作原命題,它的逆命題是什么?

  3.原命題真,逆命題一定真嗎?

  “同位角相等,兩直線平行”這個原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真.

  學生活動:

  口答:(l)若同位角相等,則兩直線平行;(2)若一個四邊形是正方形,則它的四條邊相等.

  設計意圖: 通過復習舊知識,打下學習否命題、逆否命題的基礎.

 。ㄈ┬抡n講解:

  1.命題“同位角相等,兩直線平行”的條件是“同位角相等”,結論是“兩直線平行”;如果把“同位角相等,兩直線平行”看作原命題,它的逆命題就是“兩直線平行,同位角相等”。也就是說,把原命題的結論作為條件,條件作為結論,得到的命題就叫做原命題的逆命題。

  2.把命題“同位角相等,兩直線平行”的條件與結論同時否定,就得到新命題“同位角不相等,兩直線不平行”,這個新命題就叫做原命題的否命題。

  3.把命題“同位角相等,兩直線平行”的條件與結論互相交換并同時否定,就得到新命題“兩直線不平行,同位角不相等”,這個新命題就叫做原命題的逆否命題。

 。ㄋ模┙M織討論:

  讓學生歸納什么是否命題,什么是逆否命題。

  例1及例2

 。ㄎ澹┱n堂探究:“兩條直線不平行,則同位角不相等”是否真?“若一個四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?

  學生活動:

  討論后回答

  這兩個逆否命題都真.

  原命題真,逆否命題也真

  引導學生討論原命題的真假與其他三種命題的真

  假有什么關系?舉例加以說明,同學們踴躍發言。

  (六)課堂小結:

  1、一般地,用p和q分別表示原命題的條件和結論,用¬p和¬q分別表示p和q否定時,四種命題的形式就是:

  原命題若p則q;

  逆命題若q則p;(交換原命題的條件和結論)

  否命題,若¬p則¬q;(同時否定原命題的條件和結論)

  逆否命題若¬q則¬p。(交換原命題的條件和結論,并且同時否定)

  2、四種命題的關系

 。1).原命題為真,它的逆命題不一定為真.

  (2).原命題為真,它的否命題不一定為真.

 。3).原命題為真,它的逆否命題一定為真

  (七)回扣引入

  分析引入中的笑話,先討論,后總結:現在我們來分析一下主人說的四句話:

  第一句:“該來的沒來”

  其逆否命題是“不該來的來了”,甲認為自己是不該來的,所以甲走了。

  第二句:“不該走的走了”,其逆否命題為“該走的沒走”,乙認為自己該走,所以乙也走了。

  第三句:“俺說的不是你(指乙)”其值為真其非命題:“俺說的是你”為假,則說的是他(指丙)為真。所以,丙認為說的是自己,所以丙也走了。

  同學們,生活中處處是數學,期待我們善于發現的眼睛

  五、作業

  1.設原命題是“若

  斷它們的真假. ,則 ”,寫出它的逆命題、否命題與逆否命題,并分別判

  2.設原命題是“當 時,若 ,則 ”,寫出它的逆命題、否定命與逆否命題,并分別判斷它們的真假.

高中數學教學設計14

  一、指導思想與理論依據

  數學是一門培養人的思維,發展人的思維的重要學科。因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。所以在學生為主體,教師為主導的原則下,要充分揭示獲取知識和方法的思維過程。因此本節課我以建構主義的“創設問題情境——提出數學問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發、類比、引導、探索相結合的教學方法。在教學手段上,則采用多媒體輔助教學,將抽象問題形象化,使教學目標體現的更加完美。

  二、教材分析

  三角函數的誘導公式是普通高中課程標準實驗教科書(人教A版)數學必修四,第一章第三節的內容,其主要內容是三角函數誘導公式中的公式(二)至公式(六).本節是第一課時,教學內容為公式(二)、(三)、(四).教材要求通過學生在已經掌握的任意角的三角函數的定義和誘導公式(一)的基礎上,利用對稱思想發現任意角 與 、 、 終邊的對稱關系,發現他們與單位圓的交點坐標之間關系,進而發現他們的三角函數值的關系,即發現、掌握、應用三角函數的誘導公式公式(二)、(三)、(四).同時教材滲透了轉化與化歸等數學思想方法,為培養學生養成良好的學習習慣提出了要求.為此本節內容在三角函數中占有非常重要的地位.

  三、學情分析

  本節課的授課對象是本校高一(1)班全體同學,本班學生水平處于中等偏下,但本班學生具有善于動手的良好學習習慣,所以采用發現的教學方法應該能輕松的完成本節課的教學內容.

  四、教學目標

  (1).基礎知識目標:理解誘導公式的發現過程,掌握正弦、余弦、正切的誘導公式;

  (2).能力訓練目標:能正確運用誘導公式求任意角的正弦、余弦、正切值,以及進行簡單的三角函數求值與化簡;

  (3).創新素質目標:通過對公式的推導和運用,提高三角恒等變形的能力和滲透化歸、數形結合的數學思想,提高學生分析問題、解決問題的能力;

  (4).個性品質目標:通過誘導公式的學習和應用,感受事物之間的普通聯系規律,運用化歸等數學思想方法,揭示事物的本質屬性,培養學生的唯物史觀.

