亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

六年級數學抽屜原理教學設計方案最新

時間:2023-03-15 19:13:43 教學設計 我要投稿
  • 相關推薦

六年級數學抽屜原理教學設計方案最新

  為了確保工作或事情能高效地開展,時常需要預先開展方案準備工作,方案一般包括指導思想、主要目標、工作重點、實施步驟、政策措施、具體要求等項目。方案應該怎么制定呢?以下是小編整理的六年級數學抽屜原理教學設計方案最新,歡迎大家分享。

六年級數學抽屜原理教學設計方案最新

六年級數學抽屜原理教學設計方案最新1

  教學目標

  1.經歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。

  2.通過操作發展學生的類推能力,形成比較抽象的數學思維。

  3.通過“抽屜原理”的靈活應用感受數學的魅力。

  教學重、難點

  經歷“抽屜原理”的探究過程,理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。

  教學過程

  一、問題引入。

  師:同學們,你們玩過搶椅子的游戲嗎?現在,老師這里準備了3把椅子,請4個同學上來,誰愿來?

  1.游戲要求:開始以后,請你們5個都坐在椅子上,每個人必須都坐下。

  2.討論:“不管怎么坐,總有一把椅子上至少坐兩個同學”這句話說得對嗎?

  游戲開始,讓學生初步體驗不管怎么坐,總有一把椅子上至少坐兩個同學,使學生明確這是現實生活中存在著的一種現象。

  引入:不管怎么坐,總有一把椅子上至少坐兩個同學?你知道這是什么道理嗎?這其中蘊含著一個有趣的數學原理,這節課我們就一起來研究這個原理。

  二、探究新知

  (一)教學例1

  1.出示題目:有4枝鉛筆,3個盒子,把4枝鉛筆放進3個盒子里,怎么放?有幾種不同的放法?

  師:請同學們實際放放看,誰來展示一下你擺放的情況?(指名擺)根據學生擺的情況,師出示各種情況。

  板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1),

  問題:4個人坐在3把椅子上,不管怎么坐,總有一把椅子上至少坐兩個同學。4支筆放進3個盒子里呢?

  引導學生得出:不管怎么放,總有一個盒子里至少有2枝筆。

  問題:

  (1)“總有”是什么意思?(一定有)

  (2)“至少”有2枝什么意思?(不少于兩只,可能是2枝,也可能是多于2枝?)

  教師引導學生總結規律:我們把4枝筆放進3個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。這是我們通過實際操作現了這個結論。那么,你們能不能找到一種更為直接的方法得到這個結論呢?

  學生思考并進行組內交流,教師選代表進行總結:如果每個盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進哪一個盒子里,總有一個盒子里至少有2枝鉛筆。首先通過平均分,余下1枝,不管放在那個盒子里,一定會出現“總有一個盒子里一定至少有2枝”。

  問題:把6枝筆放進5個盒子里呢?還用擺嗎?把7枝筆放進6個盒子里呢?把8枝筆放進7個盒子里呢?把9枝筆放進8個盒子里呢?……你發現什么?(筆的枝數比盒子數多1,不管怎么放,總有一個盒子里至少有2枝鉛筆。)

  總結:只要放的鉛筆數盒數多1,總有一個盒里至少放進2支。

  2.完成課下“做一做”,學習解決問題。

  問題:6只鴿子飛回5個鴿籠,至少有2只鴿子要飛進同一個鴿籠里,為什么?

  (1)學生活動—獨立思考自主探究

  (2)交流、說理活動。

  引導學生分析:如果一個鴿籠里飛進一只鴿子,最多飛進4只鴿子,還剩一只,要飛進其中的一個鴿籠里。不管怎么飛,至少有2只鴿子要飛進同一個鴿籠里。所以,“至少有2只鴿子飛進同一個籠里”的結論是正確的'。

  總結:用平均分的方法,就能說明存在“總有一個鴿籠至少有2只鴿子飛進一個個籠里”。

  (二)教學例2

  1.出示題目:把5本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?把7本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?把9本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?

  (留給學生思考的空間,師巡視了解各種情況)

  2.學生匯報,教師給予表揚后并總結:

  總結1:把5本書放進2個抽屜里,如果每個抽屜里先放2本,還剩1本,這本書不管放到哪個抽屜里,總有一個抽屜里至少有3本書。

  總結2:“總有一個抽屜里的至少有2本”只要用“商+1”就可以得到。

  問題:如果把5本書放進3個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?用“商+2”可以嗎?(學生討論)

  引導學生思考:到底是“商+1”還是“商+余數”呢?誰的結論對呢?(學生小組里進行研究、討論。)

  總結:用書的本數除以抽屜數,再用所得的商加1,就會發現“總有一個抽屜里至少有商加1本書”了。

  師:同學們的這一發現,稱為“抽屜原理”,“抽屜原理”又稱“鴿籠原理”,最先是由19世紀的德國數學家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應用。“抽屜原理”的應用是千變萬化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結果。下面我們應用這一原理解決問題。

  (三)學生自學例題3并進行自主交流,試著用手中的用具模擬演示場景。

  三、解決問題

  四、全課小結

六年級數學抽屜原理教學設計方案最新2

  教學內容:

  教材簡析:

  《抽屜原理》是義務教育課程標準實驗教科書數學六年級下冊第五單元數學廣角的教學內容。這部分教材通過幾個直觀例子,借助實際操作,向學生介紹“抽屜原理”,使學生在理解“抽屜原理”這一數學方法的基礎上,對一些簡單的實際問題加以“模型化”,會用“抽屜原理”加以解決。“抽屜原理”在生活中運用廣泛,學生在生活中常常能遇到實例,但并不能有意識地從數學的角度來理解和運用“抽屜原理”。教學中應有意識地讓學生理解“抽屜原理”的“一般化模型”。

