亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

初中數學教學設計

時間:2023-02-17 11:16:11 教學設計 我要投稿

初中數學教學設計合集15篇

  作為一名辛苦耕耘的教育工作者,常常要根據教學需要編寫教學設計,教學設計是對學業業績問題的解決措施進行策劃的過程。寫教學設計需要注意哪些格式呢?以下是小編收集整理的初中數學教學設計,歡迎大家借鑒與參考,希望對大家有所幫助。

初中數學教學設計合集15篇

初中數學教學設計1

  一教學目標

  1.通過案例理解正比例函數,能列出正比例函數關系式

  2.教會學生應用正比例函數解決生活實際問題的能力

  二教學重點

  理解正比例函數的概念

  三教學難點

  利用正比例函數解決生活實際問題

  四教學過程

  【提出問題】

  1.《阿甘正傳》是一部勵志影片。片中阿甘曾跑步繞美國數圈,假設他從德州到加州行進了千米,耗費了他150天時間。

 。1)阿甘大約平均每天跑步多少千米?

  (3)阿甘一個月(30天)的行程是多少千米?

  【生】列算式回答

  【師】點評總結

  2.寫出下列變量間的函數表達式

  (1)正方形的周長l和半徑r之間的關系【進一步抽象問題讓學生思考】

 。2)大米每千克四元,則售價y元與數量x(kg)的函數關系式是什么?

 。3)下列函數關系式有什么共同點?(小組合作)【分析共同點和不同點,找出規律】

 。1)y=200x(2) l=2∏r(3) m=

  【生回答,師點評】

  【引入新課】

  1、正比例函數的概念:一般地,形如y=kx (k≠0)的函數,叫做正比例函數,其中k叫做比例系數.【板書概念,引導學生分析正比例函數的定義】

  2 、【例題講解】

  例1在同一坐標系里,畫出下列函數的圖像:y==x y=3x

  解:【略】 【掌握函數圖像的'畫法:列表,描點,連線】

  3、練習

 。1)已知正比例函數y=kx.當x=3時y=6 。求k的值

  (2)一種筆記本每本的單價為3元。則銷售金額y元與銷售量x之間的關系式是怎樣的?當銷售金額為360元時,則售出了多少本這種筆記本?

  五課外作業

  【反思】

  由于函數的概念比較抽象,學生不容易理解。而理解函數的概念是教學的重點。這節課首先通過實例,回顧函數的概念,其次抽象提出正比例函數關系式,由學生觀察得到特點,然后引出正比例函數的概念和特點,再通過練習加以鞏固,最后通過小組討論利用正比例函數解決生活中的問題。

初中數學教學設計2

  教材分析

  1.這節的重點為:去括號。因此,本節所學的知識實際上就是對前面所學知識的一個鞏固和深化,要突破這個重點,只有在掌握方法的前提下,通過一定的練習來掌握。

  2.去括號是整式加減的一個重要內容,也是下一章一元一次方程的直接基礎,也是今后繼續學習整式的乘除、因式分解、方程,以及分式、函數等的重要基礎。

  學情分析

  1.去括號法則是教材上的教學內容,學生學習時會經常出現錯用法則的現象。實驗表明:完全可以用乘法分配律取代去括號法則.這是由于:(1)“去括號法則”,增加了記憶負擔和出錯的機會,容易出錯;(2)去括號的法則增加了解題長度,降低了學習效率;(3)用乘法分配律去括號的`學習是同化而非順應,易于理解與掌握;(4)用乘法分配律去括號是回歸本質,返璞歸真,且既可減少學習時間,又能提高運算的正確率。

  教學目標

  1.熟練掌握去括號時符號的變化規律;

  2.能正確運用去括號進行合并同類項;

  3.理解去括號的依據是乘法分配律。

  教學重點和難點

  重點

  去括號時符號的變化規律。

  難點

  括號外的因數是負數時符號的變化規律。

  教學過程

  一、創設情景問題

  青藏鐵路線上,列車在凍土地段的行駛速度是100千米/時,在非凍土地段的形式速度可以達到120千米/時。

  請問:(3)在格爾木到拉薩路段,列車通過凍土地段比通過非凍土地段多用0.5小時,如果通過凍土地段需要t小時,則這段鐵路的全長可以怎么樣表示?凍土地段與非凍土地段相差多少千米?

  解:這段鐵路的全長為100t+120(t-0.5)(千米)

  凍土地段與非凍土地段相差100t-120(t-0.5)(千米)。

  提出問題,如何化簡上面的兩個式子?引出本節課的學習內容。

  二、探索新知

  1.回顧:

  1你記得乘法分配率嗎?怎么用字母來表示呢?

  a(b+c)=ab+ac

  2-(-2)=(-1)*(-2)=2+(-3)=(+1)*(-3)=-3

  2.探究

  計算(試著把括號去掉)

 。1)13+(7-5)(2)13-(7-5)

  類比數的運算,去掉下面式子的括號

 。3)a+(b-c)(4)a-(b-c)

  3.解決問題

  100t+120(t-0.5)=100t-120(t-0.5)=

  思考:

  去掉括號前,括號內有幾項、是什么符號?去括號后呢?

  去括號的依據是什么?

  三、知識點歸納

  去括號法則:

  如果括號外的因數是正數,去括號后原括號內各項的符號與原來的符號相同;

  如果括號外的因數是負數,去括號后原括號內各項的符號與原來的符號相反.

  注意事項

 。1)去括號規律要準確理解,去括號應對括號的每一項的符號都予考慮,做到要變都變;要不變,則誰也不變;

 。2)括號內原有幾項去掉括號后仍有幾項.

  四、例題精講

  例4化簡下列各式:

 。1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).

  五、鞏固練習

  課本P68練習第一題.

  六、課堂小結

  1.今天你收獲了什么?

  2.你覺得去括號時,應特別注意什么?

  七、布置作業

  課本P71習題2.2第2題

初中數學教學設計3

  一、教材分析

  反比例函數是初中階段所要學習的三種函數中的一種,是一類比較簡單但很重要的函數,現實生活中充滿了反比例函數的例子。因此反比例函數的概念與意義的教學是基礎。

  二、學情分析

  由于之前學習過函數,學生對函數概念已經有了一定的認識能力,另外在前一章我們學習過分式的知識,因此為本節課的教學奠定的一定的基礎。

  三、教學目標

  知識目標:理解反比例函數意義;能夠根據已知條件確定反比例函數的表達式.

  解決問題:能從實際問題中抽象出反比例函數并確定其表達式. 情感態度:讓學生經歷從實際問題中抽象出反比例函數模型的過程,體會反比例函數來源于實際.

  四、教學重難點

  重點:理解反比例函數意義,確定反比例函數的表達式.

  難點:反比例函數表達式的確立.

  五、教學過程

 。1)京滬線鐵路全程為1463km,某次列車的平均速度v(單位:km/h)隨此次列車的.全程運行時間t(單位:h)的變化而變化;

  (2)某住宅小區要種植一個面積1000m2的矩形草坪,草坪的長y(單

  位:m)隨寬x(單位:m)的變化而變化。

  請同學們寫出上述函數的表達式

  14631000(2)y= tx

  k可知:形如y= (k為常數,k≠0)的函數稱為反比例函數,其中xx(1)v=

  是自變量,y是函數。

  此過程的目的在于讓學生從實際問題中抽象出反比例函數模型的過程,體會反比例函數來源于實際. 由于是分式,當x=0時,分式無意義,所以x≠0。

  當y= 中k=0時,y=0,函數y是一個常數,通常我們把這樣的函數稱為常函數。此時y就不是反比例函數了。

  舉例:下列屬于反比例函數的是

  (1)y= (2)xy=10 (3)y=k-1x (4)y= -

  此過程的目的是通過分析與練習讓學生更加了解反比例函數的概念 問已知y與x成反比例,y與x-1成反比例,y+1與x成反比例,y+1與x-1成反比例,將如何設其解析式(函數關系式)