  五、教學重點和難點

  1.教學重點

  理解并掌握誘導公式.

  2.教學難點

  正確運用誘導公式,求三角函數值,化簡三角函數式.

  六、教法學法以及預期效果分析

  高中數學優秀教案高中數學教學設計與教學反思

  “授人以魚不如授之以魚”, 作為一名老師,我們不僅要傳授給學生數學知識,更重要的是傳授給學生數學思想方法, 如何實現這一目的,要求我們每一位教者苦心鉆研、認真探究.下面我從教法、學法、預期效果等三個方面做如下分析.

  1.教法

  數學教學是數學思維活動的教學,而不僅僅是數學活動的結果,數學學習的目的不僅僅是為了獲得數學知識,更主要作用是為了訓練人的思維技能,提高人的思維品質.

  在本節課的教學過程中,本人以學生為主題,以發現為主線,盡力滲透類比、化歸、數形結合等數學思想方法,采用提出問題、啟發引導、共同探究、綜合應用等教學模式,還給學生“時間”、“空間”, 由易到難,由特殊到一般,盡力營造輕松的學習環境,讓學生體味學習的快樂和成功的喜悅.

  2.學法

  “現代的文盲不是不識字的人,而是沒有掌握學習方法的人”,很多課堂教學常常以高起點、大容量、快推進的做法,以便教給學生更多的知識點,卻忽略了學生接受知識需要時間消化,進而泯滅了學生學習的興趣與熱情.如何能讓學生最大程度的消化知識,提高學習熱情是教者必須思考的問題.

  在本節課的教學過程中,本人引導學生的學法為思考問題、共同探討、解決問題 簡單應用、重現探索過程、練習鞏固。讓學生參與探索的全部過程,讓學生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學習轉化為主動的自主學習.

  3.預期效果

  本節課預期讓學生能正確理解誘導公式的發現、證明過程,掌握誘導公式,并能熟練應用誘導公式了解一些簡單的化簡問題.

  七、教學流程設計

  (一)創設情景

  1.復習銳角300,450,600的三角函數值;

  2.復習任意角的三角函數定義;

  3.問題:由 ,你能否知道sin2100的值嗎?引如新課.

  設計意圖

  高中數學優秀教案 高中數學教學設計與教學反思

  自信的鼓勵是增強學生學習數學的自信,簡單易做的題加強了每個學生學習的熱情,具體數據問題的出現,讓學生既有好像會做的心理但又有迷惑的茫然,去發掘潛力期待尋找機會證明我能行,從而思考解決的辦法.

  (二)新知探究

  1. 讓學生發現300角的終邊與2100角的終邊之間有什么關系;

  2.讓學生發現300角的終邊和2100角的終邊與單位圓的交點的`坐標有什么關系;

  3.Sin2100與sin300之間有什么關系.

  設計意圖

  由特殊問題的引入,使學生容易了解,實現教學過程的平淡過度,為同學們探究發現任意角 與 的三角函數值的關系做好鋪墊.

  (三)問題一般化

  探究一

  1.探究發現任意角 的終邊與 的終邊關于原點對稱;

  2.探究發現任意角 的終邊和 角的終邊與單位圓的交點坐標關于原點對稱;

  3.探究發現任意角 與 的三角函數值的關系.

  設計意圖

  首先應用單位圓,并以對稱為載體,用聯系的觀點,把單位圓的性質與三角函數聯系起來,數形結合,問題的設計提問從特殊到一般,從線對稱到點對稱到三角函數值之間的關系,逐步上升,一氣呵成誘導公式二.同時也為學生將要自主發現、探索公式三和四起到示范作用,下面練習設計為了熟悉公式一,讓學生感知到成功的喜悅,進而敢于挑戰,敢于前進

  (四)練習

  利用誘導公式(二),口答下列三角函數值.

  (1). ;(2). ;(3). .

  喜悅之后讓我們重新啟航,接受新的挑戰,引入新的問題.

  (五)問題變形

  由sin3000= -sin600 出發,用三角的定義引導學生求出 sin(-3000),Sin150 0值,讓學生聯想若已知sin3000= -sin600 ,能否求出sin(-3000),Sin150 0)的值. 學生自主探究

高中數學教學設計15

  教學目標

 。1)理解四種命題的概念;

  (2)理解四種命題之間的相互關系,能由原命題寫出其他三種形式;

 。3)理解一個命題的真假與其他三個命題真假間的關系;

 。4)初步掌握反證法的概念及反證法證題的基本步驟;

  (5)通過對四種命題之間關系的學習,培養學生邏輯推理能力;

 。6)通過對四種命題的存在性和相對性的認識,進行辯證唯物主義觀點教育;

 。7)培養學生用反證法簡單推理的技能,從而發展學生的思維能力.

