- 相關推薦
平方根教學設計一等獎
作為一名無私奉獻的老師,編寫教學設計是必不可少的,教學設計是對學業業績問題的解決措施進行策劃的過程。教學設計應該怎么寫呢?以下是小編收集整理的平方根教學設計一等獎,歡迎閱讀,希望大家能夠喜歡。
平方根教學設計一等獎1
學科:
數學年級:七年級審核:
內容:
滬科版七下6.1平方根(1)課型:新授時間:
學習目標:
1、了解平方根的概念,會用根號表示一個數的平方根,并了解被開方數的非負性;
2、了解開方與乘方互為逆運算,會用平方運算求某些非負數的平方根,進行簡單的開平方運算。
學習重點:
了解平方根的概念,求某些非負數的平方根
學習難點:
了解被開方數的非負性;
學習過程:
一、學習準備
1、我們已經學習過哪些運算?它們中互為逆運算的是?
答:加法、減法、乘法、除法、乘方五種運算。加法與減法互逆;乘法與除法互逆。
2、什么叫乘方?什么叫冪?乘方有沒有逆運算?完成下面填空。
32 = ( ) ( )2 = 9
(-3)2= ( ) ( )2 =
( )2= ( ) ( )2 = 0
( )2 =( )
02 =( ) ( )2 =-4
3、左邊算式已知底數、指數求冪,右邊算式已知冪、指數求底數
一般地,如果一個數的平方等于a,那么這個數叫做a的平方根,也叫做a的二次方根。
即如果X2=a,那么叫做的平方根。請按照第3頁的舉例你再舉兩個例子說明:
叫做開平方,平方與互為逆運算
4、觀察上面兩組算式,歸納一個數的平方根的性質是:
一個正數有兩個平方根,它們互為相反數;
零有一個平方根,它是零本身;
負數沒有平方根。
交流:(1)的平方根是什么?
(2)0.16的平方根是什么?
(3)0的平方根是什么?
(4)-9的平方根是什么?
5、平方根的表示方法
一個正數a有兩個平方根,它們互為相反數.
正數a的正的平方根,記作“ ”
正數a的負的平方根,記作“ ”
這兩個平方根合在一起記作“ ”
如果X2=a,那么X=,其中符號“ ”讀作根號,a叫做被開方數
這里的`a表示什么樣的數?a是非負數
二、合作探究
1、判斷下面的說法是否正確:
1).-5是25的平方根;()
2).25的平方根是-5;()
3).0的平方根是0()
4).1的平方根是1()
5).(-3)2的平方根是-3()
6). -32的平方根是-3()
2、閱讀課本第4頁例題1,按例題格式判斷下列各數有沒有平方根,若有,求其平方根。若沒有,說明為什么。
(1)0.81(2)(3)-100(4)(-4)2
(5)1.69(6)(7)10(8)5
三、學習體會:
本節課你學到哪些知識?哪些地方是我們要注意的?你還有哪些疑惑?
四、自我測試
1、檢驗下面各題中前面的數是不是后面的數的平方根。
(1)±12 , 144()(2)±0.2 , 0.04()
(3)102,104()(4)14,256()
2、選擇題(1)0.01的平方根是()
A、0.1 B、±0.1 C、0.0001 D、±0.0001
(2)因為(0.3)2 = 0.09所以()
A、0.09是0.3的平方根. B、0.09是0.3的3倍.
C、0.3是0.09的平方根. D、0.3不是0.09的平方根.
3、判斷下列說法是否正確:
(1)-9的平方根是-3; ( )
(2)49的平方根是7;( )
(3)(-2)2的平方根是±2;()
(4)-1是1的平方根;()
(5)若X2 = 16則X = 4()
(6)7的平方根是±49. ( )
4、求下列各數的平方根
1)81 2)0.25 3)4)(-6)2
5、求下列各式中的x:
(1) x=16 (2) x= (3) x=15 (4) 4x=81
思維拓展:
1、一個數的平方等于它本身,這個數是一個數的平方根等于它本身,這個數是
2、若3a+1沒有平方根,那么a一定。 3、若4a+1的平方根是±5,則a= 。
4、一個數x的平方根等于+1和-3,則= 。x= 。
5、若|a-9|+(b-4)=0,則ab的平方根是。
6、熟背1至20的平方的結果。
7、分別計算32,34,46,58,512,10的平方根,你能發現開平方后冪的指數有什么變化嗎?