  已知y與x成反比例,則可設y與x的函數關系式為y=

  k x?1

  k已知y+1與x成反比例,則可設y與x的函數關系式為y+1= xkxkxkxkx2x已知y與x-1成反比例,則可設y與x的函數關系式為y=

  已知y+1與x-1成反比例,則可設y與x的函數關系式為y+1= k x?1此過程的目的是為了讓學生更深刻的了解反比例函數的概念,為以后在求函數解析式做好鋪墊。

  例:已知y與x2反比例,并且當x=3時y=4

  (1)求出y和x之間的函數解析式

  (2)求當x=1.5時y的值

  解析:因為y與x2反比例,所以設y?k,只要將k求出即可得到yx2

  和x之間的函數解析式。之后引導學生書寫過程。能從實際問題中抽象出反比例函數并確定其表達式最后學生練習并布置作業

  通過此環節,加深對本節課所內容的認識,以達到鞏固的目的。

  六、評價與反思

  本節課是在學生現有的認識基礎上進行講解,便于學生理解反比例函數的概念。而本節課的重點在于理解反比例函數意義,確定反比例函數的表達式.應該對這一方面的內容多練習鞏固。

初中數學教學設計4

  為了提高學生的學習興趣,增大學生的學習參與面,減小差距。努力作好教學工作,在這一學期中,下文將準備了初中二年級下冊數學教學設計如下:

  一、教學目標:

  通過本期的學習,要使學生在情感與態度上,認識到數學來源于實踐,又反作用于實踐,認識現實生活中圖形間的數量關系,能夠設計精美的圖案,提高學生的審美情趣,培養學生實事求是、嚴肅認真的學習態度,激發學生的學習興趣,培養學生對數學的熱愛,對生活的熱愛,在民主、和諧、合作、探究、有序、分享發現快樂,感受學習的快樂。對于過程與方法,通過學生積極參與對知識的探究,經歷發現知識,發現知識間的內在聯系,讓學生經歷發現知識道路上坎坎坷坷,達到深刻理解掌握知識的目的,達到漫江碧透,魚翔淺底的境界,在經歷這些活動中,提高學生的動手實踐能力,提高學生的邏輯推理能力與邏輯思維能力,自主探究,解決問題的能力,提高運算能力,使所有學生在數學上都有不同的發展,盡可能接近其發展的最大值,培養學生良好的學習習慣,發展學生的非智力因素,使學生潛移默化的接受辯證唯物主義的熏陶,提高學生素質。

  二、教材分析

  本學期教學內容共計五章,知識的前后聯系,教材的教學目標,重、難點分析如下:

  第十六章 分式 本章的主要內容包括:分式的概念,分式的基本性質,分式的約分與通分,分式的加、減、乘、除運算,整數指數冪的概念及運算性質,分式方程的概念及可化為一元一次方程的分式方程的解法。

  第十七章 反比例函數 函數是研究現實世界變化規律的一個重要模型,本單元學生在學習了一次函數后,進一步研究反比例函數。學生在本章中經歷:反比例函數概念的抽象概括過程,體會建立數學模型的思想,進一步發展學生的抽象思維能力;經歷反比例函數的圖象及其性質的探索過程,在交流中發展能力這是本章的重點之一;經歷本章的重點之二:利用反比例函數及圖象解決實際問題的過程,發展學生的數學應用能力;經歷函數圖象信息的識別應用過程,發展學生形象思維;能根據所給信息確定反比例函數表達式,會作反比例函數圖象,并利用它們解決簡單的實際問題。本章的難點在于對學生抽象思維的培養,以及提高數形結合的意識和能力。

  第十八章 勾股定理 直角三角形是一種特殊的三角形,它有許多重要的性質,如兩個銳角互余,30度角所對的直角邊等于斜邊的一半,本章所研究的勾股定理,也是直角三角形的性質,而且是一條非常重要的性質,本章分為兩節,第一節介紹勾股定理及其應用,第二節介紹勾股定理的`逆定理。

  第十九章 四邊形 四邊形是人們日常生活中應用較廣泛的一種圖形,尤其是平行四邊形、矩形、菱形、正方形、梯形等特殊四邊形的用處更多。因此,四邊形既是幾何中的基本圖形,也是空間與圖形領域研究的主要對象之一。本章是在學生前面學段已經學過的四邊形知識、本學段學過的多邊形、平行線、三角形的有關知識的基礎上來學習的,也可以說是在已有知識的基礎上做進一步系統的整理和研究,本章內容的學習也反復運用了平行線和三角形的知識。從這個角度來看,本章的內容也是前面平行線和三角形等內容的應用和深化。

  第二十章 數據的分析 本章主要研究平均數、中位數、眾數以及極差、方差等統計量的統計意義,學習如何利用這些統計量分析數據的集中趨勢和離散情況,并通過研究如何用樣本的平均數和方差估計總體的平均數和方差,進一步體會用樣本估計總體的思想。

  三、提高學科教育質量的主要措施:

  1、認真做好教學七認真工作。把教學七認真作為提高成績的主要方法,認真研讀新課程標準,鉆研新教材,根據新課程標準,擴充教材內容,認真上課,批改作業,認真輔導,認真制作測試試卷,也讓學生學會認真學習。

  2、興趣是最好的老師,愛因斯坦如是說。激發學生的興趣,給學生介紹數學家,數學史,介紹相應的數學趣題,給出數學課外思考題,激發學生的興趣。

  3、引導學生積極參與知識的構建,營造民主、和諧、平等、自主、探究、合作、交流、分享發現快樂的高效的學習課堂,讓學生體會學習的快樂,享受學習。引導學生寫復習提綱,使知識來源于學生的構造。

  4、引導學生積極歸納解題規律,引導學生一題多解,多解歸一,培養學生透過現象看本質,提高學生舉一反三的能力,這是提高學生素質的根本途徑之一,培養學生的發散思維,讓學生處于一種思如泉涌的狀態。

  5、運用新課程標準的理念指導教學,積極更新自己腦海中固有的教育理念,不同的教育理念將帶來不同的教育效果。

  6、培養學生良好的學習習慣,陶行知說:教育就是培養習慣,有助于學生穩步提高學習成績,發展學生的非智力因素,彌補智力上的不足。

  7、指導成立課外興趣小組的民間組織,開展豐富多彩的課外活動,開展對奧數題的研究,課外調查,操作實踐,帶動班級學生學習數學,同時發展這一部分學生的特長。

  8、開展分層教學,布置作業設置A、B、C三類分層布置分別適合于差、中、好三類學生,課堂上的提問要照顧好、中、差三類學生,使他們都等到發展。

  9、進行個別輔導,優生提升能力,扎實打牢基礎知識,對差生,一些關鍵知識,輔導差生過關,為差生以后的發展鋪平道路。

  10、站在系統的高度,使知識構筑在一個系統,上升到哲學的高度,八方聯系,渾然一體,使學生學得輕松,記得牢固。

初中數學教學設計5

  一、教學目標:

  1、知道一次函數與正比例函數的定義.

  2、理解掌握一次函數的圖象的特征和相關的性質;

  3、弄清一次函數與正比例函數的區別與聯系.

  4、掌握直線的平移法則簡單應用.

