抽屜原理教學設計
作為一名辛苦耕耘的教育工作者,總不可避免地需要編寫教學設計,教學設計是一個系統設計并實現學習目標的過程,它遵循學習效果最優的原則嗎,是課件開發質量高低的關鍵所在。那么什么樣的教學設計才是好的呢?以下是小編整理的抽屜原理教學設計,僅供參考,希望能夠幫助到大家。
教學目標:
1.知識與能力:初步了解抽屜原理,運用抽屜原理知識解決簡單的實際問題。
2.過程和方法:經歷抽屜原理的探究過程,通過動手操作、分析、推理等活動,發現、歸納、總結原理。
3.情感與價值:通過“抽屜原理”的靈活應用感受數學的'魅力;提高同學們解決問題的能力和興趣。
教學重點:經歷“抽屜原理”的探究過程,初步了解“抽屜原理”。教學難點:理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。教具學具:課件、撲克牌、每組都有相應數量的筆筒、鉛筆、書。教學過程:
一、創設情景導入新課
師:同學們玩過撲克牌嗎?撲克牌有幾種花色?取出兩張王牌,在剩下的52張撲克牌中任意取出5張,我不看牌,我敢肯定的說:這5張牌至少有兩張是同花色,大家相信嗎?(師生演示)
師:想知道老師為什么能做出如此準確的判斷嗎?這其中蘊含一個有趣的數學原理——抽屜原理。(板書課題)這節課我們就一起來研究這個數學原理。
師:通過今天的學習,你想知道些什么?
二、自主操作探究新知
(一)活動1
課件出示:把4枝鉛筆放到3個筆筒里,可以怎么放?
師:你們擺擺看,會有什么發現?把你們發現的結果用自己喜歡的方式記錄下來。
1、學生動手操作,師巡視,了解情況。
2、匯報交流說理活動
①師:有什么發現?誰能說說看?
師根據學生的回答用數字在黑板上記錄。板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1)
師:你們是這樣記錄的嗎?
師:還可以用圖記錄。我把用圖記錄的用課件展示出來。 ②再認真觀察記錄,還有什么發現?
板書:總有一個筆筒里至少有2枝鉛筆。
③怎樣擺可以一次得出結論?(啟發學生用平均分的擺法,引出用除法計算。)板書:4÷3=1(枝)…1(枝)
④師:這種方法是不是很快就能確定總有一個筆筒里至少有幾枝鉛筆呢?(學生交流)
⑤把5枝鉛筆放進4個筆筒里呢?還用擺嗎?板書:5÷4=1(枝)…1(枝)
⑥課件出示:把6枝鉛筆放進5個筆筒呢?
把7枝鉛筆放進6個筆筒呢?
把10枝鉛筆放進9個筆筒呢?
把100枝鉛筆放進99個筆筒呢?
板書:7÷6=1(枝)…1(枝)
10÷9=1(枝)…1(枝)
100÷99=1(枝)…1(枝)
⑦觀察這些算式你發現了什么規律?
預設學生說出:至少數=商+余數
師:是不是這個規律呢?我們來試一試吧!
3、深化探究得出結論
課件出示:5只鴿子飛回3個鴿籠,至少有兩只鴿子要飛進同一個鴿籠里,為什么?
①學生活動
②交流說理活動
預設:生1:題目的說法是錯誤的,用商加余數,應該至少有3只鴿子要飛進同一個鴿籠。
生2:不同意!不是“商加余數”是“商加1”.
③師:到底是“商加余數”還是“商加1”?誰的結論對呢?在小組里進行研究、討論。
④師:誰能說清楚?板書:5÷3=1(只)…2(只)至少數=商+1
(二)活動二
課件出示:把5本書放進2個抽屜里,不管怎么放,總有一個抽屜里
至少有幾本書?
1、分組操作后匯報
板書:5÷2=2(本)…1(本)
7÷2=2(本)…1(本)
9÷2=2(本)…1(本)
2、那么探究到現在,大家認為怎樣才能確定總有一個抽屜至少有
幾本書?
生:至少數=商+1
3、師:我同意大家的討論。我們這個發現就是有趣的“抽屜原理”,(點題)。“抽屜原理”又稱“鴿籠原理”,最先是由19世紀德國數學家狄里克雷提出的,所以又稱“狄里克雷原理”。這一原理在實際問題中有著廣泛的應用。用它可以解決許多有趣的問題,讓我們來試試好嗎?
三、靈活應用解決問題
1、解釋課前提出的游戲問題。
2、課件出示:8只鴿子飛回3個鴿舍,不管怎樣分,總有一個鴿
舍至少有幾只鴿子?
3、課件出示:任意13人中,至少有兩人的出生月份相同。為什么?
4、課件出示:任意367名學生中,一定存在兩名學生,他們在同
一天過生日。為什么?
四、暢談感受教學結束
同學們,今天這節課有什么感受?(抽生談談,師總結。)
【抽屜原理教學設計】相關文章:
抽屜原理教學設計05-29
抽屜原理教學設計04-02
抽屜原理教學設計11-09
“抽屜原理”教學設計02-09
《抽屜原理》教學設計04-08
抽屜原理教學設計10篇04-14
抽屜原理教學設計12篇04-16
抽屜原理教學設計11篇04-11
《抽屜原理》教學設計15篇07-26