平方根教學設計一等獎2
教材分析:
《算術平方根》是人教版七年級下第六章第一節,本節通過對實際生活中問題的解決,讓學生體驗數學與生活實際是緊密聯系著的。通過對這一節課的學習,既可以讓學生了解算術平方根的概念,會用根號表示正數的算術平方根,并了解算術平方根的非負性,將為學生學習算術平方根奠定基礎。引入算術平方根的知識,要借助具體的生活情境,這樣才能加深對引入平方根知識必要性的認識。注意引導學生發現被開方數與對應的算術平方根之間的關系。
本節課的開始就設置了一個問題情境,把這個問題情境抽象成數學問題就是已知正方形的面積求正方形的邊長,這是典型的求算術平方根的問題。由于所選數字簡單,可見其設計目的,并不著眼于計算,而在于鞏固概念。因此本節課的關鍵是抓住算術平方根概念的本質特征,逐層深入,多個角度展示。
課標要求:
在實際情境中理解算術平方根的概念及求法,并能解決簡單的問題,體驗數學與日常生活密切相關,認識到許多實際問題可以借助數學方法來解決,并可以借助數學語言來表述和交流。
本節突出概念形成過程的教學,首先列舉學生熟悉的例子,從生活問題中抽象出數學本質,引導學生觀察、分析后歸納,然后提出注意問題,幫助學生把握概念的本質特征,再引導學生運用概念并及時反饋。同時在概念的形成過程中,著意培養學生觀察、分析、抽象、概括的能力。在本節課中,我利用學生的已有經驗,通過思考、討論、探究等活動,使學生感受到做數學、用數學的價值。
策略分析:
根據教材內容和編排特點,為了更有效地突出重點、突破難點、抓住關鍵,本節課按照學生的認知規律,遵循教師為主導,學生為主體,訓練為主線的原則,采用“自主探究法”和“引導發現法”為主,并根據學法指導自主性和差異性要求,讓學生在探究過程中理解理解算術平方根的概念。
教學目標:
1、經歷算術平方根概念的形成過程,會用根號表示算術平方根,并了解算術平方根的非負性。
2、會用平方運算求非負數的算術平方根,包括完全平方數的算術平方根和部分非完全平方數的算術平方根。
教學重點:
理解算術平方根的概念。
教學難點:
根據算術平方根的概念正確求出非負數的算術平方根。
教學過程:
一、創設情境,導入新課
學校要舉行美術作品比賽,小鷗想裁出一塊面積為25 dm2的正方形油布,畫上自己的得意之作參加比賽,這塊正方形油布的邊長應取多少?
(設計說明:用教材的問題作為導入材料,能夠和學生的課前預習活動對接,可以提高學生參與教學活動的廣度,從學生熟悉的數學經驗入手,提出簡單的問題,激發學生自主學習的興趣和積極性,也自然引入新課。)
二、自主探究,發現新知
自學教材40頁內容,思考:
1、什么是算術平方根?怎樣表示一個數的算術平方根?
2、1的算術平方根是多少?9的算術平方根是多少?16呢?怎樣求一個正數的算術平方根?正數的算術平方根的結果是什么數?
3、0的算術平方根是多少?為什么?
4、負數有算術平方根嗎?為什么?
(師生活動:學生自學教材,結合探究提綱思考、練習、舉例、討論,教師做好板書準備后巡視檢查學生自學情況,深入學生中間交流,掌握學情,為展示交流做準備。)
【設計意圖】學生通過自主學習,經歷觀察、比較、抽象、概括的思維過程,理解算術平方根概念的實質,建立初步的數感和符號感,提高學生抽象思維水平。
三、學生交流,展示歸納
1、自主探究展示:
(1)算術平方根的概念和表示方法。
(2)求1,9,16,0的算術平方根。
2、合作探究展示:
負數沒有算術平方根,因為沒有任何數的平方的結果是負數。
3、歸納展示:
(1)一般地,如果一個正數x的平方等于a,即x2=a,那么這個正數x叫做a的算術平方根。記讀作“根號a”,a叫做被開方數。
(2)0的算術平方根是0。
4、舉例展示:(學生舉出算術平方根的例子。)
(師生活動:教師結合巡視檢查,讓中差生先展示,充分的暴露問題,再由中等生或優等生糾錯、說理、補充、評價、修正。)
【設計意圖】通過展示交流,培養學生的“自主、合作、探究”能力,讓學生體驗“互逆”的數學思想方法,積累數學活動經驗。
四、類比練習,鞏固提升
(師生活動:學生結合例題的格式解答,抽3名學生上講臺板書,其他學生自主解答,從解題的'過程、結果、格式等方面進行評價、糾錯、修訂、完善,教師給予適當的引導、點撥、評價。)
練習1:課本41頁練習1題。
(師生活動:抽學生回答,其他同學評價、補充、修訂。)
練習2:課本41頁練習2題。
(師生活動:抽學生上黑板完成,發動學生相互評價補充,教師重點提醒題,強調乘方的算術平方根的計算方法。)
練習3:下列各數有算術平方根嗎?如果有,求出來;如果沒有,請說明理由。
(師生活動:學生獨立解答,學生代表板書,學生相互評價,教師重點提醒題,加深對概念的理解和應用。)
(師生活動:抽學生回答,發動其他同學評價、補充、修訂。)
【設計意圖】學生通過口答、計算、選擇,加深對算術平方根的概念及性質的理解和應用,提高學生分析問題和解決問題的能力。
五、回顧反思,強化提升
1、這節課你學到了什么?