  5、能應用本章的基礎知識熟練地解決數學問題。

  二、教學重、難點:

  重點:初步構建比較系統的函數知識體系。

  難點:對直線的平移法則的理解,體會數形結合思想。

  三、教學過程:

  1、一次函數與正比例函數的定義:

  一次函數:一般地,若y=kx+b(其中k,b為常數且k≠0),那么y是一次函數

  正比例函數:對于 y=kx+b,當b=0, k≠0時,有y=kx,此時稱y是x的正比例函數,k為正比例系數。

  2. 一次函數與正比例函數的區別與聯系:

 。1)從解析式看:y=kx+b(k≠0,b是常數)是一次函數;而y=kx(k≠0,b=0)是正比例函數,顯然正比例函數是一次函數的特例,一次函數是正比例函數的推廣。

  (2)從圖象看:正比例函數y=kx(k≠0)的圖象是過原點(0,0)的一條直線;而一次函數y=kx+b(k≠0)的圖象是過點(0,b)且與y=kx

  平行的一條直線。

  基礎訓練:

  1. 寫出一個圖象經過點(1,- 3)的函數解析式為: 。

  2.直線y = - 2X - 2 不經過第 象限,y隨x的增大而。

  3.如果P(2,k)在直線y=2x+2上,那么點P到x軸的距離是:。

  4.已知正比例函數 y =(3k-1)x,,若y隨

  x的增大而增大,則k是: 。

  5、過點(0,2)且與直線y=3x平行的直線是: 。

  6、若正比例函數y =(1-2m)x 的圖像過點A(x1,y1)和點B(x2,y2)當x1<x2時,y1>y2,則m的取值范圍是: 。

  7、若y-2與x-2成正比例,當x=-2時,y=4,則x= 時,y = -4。

  8、直線y=- 5x+b與直線y=x-3都交y軸上同一點,則b的值為 。

  9、已知圓O的半徑為1,過點A(2,0)的直線切圓O于點B,交y軸于點C。(1)求線段AB的'長。(2)求直線AC的解析式。

  四、教學反思:

  教師認真備課,查閱資料,搜集有針對性的訓練題,學生只要課堂上能按照教師的思路去做就很高效了。課堂訓練以競賽的形式進行,似乎有一定的刺激性,但缺少后續的刺激活動,學生沒有保持住持久的緊張狀態。

  課前先把所有的復習任務都交給學生完成,教師指導學生瀏覽教材、查閱資料歸納本章的基本概念、基本性質、基本方法,并收集與每個知識點相關的有針對性的問題,也可以自己編題,同時要把每一個問

  題的答案做出來,盡量要一題多解。再由小組長組織小組成員匯編,在匯編過程中要去粗取精。課堂就是以小組為單位學生展示自己的舞臺,在這個舞臺上學生是主角,在這個舞臺上學生可以成果共享,在這個舞臺上學生收獲著自己的收獲。臺上他們是主角,臺下他們也是主角。

  從另一個角度體會到了減輕學生負擔的深刻含義,不單指減少學生課后學習的時間,更重要的是提高學生學習的質量、效率,我的這節課失敗之處就是過分的注重了前者,而忽略了實效性。那么在今后的復習課教學中我要多思多想、多問多聽(問問老師、聽聽學生的想法),力求在真正減輕學生負擔的基礎上打造高效課堂。

初中數學教學設計6

  課題

  正比例函數

  一 教學目標

  1.通過案例理解正比例函數,能列出正比例函數關系式 2.教會學生應用正比例函數解決生活實際問題的能力

  二 教學重點

  理解正比例函數的概念

  三 教學難點

  利用正比例函數解決生活實際問題

  四 教學過程

  【提出問題】

  《阿甘正傳》是一部勵志影片。片中阿甘曾跑步繞美國數圈,假設他從德州到加州行進了21000千米,耗費了他150天時間。

 。1) 阿甘大約平均每天跑步多少千米?

 。2) 阿甘的行程y(km)與時間x(天)之間有什么關系?

 。3) 阿甘一個月(30天)的行程是多少千米?

  【生】 列算式回答 【師】 點評總結

  2.寫出下列變量間的'函數表達式

  (1) 正方形的周長l和半徑r之間的關系

  【進一步抽象問題讓學生思考】

 。2) 大米每千克四元,則售價y元與數量x(kg)的函數關系式是什么?

  (3) 下列函數關系式有什么共同點?(小組合作)

  【分析共同點和不同點,找出規律】 (1) y=200x

  (2) l=2∏r (3) m=7.8V 【生回答,師點評】 【引入新課】

  1.正比例函數的概念:

  一般地,形如y=kx (k≠0)的函數,叫做正比例函數,其中k叫做比例系數.【板書概念,引導學生分析正比例函數的定義】

  2 【例題講解】

  例1 在同一坐標系里,畫出下列函數的圖像: y=0.5x y=x y=3x 解: 【略】

  【掌握函數圖像的畫法:列表,描點,連線】 3.練習

  (1)已知正比例函數y=kx.當 x=3 時 y=6 。求 k的值

  (2) 一種筆記本每本的單價為3元。則銷售金額y元與銷售量x之間的關系式是怎樣的? 當銷售金額為360元時,則售出了多少本這種筆記本?

  四 小結

  五 課外作業

  【反思】

  由于函數的概念比較抽象,學生不容易理解。而理解函數的概念是教學的重點。這節課首先通過實例,回顧函數的概念,其次抽象提出正比例函數關系式,由學生觀察得到特點,然后引出正比例函數的概念和特點,再通過練習加以鞏固,最后通過小組討論利用正比例函數解決生活中的問題。

初中數學教學設計7

  我在這次國培中學習了“初中數學概念課堂教學設計”。雖只有短短的時間,卻讓我受益匪淺。

  數學概念是數學命題、數學推理的基礎,數學學習的真正開始是從對數學概念的學習開始的,作為一名初中數學老師,我也常常在思考,如何進行概念教學?如何充分利用有限的45分鐘,讓學生真正理解概念?通過這次國培,給我們今后的數學概念教學提供了一種可以借鑒的教學模式:即“創設問題情景,歸納共同特征——建立數學模型,抽象出概念——在交流中深化概念,辨析概念的內涵與外延——鞏固、應用與拓展!备拍罱虒W注意以下幾點:

  1、注重了數學與生活之間的聯系。

  《數學課程標準》要求:“讓學生親身經歷將實際問題抽象成數學模型并進行解釋與應用的過程!睌祵W的每一個概念都是一個數學模型,老師們從學生實際出發,創設了許多有利于學生學習的現實背景與材料,極大的.鼓起了學生學習數學的興趣。

  2、概念的得出注重了探究過程、分析過程,體現了活動主題。

  通過一組實例,分析共性,找共同特征。

  3、鋪墊導入恰當,讓預設與生成合情合理。

  課堂教學的優秀與否,既要看預設,又要看生成。做到了新知不新,新概念是在舊概念的基礎上滋生和發展出來的,她們這樣的引入,符合學生的最近發展區需要,教師適時搭建了一個新舊知識的橋梁,然后引導學生分析、觀察,學生就會印象深刻。

  4、注重了數學陷阱的設置。

  把學生對概念理解中的易錯點、易混淆點列出來,讓學生判斷、研究可以讓學生對概念理解更深刻。

  5、注重了學科間的滲透。

  在數學教學中,如何使學生形成數學概念,正確的理解和掌握概念是極為重要的,這是學好數學的基礎之一。要讓學生真正理解概念,要把握好以下三點:一要注重聯系生活原型,對概念作通俗解釋,體驗探究數學問題的樂趣;二要注重揭示概念的本質,準確理解概念的內涵與外延;三要注重概念的實際應用,實現知識的升華。

初中數學教學設計8

  一、 教學目標

  1、 知識與技能目標

  掌握有理數乘法法則,能利用乘法法則正確進行有理數乘法運算。

  2、 能力與過程目標

  經歷探索、歸納有理數乘法法則的過程,發展學生觀察、歸納、猜測、驗證等能力。

  3、 情感與態度目標

  通過學生自己探索出法則,讓學生獲得成功的喜悅。

  二、 教學重點、難點

  重點:運用有理數乘法法則正確進行計算。

  難點:有理數乘法法則的.探索過程,符號法則及對法則的理解。

  三、 教學過程

  1、 創設問題情景,激發學生的求知欲望,導入新課。

  教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經放了3天,現在水深20米,問放水抗旱前水庫水深多少米?

  學生:26米。

  教師:能寫出算式嗎?學生:……

  教師:這涉及有理數乘法運算法則,正是我們今天需要討論的問題

  2、 小組探索、歸納法則

 。1)教師出示以下問題,學生以組為單位探索。

  以原點為起點,規定向東的方向為正方向,向西的方向為負方向。

 、 2 ×3

  2看作向東運動2米,×3看作向原方向運動3次。

  結果:向 運動 米

  2 ×3=

 、 -2 ×3

  -2看作向西運動2米,×3看作向原方向運動3次。

  結果:向 運動 米

  -2 ×3=

  ③ 2 ×(-3)

  2看作向東運動2米,×(-3)看作向反方向運動3次。

  結果:向 運動 米

  2 ×(-3)=

 、 (-2) ×(-3)

  -2看作向西運動2米,×(-3)看作向反方向運動3次。

  結果:向 運動 米

 。-2) ×(-3)=

 。2)學生歸納法則

 、俜枺涸谏鲜4個式子中,我們只看符號,有什么規律?

