亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

高中數學教學設計

時間:2022-12-05 19:16:32 教學設計 我要投稿

2023高中數學教學設計范文通用

  作為一名辛苦耕耘的教育工作者,就有可能用到教學設計,編寫教學設計有利于我們科學、合理地支配課堂時間。那么什么樣的教學設計才是好的呢?以下是小編收集整理的2023高中數學教學設計范文通用,歡迎大家分享。

2023高中數學教學設計范文通用

2023高中數學教學設計范文通用1

  教學目標

  (1)理解四種命題的概念;

  (2)理解四種命題之間的相互關系,能由原命題寫出其他三種形式;

  (3)理解一個命題的真假與其他三個命題真假間的關系;

  (4)初步掌握反證法的概念及反證法證題的基本步驟;

  (5)通過對四種命題之間關系的學習,培養學生邏輯推理能力;

  (6)通過對四種命題的存在性和相對性的認識,進行辯證唯物主義觀點教育;

  (7)培養學生用反證法簡單推理的技能,從而發展學生的思維能力.

  教學重點和難點

  重點:四種命題之間的關系;難點:反證法的運用.

  教學過程設計

  第一課時:四種命題

  一、導入新課

  【練習】1.把下列命題改寫成“若p則q”的形式:

  (l)同位角相等,兩直線平行;

  (2)正方形的四條邊相等.

  2.什么叫互逆命題?上述命題的逆命題是什么?

  將命題寫成“若p則q”的形式,關鍵是找到命題的條件p與q結論.

  如果第一個命題的條件是第二個命題的結論,且第一個命題的結論是第二個命題的條件,那么這兩個命題叫做互道命題.

  上述命題的道命題是“若一個四邊形的四條邊相等,則它是正方形”和“若兩條直線平行,則同位角相等”.

  值得指出的是原命題和逆命題是相對的.我們也可以把逆命題當成原命題,去求它的逆命題.

  3.原命題真,逆命題一定真嗎?

  “同位角相等,兩直線平行”這個原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真.

  學生活動:

  口答:

  (1)若同位角相等,則兩直線平行;

  (2)若一個四邊形是正方形,則它的四條邊相等.

  設計意圖:

  通過復習舊知識,打下學習否命題、逆否命題的基礎.

  二、新課

  【設問】命題“同位角相等,兩條直線平行”除了能構成它的逆命題外,是否還可以構成其它形式的命題?

  【講述】可以將原命題的條件和結論分別否定,構成“同位角不相等,則兩直線不平行”,這個命題叫原命題的否命題.

  【提問】你能由原命題“正方形的四條邊相等”構成它的否命題嗎?

  學生活動:

  口答:若一個四邊形不是正方形,則它的四條邊不相等.

  教師活動:

  【講述】一個命題的條件和結論分別是另一個命題的條件的否定和結論的否定,這樣的兩個命題叫做互否命題.把其中一個命題叫做原命題,另一個命題叫做原命題的否命題.

  若用p和q分別表示原命題的條件和結論,用┐p和┐q分別表示p和q的否定.

  【板書】原命題:若p則q;

  否命題:若┐p則q┐.

  【提問】原命題真,否命題一定真嗎?舉例說明?

  學生活動:

  講論后回答:

  原命題“同位角相等,兩直線平行”真,它的否命題“同位角不相等,兩直線不平行”不真.

  原命題“正方形的四條邊相等”真,它的否命題“若一個四邊形不是正方形,則它的四條邊不相等”不真.

  由此可以得原命題真,它的否命題不一定真.

  設計意圖:

  通過設問和討論,讓學生在自己舉例中研究如何由原命題構成否命題及判斷它們的真假,調動學生學習的積極性.

  教師活動:

  【提問】命題“同位角相等,兩條直線平行”除了能構成它的逆命題和否命題外,還可以不可以構成別的命題?

  學生活動:

  討論后回答

  【總結】可以將這個命題的條件和結論互換后再分別將新的條件和結論分別否定構成命題“兩條直線不平行,則同位角不相等”,這個命題叫原命題的逆否命題.

  教師活動:

  【提問】原命題“正方形的四條邊相等”的逆否命題是什么?

  學生活動:

  口答:若一個四邊形的四條邊不相等,則不是正方形.

  教師活動:

  【講述】一個命題的條件和結論分別是另一個命題的結論的否定和條件的否定,這樣的兩個命題叫做互為逆否命題.把其中一個命題叫做原命題,另一個命題就叫做原命題的逆否命題.

  原命題是“若p則q”,則逆否命題為“若┐q則┐p.

  【提問】“兩條直線不平行,則同位角不相等”是否真?“若一個四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?

  學生活動:

  討論后回答

  這兩個逆否命題都真.

  原命題真,逆否命題也真.

  教師活動:

  【提問】原命題的真假與其他三種命題的真

  假有什么關系?舉例加以說明?

  【總結】1.原命題為真,它的逆命題不一定為真.

  2.原命題為真,它的`否命題不一定為真.

  3.原命題為真,它的逆否命題一定為真.

  設計意圖:

  通過設問和討論,讓學生在自己舉例中研究如何由原命題構成逆否命題及判斷它們的真假,調動學生學的積極性.

  教師活動:

  三、課堂練習

  1.若原命題是“若p則q”,其它三種命題的形式怎樣表示?請寫在方框內?

  學生活動:筆答

  教師活動:

  2.根據上圖所給出的箭頭,寫出箭頭兩頭命題之間的關系?舉例加以說明?

  學生活動:討論后回答

  設計意圖:

  通過學生自己填圖,使學生掌握四種命題的形式和它們之間的關系.