2、你對大家有哪些建議或提醒?
(師生活動:學生自主小結,同學相互補充評價,教師補充完善。)
【設計意圖】引導學生從知識與技能、過程與方法、情感態度價值觀的三維目標中總結自己的收獲,把握本節課的核心內容,進一步體會互逆運算的數學思想方法。
六、當堂檢測、知識過關
績優學案32頁鞏固訓練的1、2、3、4(1)(3)小題。
(師生活動:學生獨立完成,教師手拿紅筆進行選擇性批閱,教師出示答案,學生自我評價,師生共同評價。)
【設計意圖】通過4測試題,再次加深學生對算術平方根的概念的理解和運用,及時反饋學生對本節課知識的掌握程度。
七、布置作業
1、必做題:習題6.1復習鞏固第1、2題。
2、選做題:績優學案32頁典例探究3和鞏固訓練的5題。
【設計意圖】體現課標理念:“人人都能獲得良好的數學教育,不同的人在數學上得到不同的發展。”必做題面向全體,選做題使學有余力的同學有發展的空間。
【課后反思】
本節課的教學設計,力求為學生創造一種寬松、和諧、適合學生發展的學習環境,創設一種有利于思考、討論、探索的學習氛圍。整個教學環節層層推進、步步深入,注重調動學生思維的積極性,把知識的形成過程轉化為學生為主的過程,重視學生的自主探索、親身實踐、合作交流。學生在活動中理解掌握基本知識、技能和方法,使學生在獲得知識的同時提高了興趣、增強了信心、提高了能力。
由于這節課是一節概念課,關于數學概念課的教學有它特殊的要求,其中,最重要的一點就是充分展現概念的形成過程,所以,如何引導幫助學生建立這個概念,并對它的內涵和外延有深刻、明確的理解和認識,是本節課的重點。本節課的內容看起來簡單,但對學生來講,要想真正理解這個概念有很多困難,如果僅僅就概念講概念,如果沒有必要的知識聯系和遷移,學生對這個概念只能形式化的模仿運用,無法真正掌握。過去對這個問題重視不夠,正是導致學生在這個簡單的問題上經常犯錯誤的主要原因。為此,我在設計這節課教學時,把重點就放在這里。
(1)創設情景,自然導入
首先通過一個問題情境,引出面積求邊長的問題,接著又讓學生通過填表的方式,計算幾個不同面積的正方形的邊長,使學生感受到這些問題與以前學過的已知邊長求面積的問題是一個相反的過程,即學生較為熟悉的互逆運算,并由此指出,這些問題抽象成數學問題就是已知一個正數的平方求這個正數的問題,并在此基礎上給出算術平方根的概念,這樣就讓學生通過具體活動,在對算術平方根有些感性認識的基礎上給出這個概念。培養學生從數學的角度觀察生活,思考問題的能力。
(2)學生在積極參與教學活動中自覺的提高了認知水平。
算術平方根的學習體現了由特殊到一般的認識過程,通過一些具體數的計算,然后放到一般情況下理性思考,這樣就為學生接受新知鋪設了臺階,符合學生的認知規律。為了使抽象的概念具體化,通俗易懂,本節由學生列舉的例子,培養學生的發散思維,也增強學生運用數學的意識。
【平方根教學設計一等獎】相關文章:
平方根教學設計04-27
算術平方根教學設計11-04
平方根教案設計08-28
《爭吵》教學設計一等獎10-27
朗誦教學設計一等獎03-14
平方根教學反思07-05
平方根教學反思02-28
平方根教學隨筆03-30