 。+)×(+)=( ) 同號得

 。-)×(+)=( ) 異號得

  (+)×(-)=( ) 異號得

  (-)×(-)=( ) 同號得

 、诜e的絕對值等于 。

 、廴魏螖蹬c零相乘,積仍為 。

 。3)師生共同用文字敘述有理數乘法法則。

  3、 運用法則計算,鞏固法則。

  (1)教師按課本P75 例1板書,要求學生述說每一步理由。

 。2)引導學生觀察、分析例子中兩因數的關系,得出兩個有理數互為倒數,它們的積為 。

  (3)學生做練習,教師評析。

 。4)教師引導學生做例題,讓學生說出每步法則,使之進一步熟悉法則,同時讓學生總結出多因數相乘的符號法則。

初中數學教學設計9

  新學期已到來,我們又要投入到緊張、繁忙而有序地教育教學工作中,使自己今后的教學工作中能有效地、有序地貫徹新的教育精神,圍繞我校新學期的工作計劃要求制定初中一年級數學教學設計方案:

  一、教材分析:

  本學期是本年級學生初中學習階段的第二學期、新授課程主要有相交線與平行線、平面直角坐標系、三角形、二元一次方程組、不等式與不等式組、數據的收集、現行教材、教學大綱要求學生從身邊的實際問題出發,乘坐觀察、思考、探究、討論、歸納之舟,去探索、發現數學的奧妙,用學到的本領去解決復習鞏固、綜合運用、拓展探索等不同層次的問題、教師在靈活選用現有教材的基礎上,應適度引用新例,把初中數學各單元的知識明晰化、條理化、規律化,激勵學生自主、合作、探究學習,培養學習興趣和習慣品質、

  二、教學目標:

  本學期的數學教學要從學生的.實際問題出發,積極引導學生觀察、思考、探究、討論、歸納數學問題,要鼓勵學生去探索、發現數學的奧妙,用學到的本領去解決復習鞏固、綜合運用、拓展探索等不同層次的問題、教學中既要注意知識的覆蓋面,關注中考的重點、熱點和難點,又要突出數學知識在社會、科技中的運用,讓學生在學習、練習中熟記知識要點、考試內容,掌握應試技巧和數學思想方法,提高綜合素質,培養創新意識和探索能力、在期末考試中力爭生均分87分左右,及格率75%以上,并將低分率控制到10%以下,綜合成績縣前五、

  三、教學措施:

  1、認真鉆研教材,積極捕捉課改信息,盡力倡導自主、合作、探究學習,努力培養學生的學習興趣和個性品質、

  2、把握學生思想動態,及時與學生溝通,搞好師生關系、

  3、充分利用課堂教學時間,幫助學生理解教學重難點,訓練考點、熱點,強化記憶,形成能力,提高成績、

  4、改進教學方法,用掛圖,實物創設情景進行教學,力求課堂的多樣化、生活化和開放化,力爭有更多的師生互動、生生互動的機會、

  5、精講多練,在教學新知識的同時,注重舊知識的復習,使所學知識系統化,條理化,讓學生在練習、測試中鞏固提高,減少遺忘、

  6、開辟第二課堂,在不加重學生負擔的前提下,積極引導學生閱讀課外書,促進學生自主、合作,探究學習,培養興趣,提高能力、

  7、加強培優補中促差生的個別輔導,因材施教,培養學生的個性特長、特別要多鼓勵后進生,提高他們的學習興趣,培養他們良好的學習習慣:

 。1)課前預習習慣;

 。2)積極思考,主動發言習慣;

 。3)自主作業習慣;

  (4)課后復習習慣。

初中數學教學設計10

  20xx年寒假期間,我讀《初中數學創新教學設計》一書對我很有幫助,感想很多。

  教學設計作為教師進行教學的主要工作之一,對教學起著先導作用,它往往決定著教學工作的方向;同時教學設計的技能作為教師專業發展的重要內容,已成為教師從師任教必備的基本功。所以教師了解初中數學教學設計的內容很有必要。新理念下的初中數學教學設計的內容可以包括:

 。1) 教學目標。

  在新理念下,教學目標一般包括過程性目標和結果性目標兩個方面,也可以進一步細分為知識技能,數學思考,解決問題,情感態度等多方面。

 。2)任務分析

  進行任務分析的重點在于關注幾個要點:

  一是關注學生的起點;二是關注學生主要的認知障礙和可能的認知途徑;三是分析教學內容的重點、難點和關鍵;四是研究達成目標的主要途徑和方法。

  在這里,有兩個問題十分重要:第一,要關注學生的經驗基礎,第二,要正確認識教材。對于前者,意味著不僅要考慮學科自身的特點,更應遵循學生學科學習的心理規律;要把學生的個人知識、直接經驗和現實世界作為初中數學教學的重要資源。對于后者,意味著要“用教材教,而不是教教材”。創造性的使用教材是本次新課程對我們提出的新要求,教材是極其宏觀性的一個藍本,覆蓋著非常廣闊的時空,主要對教師教什么、學生學什么起到指向作用。但教材僅僅是教師組織數學課堂教學活動的素材,使學生進行數學學習的平臺。新理念下的教材給教師留下了比較大的創造空間,進行任務分析,就必須改變“以教材為本處理教材”的現象,根據學生實際、教學實際和當地實際,模擬教材,重組教材,編制教材,消減技巧性訓練,增加其探索性、思考性和現實性的成分,為實施開放式、活動式的探究、合作、參與等新型學習方式創造條件。事實上,對初中生來說,喜好數學問題,對有關的數學活動充滿好奇心,這是進一步學習數學的`首要前提和發展動力。

 。3)教學思路。

  主要考慮具體的教學過程,包括創設的情景、活動的線索、學生可能提出的問題,可能的情況下必須附設計說明。

 。4)教學反思。

  主要針對如下一些問題開展反思:

  是否達到預期目標?如果沒有達到,分析其原因,并提供改進的方案。有哪些突發的靈感,印象最深的討論或學生獨特的想法?哪些地方與教學設計的不一樣,學生提出了哪些沒有想到的問題?為什么會提出這些問題?

  了解了教學設計的內容,為我們以后教學設計具有很重要的指導意義。

  今天,李老師帶著我們去看舞劇《羚羚的故事》。到那里以后,先是主持人講話,之后是大隊輔導員李老師講話,她帶我們一起回顧了羚羚的故事的精彩鏡頭,看完了我覺得他們太辛苦了!

  第一幕講的是在美麗的可可西里,有很多很多的羚羊在玩,羚羚和妹妹跟媽媽在說話,媽媽說:“你們看,藍藍的天空多漂亮啊!”羚羚說:“是啊,你看那朵云彩多像我啊!”媽媽說:“這美麗的一切是很多很多媽媽的犧牲換來的!”之后,一位來西藏旅游的少年來了,她和小羚羊玩耍,對小羚羊特別好。

  第二幕講的是羚羚聽見“砰”的一聲,她問媽媽是怎么回事,媽媽說:“這是槍聲,咱們趕快跑吧!”羚羚說:“妹妹呢?”她們到處找,突然發現妹妹已經被擊中了!羊媽媽剛想去救她,但是來不及了,偷獵者來了!妹妹被偷獵者帶走了,羚羚非常傷心!