  教學重點和難點

  重點:四種命題之間的關系;難點:反證法的運用.

  教學過程設計

  第一課時:四種命題

  一、導入新課

  【練習】1.把下列命題改寫成“若p則q”的形式:

  (l)同位角相等,兩直線平行;

  (2)正方形的四條邊相等.

  2.什么叫互逆命題?上述命題的逆命題是什么?

  將命題寫成“若p則q”的形式,關鍵是找到命題的條件p與q結論.

  如果第一個命題的條件是第二個命題的結論,且第一個命題的結論是第二個命題的條件,那么這兩個命題叫做互道命題.

  上述命題的道命題是“若一個四邊形的四條邊相等,則它是正方形”和“若兩條直線平行,則同位角相等”.

  值得指出的是原命題和逆命題是相對的.我們也可以把逆命題當成原命題,去求它的逆命題.

  3.原命題真,逆命題一定真嗎?

  “同位角相等,兩直線平行”這個原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真.

  學生活動:

  口答:(l)若同位角相等,則兩直線平行;(2)若一個四邊形是正方形,則它的四條邊相等.

  設計意圖:

  通過復習舊知識,打下學習否命題、逆否命題的基礎.

  二、新課

  【設問】命題“同位角相等,兩條直線平行”除了能構成它的逆命題外,是否還可以構成其它形式的命題?

  【講述】可以將原命題的條件和結論分別否定,構成“同位角不相等,則兩直線不平行”,這個命題叫原命題的.否命題.

  【提問】你能由原命題“正方形的四條邊相等”構成它的否命題嗎?

  學生活動:

  口答:若一個四邊形不是正方形,則它的四條邊不相等.

  教師活動:

  【講述】一個命題的條件和結論分別是另一個命題的條件的否定和結論的否定,這樣的兩個命題叫做互否命題.把其中一個命題叫做原命題,另一個命題叫做原命題的否命題.

  若用p和q分別表示原命題的條件和結論,用┐p和┐q分別表示p和q的否定.

  【板書】原命題:若p則q;

  否命題:若┐p則q┐.

  【提問】原命題真,否命題一定真嗎?舉例說明?

  學生活動:

  講論后回答:

  原命題“同位角相等,兩直線平行”真,它的否命題“同位角不相等,兩直線不平行”不真.

  原命題“正方形的四條邊相等”真,它的否命題“若一個四邊形不是正方形,則它的四條邊不相等”不真.

  由此可以得原命題真,它的否命題不一定真.

  設計意圖:

  通過設問和討論,讓學生在自己舉例中研究如何由原命題構成否命題及判斷它們的真假,調動學生學習的積極性.

  教師活動:

  【提問】命題“同位角相等,兩條直線平行”除了能構成它的逆命題和否命題外,還可以不可以構成別的命題?

  學生活動:

  討論后回答

  【總結】可以將這個命題的條件和結論互換后再分別將新的條件和結論分別否定構成命題“兩條直線不平行,則同位角不相等”,這個命題叫原命題的逆否命題.

  教師活動:

  【提問】原命題“正方形的四條邊相等”的逆否命題是什么?

  學生活動:

  口答:若一個四邊形的四條邊不相等,則不是正方形.

  教師活動:

  【講述】一個命題的條件和結論分別是另一個命題的結論的否定和條件的否定,這樣的兩個命題叫做互為逆否命題.把其中一個命題叫做原命題,另一個命題就叫做原命題的逆否命題.

  原命題是“若 p則 q ”,則逆否命題為“若┐q 則┐p .

  【提問】“兩條直線不平行,則同位角不相等”是否真?“若一個四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?

  學生活動:

  討論后回答

  這兩個逆否命題都真.

  原命題真,逆否命題也真.

  教師活動:

  【提問】原命題的真假與其他三種命題的真

  假有什么關系?舉例加以說明?

  【總結】1.原命題為真,它的逆命題不一定為真.

  2.原命題為真,它的否命題不一定為真.

  3.原命題為真,它的逆否命題一定為真.

  設計意圖:

  通過設問和討論,讓學生在自己舉例中研究如何由原命題構成逆否命題及判斷它們的真假,調動學生學的積極性.

  教師活動:

  三、課堂練習

  1.若原命題是“若p則q”,其它三種命題的形式怎樣表示?請寫在方框內?

  學生活動:筆答

  教師活動:

  2.根據上圖所給出的箭頭,寫出箭頭兩頭命題之間的關系?舉例加以說明?

  學生活動:討論后回答

  設計意圖:

  通過學生自己填圖,使學生掌握四種命題的形式和它們之間的關系.

  教師活動:

【高中數學教學設計】相關文章:

高中數學教學設計06-09

高中數學教學設計03-25

高中數學教學設計01-17

高中數學概念教學設計07-14

2022高中數學教學設計高三數學教學設計12-22

高中數學教學設計(15篇)12-30

高中數學教學設計15篇07-01

高中數學教學設計14篇07-02

高中數學的教學設計5篇10-24

高中數學教學設計(精選10篇)07-21