  學情分析:

  六年級學生的邏輯思維能力、小組合作能力和動手操作能力都有了較大的提高,加上已有的生活經驗,很容易感受到用“抽屜原理”解決問題帶來的樂趣。激趣是新課導入的抓手,喜歡和好奇心比什么都重要,游戲,讓學生置身游戲中開始學習,為理解抽屜原理埋下伏筆。通過小組合作,動手操作的探究性學習把抽屜原理較為抽象難懂的內容變為學生感興趣又易于理解的內容。特別是對教材中的.結論“總有、至少”等字詞作了充分的闡釋,幫助學生進行較好的“建模”,使復雜問題簡單化,簡單問題模型化,充分體現了新課標要求。

  教學目標:

  1、使學生初步了解抽屜原理,運用抽屜原理知識解決簡單的實際問題。

  2、使學生經歷抽屜原理的探究過程,通過動手操作、分析、推理等活動,發現、歸納、總結原理。

  3、使學生通過“抽屜原理”的靈活應用感受數學的魅力;提高解決問題的能力和興趣。

  教學重點:

  經歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

  教學難點:

  理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。

  教學過程:

  一、課前游戲,導入新課。

  游戲請5名同學到前面來,老師這有4張凳子,老師喊123開始,要求每位同學都必須坐在凳子上,引導:5位同學坐在4張椅子上,不管怎么坐,總有一把凳子上至少坐兩個同學。

  我們剛才做了個小游戲,但小游戲蘊含著一個有趣的數學原理。今天我們就來研究這個有趣的數學原理——抽屜原理。

  [設計意圖:把抽象的數學知識與生活中的游戲有機結合起來,使教學從學生熟悉和喜愛的游戲引入,讓學生在已有生活經驗的基礎上初步感知抽象的“抽屜原理”,提高學生的學習興趣。]

  二、通過操作,探究新知

  (一)活動一

  1、出示題目:把4根小棒,放在3個杯子里,怎么放?有幾種不同的放法?

  (板書:小棒4杯子3)

  提出要求:把所有的擺法都擺出來,看看你會有什么發現?

  (1)同桌之間互相合作,動手擺,把各種情況記錄下來。

  (2)指名一位同學展示不同擺法,教師板書。(4,0,0)(3,1,0)(2,2,0)(2,1,1),

  (3)引導學生觀察發現:不管怎么放,總有一個杯子里至少有2根小棒。(板書:總有一個杯子里至少有)

  (4)師生共同理解“總有”“至少”有2枝什么意思?

  (5)明確:剛才同學們把所有擺法一一列舉出來,得到了這樣的結論,我們稱之為“枚舉法”。

  [設計意圖:學生通過自己動手操作,在實驗中、合作中、討論中發現規律,分析問題的形成,把動腦思考與動手操作相結合,獨立思考與小組合作相結合。讓同學之間互相幫助,相互提高,讓問題在學生的探究中得到解決。]

  2、要把6根小棒放進5杯子里,你感覺會有什么結果呢?

  (1)啟發學生猜想結果

  把6根小棒放入五個杯子里,你感覺一下,不要動手擺,你感覺一下會有什么樣的結論?

  (2)引導學生選擇合適的方法

  提出要求:想一個快速而又簡單的方法,只擺一種情況,你就可以得到這個結論?

  (3)學生嘗試操作驗證。

  (4)全班交流,操作演示。

  學生活動后組織交流:先每個杯子擺一根,每個杯子放1跟,5個杯子,就已經放了5根,還有1根不管怎么放,總有一個杯子至少有兩根小棒

  預設:如遇到每個杯子擺兩根,有的杯子空的,這樣有說服力嗎?有的杯子還空著,要先把每個杯子都裝上小棒才行。

  (5)明確結論:把6根小棒放進5個杯子里,不管怎么放,總有一個杯子里至少有2枝小棒。

  3、課件出示:

  把100根小棒放進99個杯子呢?

  談話:要不要也準備100根小棒和99根杯子呢?可以怎么辦?

  引導用假設法進行思考:假設每個杯子放1跟,99個杯子,就已經放了99根,還有1根不管怎么放,總有一個杯子至少有2根小棒。

  這也是數學中一種很重要的方法“假設法”。

  引導學生觀察小棒數和杯子數,你有什么發現?

  明確:這里的小棒數都比杯子數多1,當小棒數比杯子數多1時,總有一個杯子至少放了兩根小棒。

  [設計意圖:注意鼓勵學生運用已有的知識對新學習的內容進行聯想和猜測,再通過實驗和推理驗證,培養學生良好的學習和思考習慣。在猜測的基礎上進行實驗和推理,從“枚舉法”到“假設法”,使學生受到研究方法和思維方式的訓練,發展和提高自主學習的能力。]

  (二)活動二

  談話:接下來,我們把數學書當做物體數放入抽屜里,看看又有什么發現?

  課件出示:把5本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?

  板書:書抽屜總有一個抽屜放入算式

  5235÷2=2……1

【六年級數學抽屜原理教學設計方案最新】相關文章:

數學《抽屜原理》教學反思原理08-11

最新抽屜原理教學反思11-23

《抽屜原理》數學教學反思08-10

數學抽屜原理教學設計(精選9篇)08-19

《抽屜原理》數學教學反思(精選13篇)06-02

抽屜原理教學設計05-29

抽屜原理教學設計04-02

“抽屜原理”教學設計02-09

《抽屜原理》教學設計02-13