  第三幕講的是小羚羊們又累又餓,走不動了。羊媽媽說:“孩子,堅持一下吧!”羚羚問:“媽媽,我們要去哪兒?我們為什么要離開可可西里?”媽媽說:“我們要去一個沒有人類的地方,因為現在的可可西里已經不是我們的家園了!绷缌鐔枺骸皨寢,您不是說人類是我們的好朋友么?我們為什么要遠離他們?”羊媽媽說:“因為現在來可可西里的人是魔鬼,他們要殺掉我們,用我們的毛皮做衣服,我們要離開這里!”小羚羊們走著走著,大雪來了,大雨來了,大風來了,羚羚實在受不了了。這時,她們的面前出現了一片沼澤地,小羚羊們很著急,怎么過去呢?羊媽媽說:“我們已經沒有選擇了!”說著,所有的羊媽媽都跳了下去,她們背著小羚羊過去了,但是羊媽媽們卻被埋在了沼澤地里。羚羚和小羚羊們大喊著:“媽媽!媽媽!”這時少年來了,她正在尋找小羚羊,小羚羊看到她,跑了過去。少年說:“羚羚,是你嗎?你身上怎么這么多傷?你的媽媽呢?”羚羚傷心地說:“媽媽死了,妹妹也死了!”

  第四幕講的是少年帶著她的朋友們來了,他們都是動物保護者,他們同小動物們一起打敗了偷獵者。小羚羊們又有了新的家園。這時候羚羚也當媽媽了,她們過上了幸福的生活!

  看完這個故事,我想說:“可惡的偷獵者,不許再殺害小動物了!”因為中國的珍稀動物越來越少,比如大熊貓、揚子鱷、白鰭豚,我必須要保護小動物,我們每個人都要保護小動物,它們是我們人類的好朋友!讓我們每個人都做環保的小衛士!

  研究教學方法的組合運用這一課題,對提高思想政治課教學質量有重要的意義。教學方法是多種多樣的,每一種方法都有自己的特點和適用范圍。師生在教學中可以也應該自主選擇不同的教和學的方法,努力創造新的教和學的方法。教學有法,但無定法,貴在得法,教師教學時必須注意方法選擇。我在教學中常用的方法有:演講法、發現教學法與探究教學法 、訓練與實踐式教學方法、復習測驗式教學法、小組討論法等。其中用得最多的是演講法,其優勢在于:

 。1)演講法可以說明一些原則,可以敘述一些事實,解決高中政治教學當中某些內容抽象學生難以理解的問題和概念。在新課程標準下,高中政治教學目的在于向學生傳授基本的理論知識從而讓學生具備正確是世界觀和方法論,從而具有在現實生活當中解決問題的能力。

  雖然高中政治是一門與時事關系非常密切的學科,但是它同樣具有抽象性和蒙蔽性,這些僅僅靠學生的自發理解是解決不了的,這時候,演講法就具備了相當的優勢。通過演講法,教師可以將政治學科當中難以理解的問題結合時事和例子深入淺出的講述清楚,插入有趣的例子和時事,這樣就可以將時效性和趣味性結合起來,既解決了教學重點和難點,同時也可以提高學生對政治這門學科的興趣,讓他們明白,這門學科對他們而言具有相當的實用性,而又不顯得課堂空蕩蕩。教師就可以通過“演講法”,把教學內容和例子相結合,就可以解決這些對學生而言非常抽象的概念和理念,畢竟,高中的學生的理解能力在挖掘發展當中。

  (2)可以節省教學的時間,在高中政治教學的過程當中,有時候教學任務繁重在一節課當中,這個時候,“單向式”的演講法就可以節省時間,能夠順利完成當節教學任務;

  正如之前所說的,任何事物都有其兩面性,演講法有其優點,自然也有它的缺陷。它主要是在于「單向教學」的問題,教師不易掌握學生對教材的接受情況與了解的程度,同時也容易發生灌輸式教學的危險,如果教師對課堂出現的問題處理能力不強或者語言表達能力不夠,那么在使用演講法時就很容易陷入讓學生覺得枯燥乏味的情緒當中,因為畢竟來說高中政治這門學科對于學生來說已經有“枯燥無味”和“學了也沒什么用”的這種先入為主的觀念了,所以這時候對于高中的政治老師的課堂處理能力和語言表達能力就提出更高的要求對于使用演講法來說。因此,當高中政治教師在使用演講法之時,應當配合其它一些可以使學生參與的方法來使用,譬如:討論式、問題式、游戲式等等,盡量讓學生參與到課堂當中,同時通過語言的渲染力提高學生上課的情緒。

  比如在講述到“公民的政治權利”這個概念時,就可以提出當前社會當中易讓人困惑的問題讓學生參與討論,通過這樣的設問討論,學生的情緒就非常高漲,紛紛發表自己的看法,最后再通過演講法由教師進行總結,這樣既可以加深對問題的理解,也可以調節課堂氣氛,增強師生之間的互動性,這樣就可以很好的彌補了演講法本身的缺陷。教學的重點并不完全在于將一大堆的知識或材料傾倒給學生。學生積極、熱切地參與在教與學的過程中是非常重要的。讓學生多有運用手及腦的機會是有益處的。對高中這些年紀稍大一點的學生而言,他們自主性很強,有自己獨立的思想,愈給他們參與的機會,就學習得愈好。

  在教學目標的落實方面需要改進的主要是加強與學生的溝通,因為不管多好的方法,只有能被學生有效分享,為學生的學習提高助力,幫助學生理解教學內容的教學方法才是真正有效的方法。

初中數學教學設計11

  教材分析:

  一元二次方程根與系數的關系的知識內容主要是以前一單元中的求根公式為基礎的。教材通過一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根與系數的關系,以及以數x1、x2為根的一元二次方程的求方程模型。然后通過4個例題介紹了利用根與系數的關系簡化一些計算的知識。

  學情分析:

  1.學生已學習用求根公式法解一元二次方程。

  2.本課的教學對象是九年級學生,學生對事物的認

  識多是直觀、形象的,他們所注意的多是事物外部的、直接的、具體形象的特征。

  3.在教學初始,出示一些學生所熟悉和感興趣的東西,結合一元二次方程求根公式使他們在現代化的.教學模式和傳統的教學模式相結合的基礎上掌握一元二次方程根與系數的關系。

  教學目標:

  1、知識目標:要求學生在理解的基礎上掌握一元二次方程根與系數的關系式,能運用根與系數的關系由已知一元二次方程的一個根求出另一個根與未知數,會求一元二次方程兩個根的倒數和與平方數,兩根之差。

  2、能力目標:通過韋達定理的教學過程,使學生經歷觀察、實驗、猜想、證明等數學活動過程,發展推理能力,能有條理地、清晰地闡述自己的觀點,進一步培養學生的創新意識和創新精神。

  3、情感目標:通過情境教學過程,激發學生的求知欲望,培養學生積極學習數學的態度。體驗數學活動中充滿著探索與創造,體驗數學活動中的成功感,建立自信心。

  教學重難點:

  1、重點:一元二次方程根與系數的關系。

  2、難點:讓學生從具體方程的根發現一元二次方程根與系數之間的關系,并用語言表述,以及由一個已知方程求作新方程,使新方程的根與已知的方程的根有某種關系,比較抽象,學生真正掌握有一定的難度,是教學的難點。

  教學過程:

  板書設計:

  一元二次方程根與系數的關系如果ax+bx+c=0(a≠0)的兩根是x1,x2,那么x1+x2= ,x1x2= 。

  問題6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用嗎? ①二次項系數a是否為零,決定著方程是否為二次方程; ②當a≠0時,b=0,a、c異號,方程兩根互為相反數; ③當a≠0時,△=b-4ac可判定根的情況; ④當a≠0,b-4ac≥0時,x1+x2=,x1x2=。⑤當a≠0,c=0時,方程必有一根為0。

  學生學習活動評價設計:

  本節課充分讓學生分析、觀察、提高了學生的歸納能力及推理論證的能力。

  教學反思:

  1.一元二次方程根與系數的關系的推導是在求根公式的基礎上進行。它深化了兩根的和與積同系數之間的關系,是我們今后繼續研究一元二次方程根的情況的主要工具,必須熟記,為進一步使用打下基礎。