  教師活動:

  略。

2023高中數學教學設計范文通用2

  一、教學目標

  1、在初中學過原命題、逆命題知識的基礎上,初步理解四種命題。

  2、給一個比較簡單的命題(原命題),可以寫出它的逆命題、否命題和逆否命題。

  3、通過對四種命題之間關系的學習,培養學生邏輯推理能力

  4、初步培養學生反證法的數學思維。

  二、教學分析

  重點:四種命題;難點:四種命題的關系

  1、本小節首先從初中數學的命題知識,給出四種命題的概念,接著,講述四種命題的關系,最后,在初中的基礎上,結合四種命題的知識,進一步講解反證法。

  2、教學時,要注意控制教學要求。本小節的內容,只涉及比較簡單的命題,不研究含有邏輯聯結詞“或”、“且”、“非”的命題的逆命題、否命題和逆否命題,

  3、“若p則q”形式的命題,也是一種復合命題,并且,其中的p與q,可以是命題也可以是開語句,例如,命題“若,則x,y全為0”,其中的p與q,就是開語句。對學生,只要求能分清命題“若p則q”中的條件與結論就可以了,不必考慮p與q是命題,還是開語句。

  三、教學手段和方法(演示教學法和循序漸進導入法)

  1、以故事形式入題

  2、多媒體演示

  四、教學過程

  (一)引入:一個生活中有趣的與命題有關的笑話:某人要請甲乙丙丁吃飯,時間到了,只有甲乙丙三人按時赴約。丁卻打電話說“有事不能參加”主人聽了隨口說了句“該來的沒來”甲聽了臉色一沉,一聲不吭的走了,主人愣了一下又說了一句“哎,不該走的走了”乙聽了大怒,拂袖即去。主人這時還沒意識到又順口說了一句:“俺說的又不是你”。這時丙怒火中燒不辭而別。四個客人沒來的沒來,來的又走了。主人請客不成還得罪了三家。大家肯定都覺得這個人不會說話,但是你想過這里面所蘊涵的數學思想嗎?通過這節課的學習我們就能揭開它的廬山真面,學生的興奮點被緊緊抓住,躍躍欲試!

  設計意圖:創設情景,激發學生學習興趣

  (二)復習提問:

  1.命題“同位角相等,兩直線平行”的條件與結論各是什么?

  2.把“同位角相等,兩直線平行”看作原命題,它的逆命題是什么?

  3.原命題真,逆命題一定真嗎?

  “同位角相等,兩直線平行”這個原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真.

  學生活動:

  口答:

  (1)若同位角相等,則兩直線平行;

  (2)若一個四邊形是正方形,則它的四條邊相等.

  設計意圖:通過復習舊知識,打下學習否命題、逆否命題的基礎.

  (三)新課講解:

  1.命題“同位角相等,兩直線平行”的條件是“同位角相等”,結論是“兩直線平行”;如果把“同位角相等,兩直線平行”看作原命題,它的逆命題就是“兩直線平行,同位角相等”。也就是說,把原命題的結論作為條件,條件作為結論,得到的命題就叫做原命題的逆命題。

  2.把命題“同位角相等,兩直線平行”的條件與結論同時否定,就得到新命題“同位角不相等,兩直線不平行”,這個新命題就叫做原命題的否命題。

  3.把命題“同位角相等,兩直線平行”的條件與結論互相交換并同時否定,就得到新命題“兩直線不平行,同位角不相等”,這個新命題就叫做原命題的逆否命題。

  (四)組織討論:

  讓學生歸納什么是否命題,什么是逆否命題。

  例1及例2

  (五)課堂探究:“兩條直線不平行,則同位角不相等”是否真?“若一個四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?

  學生活動:

  討論后回答

  這兩個逆否命題都真.

  原命題真,逆否命題也真

  引導學生討論原命題的真假與其他三種命題的真

  假有什么關系?舉例加以說明,同學們踴躍發言。

  (六)課堂小結:

  1、一般地,用p和q分別表示原命題的條件和結論,用¬p和¬q分別表示p和q否定時,四種命題的形式就是:

  原命題若p則q;

  逆命題若q則p;(交換原命題的條件和結論)

  否命題,若¬p則¬q;(同時否定原命題的條件和結論)

  逆否命題若¬q則¬p。(交換原命題的條件和結論,并且同時否定)

  2、四種命題的關系

  (1).原命題為真,它的逆命題不一定為真.

  (2).原命題為真,它的否命題不一定為真.

  (3).原命題為真,它的逆否命題一定為真

  (七)回扣引入

  分析引入中的笑話,先討論,后總結:現在我們來分析一下主人說的四句話:

  第一句:“該來的沒來”

  其逆否命題是“不該來的來了”,甲認為自己是不該來的,所以甲走了。

  第二句:“不該走的走了”,其逆否命題為“該走的沒走”,乙認為自己該走,所以乙也走了。

  第三句:“俺說的不是你(指乙)”其值為真其非命題:“俺說的是你”為假,則說的是他(指丙)為真。所以,丙認為說的是自己,所以丙也走了。

  同學們,生活中處處是數學,期待我們善于發現的眼睛

  五、作業

  1.設原命題是“若

  斷它們的真假.,則”,寫出它的逆命題、否命題與逆否命題,并分別判

  2.設原命題是“當時,若,則”,寫出它的逆命題、否定命與逆否命題,并分別判斷它們的真假.

【高中數學教學設計】相關文章:

高中數學教學設計06-09

高中數學教學設計01-17

高中數學概念教學設計07-14

高中數學教學設計15篇07-01

高中數學的教學設計5篇10-24

高中數學教學設計(精選10篇)07-21

高中數學教學設計14篇07-02

高中數學教學設計15篇12-02

關于高中數學教學設計與教學反思范文03-18

高中數學的教學設計(通用12篇)06-01