  2.以一元二次方程根與系數的關系的探索與推導,向學生展示認識事物的一般規律,提倡積極思維,勇于探索的精神,借此鍛煉學生分析、觀察、歸納的能力及推理論證的能力

  3.一元二次方程的根與系數的關系,在中考中多以填空,選擇,解答題的形式出現,考查的頻率較高,也常與幾何、二次函數等問題結合考查,是考試的熱點,它是方程理論的重要組成部分。

  4.使學生體會解題方法的多樣性,開闊解題思路,優化解題方法,增強擇優能力。力求讓學生在自主探索和合作交流的過程中進行學習,獲得數學活動經驗,教師應注意引導。

初中數學教學設計12

  教學目標

  1、知識與技能:

 。1)理解一元一次不等式組及其解集的意義;

 。2)掌握一元一次不等式組的解法。

  2、過程與方法:

  (1)經歷通過具體問題抽象出不等式組的過程,培養學生逐步形成分析問題和解決問題的能力。

 。2)經歷一元一次不等式組解集的探究過程,培養學生的觀察能力和數形結合的思想方法,滲透類比和化歸思想。

  3、情感、態度與價值觀:

  (1)感受數形結合思想在數學學習中的作用,養成自主探究的良好學習習慣。

 。2)學生在解不等式組的過程中體會用數學解決問題的直觀美和簡潔美。

  2學情分析

  本節討論的對象是一元一次不等式組。幾個一元一次不等式合在一起,就得到一元一次不等式組。從組成成員上看,一元一次不等式組是在一元一次不等式基礎上發展的新概念;從組成形式上看,一元一次不等式組與第八章學習的方程組有類似之處,都是同時滿足幾個數量關系,所求的都是集合不等式解集的公共部分或幾個方程的公共解。因此,在本節教學中應注意前面的基礎,讓學生借助對已學知識的認識學習新知識。

  另外,本節課是在學生學習了一元一次方程、二元一次方程組和一元一次不等式之后的又一次數學建模思想學習,是今后利用一元一次不等式組解決實際問題的關鍵,是后續學習一元二次方程、函數的重要基礎,具有承前啟后的重要作用。另外,在整個學習過程中數軸起著不可替代的作用,處處滲透著數形結合的思想,這種數形結合的思想對學生今后學習數學有著重要的影響。

  3重點難點

  1、教學重點:對一元一次不等式組解集的認識及其解法。

  2、教學難點:對一元一次不等式組解集的認識及確定。

  3、教學關鍵:利用數軸確定不等式組中各個不等式解集的公共部分。

  4教學過程4.1第一學時教學活動活動1【導入】溫故知新

  教師提問:

  1、什么是一元一次不等式?

  2、什么是一元一次不等式的解集?

  3、如何求一元一次不等式的解集?

  針對性練習:

 。ㄔO計意圖:檢驗學生是否理解和掌握一元一次不等式的相關概念,為本節新課內容的學習做好鋪墊。同時對解不等式中的相關要點加以強調:①解不等式中,系數化為1時不等號的方向是否要改變;②在數軸上表示解集時“實心圓點”和“空心圓圈”的選擇;③要正確理解利用數軸表示出來的不等式解集的幾何意義。)

  活動2【講授】創設問題情景,探索新知

  1、問題(課本第127頁):用每分鐘可抽30 t水的抽水機來抽污水管道里積存的污水,估計積存的污水

  超過1 200 t而不足1 500 t,那么將污水抽完所用時間的范圍是什么?

 。ㄔO計意圖:結合生活實例,讓學生經歷通過具體問題抽象出不等式組的過程,即經歷知識的拓展過程,讓學生體會到數學學習的內容是現實的、有意義的、富有挑戰性的。)

  2、引導學生找出問題中“積存的污水”需同時滿足的兩個不等關系:

  超過1 200 t和不足1 500 t。

  3、問題1:如何用數學式子表示這兩個不等關系?

  1)引導學生一起把這個實際問題轉換為數學模型:

  滿足一個不等關系我們可列一個不等式,滿足兩個不等關系可以列出兩個不等式。

  設用x min將污水抽完,則x需同時滿足以下兩個不等式:

  30x>1200, ①

  30x<1500 ②

  2)教師歸納一元一次不等式組的意義:

  由于未知數x需同時滿足上述兩個不等式,那么類似于方程組,我們把這樣兩個不等式合起來,就組成一個一元一次不等式組。

 。ㄔO計意圖:把實際問題轉換為數學模型,同時讓學生根據一元一次不等式和二元一次方程組的有關概念來類推一元一次不等式組的有關概念,滲透類比和化歸思想。)

  4、問題2:怎樣確定不等式組中既滿足不等式①同時又滿足不等式②的x的可取值范圍?

  1)教師分析:對于一元一次不等式組來說,組成不等式組的每一個不等式中都只含有一個未知數,

  運用前面解一元一次不等式的知識,我們就能直接求出不等式組中的每一個一元一次不等式的解集。

  2)得到解不等式組的第一個步驟:分別直接求出這兩個不等式的解集。學生自行求解:

   由不等式①,解得x>40

  由不等式②,解得x<50

  3)教師引導學生根據題意,容易得到:在這兩個解集中,由于未知數x既要滿足x>40,也要同時滿足x<50,因此x>40和x<50這兩個解集的公共部分,就是不等式組中x可以取值的范圍。

 。ㄔO計意圖:讓學生在教師的引導下探究不等式組的解集及其解法,養成自主探究的良好學習習慣。)

  5、問題3:如何求得這兩個解集的公共部分?

  學生活動:將不等式①和②的解集在同一條數軸上分別表示出來。

 。ㄔO計意圖:啟發學生可利用數軸的直觀性幫助我們尋找這兩個不等式解集的公共部分。)

  教師活動:利用多媒體課件,用三種不同形式表示這兩個解集,幫助學生求得這個公共部分。

  (設計意圖:結合介紹利用數軸確定公共部分的三種不同形式,突破本節課的難點,培養學生的觀察能力和數形結合的思想方法。)

  形式一:用兩種不同顏色表示這兩個解集

  1)通過設置以下幾個問題,要求學生通過觀察、分組討論、取值驗證,自主得出結論。

  (1)這兩種顏色把數軸分成幾個部分?

 。2)每一個部分分別表示哪些數?

 。3) 請每一小組的同學從這幾個部分中各取2~3個數,分別代入兩個不等式中,同時思考:哪部分的數既滿足不等式①同時又滿足不等式②?

  2)學生通過自主探究、合作交流,得到這3個問題的正確答案。

  3)得出結論:

  只有紅色和藍色重疊的部分才既滿足不等式①又同時滿足不等式②。因此,紅色和藍色重疊的部分就是我們要找的x的可取值范圍。

  4)教師提問:兩個不等式解集的界點:即實數40、50所在的點是否落在紅色和藍色重疊的部分?教師引導學生利用學過的驗證法進行驗證,并得出結論:兩個界點沒有落在紅色和藍色重疊的部分。

  (設計意圖:讓學生對一系列的問題進行自主分析和解答,充分調動學生學習的主動性和積極性。同時在上述過程中,利用不同顏色的直觀性,目的在于能讓學生更清楚地找出不等式①和不等式②解集的公共部分。)

  形式二:利用畫斜線的方式:用兩種不同方向的斜線分別畫出x>40和x<50這兩個部分的解集。

  類似地,引導學生得出結論:兩個解集的`公共部分,就是圖中兩種不同方向斜線重疊的部分,從而得出結論。

  形式三:結合課本,利用兩條橫線都經過的部分來確定兩個解集的公共部分。

 。ㄔO計意圖:介紹不同的形式,讓學生再一次鮮明、直觀地體會:x的可取值范圍是兩個不等式解集的公共部分;進一步培養學生的觀察能力和數形結合的思想方法。)

  6、問題4:如何表示這個可取值范圍?

  教師分析:在數軸上,未知數x落在實數40和50之間。而我們知道,數軸上的實數,它們從左到右的順序,就是從小到大的順序。因此,我們可將這三個數先按從小到大的順序書寫出來,再用小于號依次進行連接,記為4040且x<50。

  7、小結并解決課本問題:原不等式組中x的取值范圍為40

 。ㄔO計意圖:首尾呼應,完成了實際問題的研究,通過這個研究過程,讓學生進行感悟、歸納、領會知識的真諦。)

  8、同時,類比一元一次不等式解集的幾何意義,教師再次進行歸納:

  在數軸上,若在40

  一般地,幾個不等式的解集的公共部分,叫做由它們所組成的不等式組的解集。解不等式組就是求它的解集。

  9、結合上述學習過程,讓學生和教師一起歸納解一元一次不等式組的步驟:

 。1)分別求出不等式組中各個不等式的解集;

 。2)把這些解集分別在同一條數軸上表示出來;

 。3)確定各個不等式解集的公共部分;

  (4)寫出不等式組的解集。

  (設計意圖:及時進行小結,使學生對所學知識更加的系統化。)

初中數學教學設計13

  現代教學論研究指出,從本質上講,學生學習的根本原因是問題。在數學課堂教學中,教師可根據不同的教學內容,圍繞不同的教學目標,設計出符合學生實際的教學問題,圍繞所設計的問題開展教學活動。這樣,在課堂教學環節中,問題該怎樣設計?圍繞問題該怎樣進行教學,才能使教學效率得以提高?這是擺在我們面前急需解決的問題。

  本文將結合自己的教學實踐,就問題設計的策略及反思等方面談談自己的看法。

  一、注重問題情境的創設

  著名數學家費賴登塔爾認為:“數學源于現實又寓于現實,數學教學應從學生所接觸的客觀實際中提出問題,然后升華為數學概念、運算法則或數學思想!边@一觀念既反映了數學的本質,同時說明了在數學課堂教學中創設問題情境的重要性。比如,在《有理數的加法》一節的教學導入時,我首先出示了一周來本班的積分統計表(表中的得分用正數表示,失分用負數表示,)讓學生觀察:

  星期 一 二 三 四 五 六 合計

  積分 +3 -2 -4 -2 +2 +4

  然后提出問題:“誰能幫我們班算出這一周的總積分呢?”結果我發現大多數同學能用“抵消”的方法統計出這一周本班的總積分。然后我出了一道算式題:“(+3)+(-2)+(-4)+(-2)=?”發現學生不知道該怎樣算。當學生產生這樣的認知沖突時我便引入了本節課要學習的內容,最后我用表中的數據分成了幾種類型,如正數加正數、負數加負數、正數加負數等,展開新知學習,教學效果較以前有明顯改觀。

  本節課成功之處在于:(1)導入的情境問題貼近學生的現實,調動了學生的積極性。(2)情境問題為后面的教學埋下了伏筆,引發了學生的認知沖突。當然,情境問題的創設不當,會直接影響教學。比如,在《函數》一節的教學時,我用游樂園中的摩天輪引入,當我提出問題:“同學們,當你坐在摩天輪上,隨著時間的變化,你離開地面的高度是如何變化的`?”我發現學生幾乎沒有反應,只是偶爾聽到:“摩天輪?”“很危險……”本來是一個很典型的函數問題,只因為農村學生對該情境的認識模糊,一時沒有進入到虛擬情境中來,導致課堂開端出現“僵局”,也影響了后面的教學工作的勝利開展。

  2、教學重點、難點處的問題設計

  初中數學課堂教學中重點與難點的處理將直接影響教學效果。通過設計好的問題串可以強化重點與突破難點。例如,《結識拋物線》一節的教學重點就是做二次函數y=x2的圖像并根據圖像認識和理解函數的性質。而作圖過程又是一個難點問題,要從所畫的圖像中發現并歸納性質,首先得畫出較準確的函數圖像。在學生畫圖像的過程中,我抓住學生的幾種錯誤畫法提出了三個問題讓學生討論交流:(1)根據你畫的圖像,給自變量x任取一個值,函數y有唯一的值與它對應嗎?(2)自變量x的范圍是什么?(3)在0

  3、例題或課堂練習中的問題設計

  例題教學具有及時鞏固知識和靈活運用知識的雙重功能,隨堂練習是檢查學生的數學學習效果和培養學生思維的有效手段之一。數學課堂教學中,教師通過優選例題,精心設計層次分明的練習,能夠讓學生以積極的態度去思考并解決問題,獲得問題解決的成就感和快樂感。例如筆者在《反比例函數的圖像與性質》一節的教學中設計了一道這樣的問題:已知A(-2,y1)、B(-1,y2)、C(2,y3)三點都在反比例函數y=k/x(k>0)圖像上,(1)比較y1、y2、y3的大小關系。(2)若D(a,y1)、E(b,y2)、F(c,y3)三點也在反比例函數y=k/x(k>0)的圖像上,其中a0判斷y1、y2、y3的大小關系。教學中我發現多數學生對問題(1)采用了直接代入計算的方法得到結果,對問題(2)顯然用代入法難以得到結果,這時,我讓學生小組討論來解決。經過討論后,學生A回答:“因為k>0時,反比例函數y隨x的增大而減小,而ay3!睂W生B回答:“我們組用特殊值檢驗得出y20,所以y3>y1>y2。”學生C回答:“我們組根據反比例函數的圖像和性質得到:當k>0時,在每個象限內,函數y的值隨自變量x的增大而減小,由此可得y3>y1>y2!苯涍^對以上不同做法的比較和鑒別,學生對反比例函數圖像的性質中“在每一個象限內”這一條件有了徹底的理解?梢,在數學課堂教學中,教師精心設計例題或練習問題,使學生通過對問題的解決,既鞏固了知識,又培養了運用知識解決實際問題的能力,體驗到了解決問題后的快樂感和成就感。

  4、在學習反思中的問題設計

  初中學生學習數學的方法相對欠缺,學生“重結論,輕過程”的現象較普遍,對學習結果的反思意識淡薄,自我評價不徹底,做錯的題目一錯再錯。作為教師,在平時的教學中要注重引導,徹底分析錯因,讓學生在錯題中有反思的機會。例如,在一元一次方程的教學中,我發現學生解含有分母的方程時很容易出錯,針對學生做錯的題目,我設計了如的表格:

  通過引導學生對錯因徹底分析與校正,學生明白了產生錯誤的真正原因是什么,認識到了自己的不足。然后我出了幾道解方程的練習,結果發現,學生確實重視了錯誤,效果明顯有所好轉。

  總之,在數學教學中,教學問題的設計確實是一種學問,是一種藝術。要讓學生在實實在在的問題情境中去親歷體驗,在對問題的分析、探索與交流的過程中主動思考,與人分享成果,來體驗成功的快樂,增強他們的自信心。

初中數學教學設計14

  教育改革的關鍵在于教師觀念的轉變,現代教育理論告訴我們:教師的職責現在已經越來越少地傳授知識,而是越來越多地鼓勵、思考……將越來越成為一位顧問、一位交流意見的參加者、一位幫助發現而不是拿出現成真理的人,必須拿出更多的時間和精力去從事那些有效果的和有創造性的活動:互相影響、討論、激勵、了解、鼓舞。這說明了一個道理:教師的地位發生了根本性的變化,不再僅僅是知識的傳授者,還要確定“以人為本”的觀念,把課堂教學看作自己也是學生人生中的一段激蕩的生命經歷,鼓勵、激發學生去不斷探索,把學生的“發現”與“創造”視為最有價值的勞動成果,教師與學生平等地對話,與他們共同感悟思潮的跌宕涌動。我想從三個方面談談自己在教學時的一些認識:

  一、聯系生活、感知數學

  “數學課程不僅要考慮數學自身的特點,而且應遵循學生學習數學的心理規律,強調從學生已有的生活經驗出發,讓學生親身經歷將實際問題抽象成數學模型進行解釋與應用的過程。”這就要求我們遵循學生的思維規律,在實際問題和數學模型之間架起一座橋梁,讓學生在不知不覺中走進數學、感知數學。數學來源于生活并服務于生活,主體(學生)在思考問題時,既符合自身的認知規律,又有直覺洞察、直觀猜想、合理歸納與活動思維過程,有利于提高自己對數學的認識。

  二、身臨其境,探索規律

  “數學教學活動必須建立在學生的認識發展水平和已有的知識經驗上,教師應激發學生的學習積極性,向學生提供充分從事數學活動的機會。

  在教學時教師應根據知識的內在結構和學生的學習規律,提供現象和問題,創設思維情境,引導學生主動參與,進行觀察、思考、探索。這樣有利于激發學生解決問題的熱情,提升學生的學習水平。比如在探究一元二次方程的根與系數的關系時,我們可以按下列步驟來創設情境。

  1.求三個一元二次方程的兩根之和與兩根之積。一般來說學生都是先把方程的根求出來,然后計算,學生可能體會不到什么,此時課堂氣氛比較平穩。

  2.求一元二次方程的兩根之和與兩根之積,這時很多學生會感到很繁,怕動手計算,課堂出現沉悶現象。此時教師立即口答出答案,學生就會感覺到很驚奇,為之一振,進而產生疑問:“老師怎么會看出答案?這里會不會有規律?”課堂出現竊竊私語,激活了學生的思維,活躍了課堂氣氛。

  3.提出問題:你能根據你開始的計算和老師的結論觀察出一元二次方程的根與系數之間的關系嗎?學生們躍躍欲試,開始投入到觀察、思考、探索中去。

  4.提出問題:你敢肯定你所猜測到的結論是正確的嗎?再一次激發學生的斗志,使他們敢于說理、敢于證明,給予他們充分展示自己才華的`機會。

  三、由點到面,觸類旁通

  復習不是簡單的知識重復,而是一個再認識、再提高的過程,復習中的最大矛盾是時間短、內容多、要求高。復習既要做到突出重點、抓住典型,又能在高度概括中深刻揭示知識的內在聯系,讓學生在掌握規律中理解、記憶、熟練、提高。比如在復習一元二次方程根的判別式和根與系數的關系時,可以把一元二次方程根的判別式、根與系數的關系和二次函數的有關知識相聯系,根的判別式可以作為判別二次函數的圖像與x軸的交點個數的依據:當△>0時,拋物線與x軸有兩個不同的交點;當△<0時,拋物線與x軸沒有交點;當△=0時,拋物線與x軸只有一個交點即頂點。如果拋物線與x軸有兩個不同的交點,用根與系數的關系可以求拋物線與x軸的兩個交點之間的距離,可以判別拋物線與x軸交點的位置(交點是在坐標原點的左邊還是在坐標原點的右邊)等等。這樣在復習過程中把知識拓一拓、伸一伸,能激起學生思維的火花、學習的積極性,培養學生運用知識提高分析問題和解決問題的能力。

  總之,課堂教學面對的是獨立、有個性、有思維的學生,課堂教學設計應適應學生的發展,應隨“學情”的變化而變化。課堂教學設計的成效如何,完全取決于教師對教材的理解、對學生情況的了解。只有教師具備“以學生為本”的教學理念,才能一切從學生實際出發、一切為學生考慮,才能真正做到教學服務于學生,實現“不同的人在數學上得到不同的發展”。

初中數學教學設計15

  新課程標準指出:“問題是思想方法、知識積累和發展的邏輯力量,是生長新知識、新方法的種子!庇袉栴}才有探究,有探究才有發展、有創新。學生思維的過程受情境的影響。良好的思維情境會激發思維動機,喚起求知欲望;不好的思維情境會抑制學生的思維熱情。因此,創設良好的思維情境在數學教學中就顯得十分重要。教師通過自己的教學活動,有意識地培養學生善于在好的問題情景下主動建構新知識,積極參與交流和討論,不斷提高學習能力,發展創新意識。

  一、聯系學生的生活實際,創設問題情境

  生活離不開數學,數學也離不開生活。實踐證明:聯系學生已有的生活經驗和學生熟悉的事物入手展開教學,有利于學生更好的掌握數學知識。

  例如在教學菱形性質時,導入時是這樣設計的:

  1、我們大家在日常生活中見過哪些菱形圖案?(看誰說的多)學生爭先恐后地說:

 。1)吃過的菱形形狀的食物

 。2)春節時門上貼的剪紙花

 。3)居室裝飾地板磚

  (4)中國結

 。5)菱形衣帽架等。

  2、為什么把這些圖案設計成菱形呢?

  3、菱形到底有哪些特殊的性質和運用呢?(板書課題) 通過本節課的學習之后大家可以總結出來。

  然后通過畫圖和電腦顯示,讓學生去猜想,去探究,去發現,去論證。從而弄清了菱形的定義、性質、面積公式及簡單運用,

  然后讓學生思考日常生活中還有哪些菱形性質方面的應用。

  這樣通過創設問題情境,讓學生產生一種好奇,一種對知識的渴望,為探究活動創造了良好的條件,為本節課的成功創造了條件。同時讓學生感受到了數學問題來源于生活。讓學生多留意身邊的事物轉化成數學問題。但教學中要注意從實際出發,創設學生所熟悉的喜聞樂見的東西。同時不是為情趣而情趣,要注意增加情趣的內涵。注意經常引導學生用數學的眼光看待周圍的事物,培養學生數學問題意識。

  二、變更表述形式,創設問題情境

  在數學教學中教師可以運用直觀形象的具體材料,創設問題情境,設障布疑,激發學生思維的積極性和求知需要的一種教學方法——有時可通過變更問題的表述形式,引發學生興趣。 例如:“等腰三角形的判定定理”的教學,為引出等腰三角形的判定定理,通常提出問題:“如圖(1),△ABC要判定它是等腰三角形

  BC A 有哪些方法呢?”這樣出示問題顯得單調又乏味。為了同樣的教圖(1)學目的(引導學生獲得判定定理),教師若能根據“性質定理”與“判定定理”的內在聯系,在引導學生性質定理后,提出這樣一個實際問題“如圖(2),△ABC是等腰三角形,AB=AC,因不小心,它的一部分被墨水涂沒了,只留下一條底邊BC和一個底角∠C,試問能否把原來的△ABC重新畫出來?”不僅引發了生動活潑的討論形式,而且也收到良好的引發效果,(有的先度量∠C度數,再以BC為邊作∠B=∠C;有的取BC中點D,過D作BC的垂線等)。由此可見,在定理或概念性較強的性質的教學中,應盡力創設問題情境,使學生認識到所學內容的'意義,使他們產生學習需要,形成學習的內驅力,誘發學生積極思維,在教師的指導下,讓學生主動去探索解決問題的辦法,在實踐中培養學生的創造能力。

  三、猜想驗證法,創設問題情境

  在數學教學中,利用猜想驗證的課堂教學模式創設問題情境,可以積極的促進學生有效的參與課堂教學,學生興趣高漲,主動的進行猜想驗證。

  例如,在教學“三角形的內角和”時,我先請同學們試先量一量自己準備好的三角形的每一個內角的度數,然后告訴我其中兩個內角的度數,我迅速的說出第三個內角的度數。同學們都感到很驚訝!為什么老師能很快的說出第三個內角的度數呢?通過觀察他們發現:每個三角形的內角和都是180度。我問他們是不是任何一個三角形的內角和都是180度呢?他們的回答是肯定的。我說這只不過是你們的一個猜想,下面就請同學們利用你手中的學具來驗證你的猜想。于是,同學們立刻想到了手中的三角板,積極的行動起來證明自己的猜想。

  總之,創設問題情境,培養學生問題意識,一方面能激發學生學習動機、培養創新思維,是新課程理念下數學教學的重要環節。另一方面有助于學生積極地建構數學知識,在情境中自主的參與探究和相互交流,從而達到意義建構的目的,提高課堂教學的有效性。當然教學沒有最好,只有更好,讓我們在今后的教學過程中不斷探索,不斷創新,爭取更打的進步。

【初中數學教學設計】相關文章:

初中數學的教學設計06-21

初中數學教學設計03-03

初中數學教學設計07-26

初中數學函數教學設計07-28

人教版初中數學教學設計08-02

初中數學教學設計模板07-23

初中數學教學設計大全07-23

初中數學教學設計【精】02-01

初中數學教學設計與反思12-23

初中數學教學設計與反思12-23